Automated Insightful Drill-Down Recommendations for Learning Analytics Dashboards

Shiva Shabaninejad
s.shabaninejad@uq.edu.au
The University of Queensland

Hassan Khosravi
h.khosravi@uq.edu.au
The University of Queensland

Marta Indulska
m.indulska@uq.edu.au
The University of Queensland

Aneesha Bakharia
a.bakharia1@uq.edu.au
The University of Queensland

Pedro Isaias
pedroisaias@gmail.com
The University of Queensland

ABSTRACT
The big data revolution is an exciting opportunity for universities, which typically have rich and complex digital data on their learners. It has motivated many universities around the world to invest in the development and implementation of learning analytics dashboards (LADs). These dashboards commonly make use of interactive visualisation widgets to assist educators in understanding and making informed decisions about the learning process. A common operation in analytical dashboards is a ‘drill-down’, which in an educational setting allows users to explore the behaviour of sub-populations of learners by progressively adding filters. Nevertheless, drill-down challenges exist, which hamper the most effective use of the data, especially by users without a formal background in data analysis. Accordingly, in this paper, we address this problem by proposing an approach that recommends insightful drill-downs to LAD users. We present results from an application of our proposed approach using an existing LAD. A set of insightful drill-down criteria from a course with 875 students are explored and discussed.

CCS CONCEPTS
• Information systems → Data analytics; • Applied computing → Computer-assisted instruction; E-learning.

1 INTRODUCTION
The educational data revolution, empowered by the increasing use of technology in education, has enabled universities to collect rich data on their learners. To help make sense of data on learners, a relatively new field commonly referred to as learning analytics (LA) has emerged. LA aims to analyse data on learners for the purposes of understanding and improving student learning, taking into consideration the diverse needs of the student population [20]. Within LA, development and evaluation of learning analytics dashboards (LADs) have received significant attention [9, 15, 19].

Earlier models of LADs relied significantly on predictive analytics. For example, Course Signals [1] used predictive models to determine students’ risk status. However, with the wide-adoption of predictive models to support automatic decision-making, the study of discrimination and bias in algorithms has attracted a lot of attention, questioning the ethics of the grounds (such as gender and ethnicity) on which decisions are being made [8]. As a consequence, more recent LADs have generally focused on directly reporting data by relying solely on stakeholder judgement for understanding and interpreting the results [9]. However, as the volume, velocity, and variety of learner data increases, making sense of multi-dimensional data becomes more challenging [13].

A potential alternative approach to using predictive models for analysing large data sets is to employ operations from OLAP (Online Analytics Processing) [7]. In particular, using the OLAP drill-down operation enables a user to meaningfully zoom in to explore data at a more granular level. In the educational setting, a drill-down would be performed by progressively adding filters on learner attributes (e.g., ‘program = CS’ and ‘videos viewed < 5’) to explore the behaviour of sub-populations of learners. The filtering feature can be beneficial in acquiring knowledge about learning behaviour of sub-populations as well as seeking possible correlations between students’ features and their learning state. While the drill-down operation is very powerful in terms of providing additional insights, drilling down into a complex multi-dimensional data set is a challenging task [10, 13]. The challenges, which are further explored in detail in Section 3, include not knowing what attributes to use, failing to find insightful results and encountering a drill-down fallacy “where incomplete insights result from potentially confounding factors not explored along a drill-down” [12].

In this paper, we explore developing LADs that recommend insightful drill-down criteria to instructors. Our proposed approach defines the notion of an insightful drill-down as finding a set of filtering rules that identify a sub-population of learners that deviate from class norms based on an instructor provided metric. Accordingly, we introduce an algorithm, referred to as Automated Insightful Drill-Down (AID), that employs a decision tree and a scoring function based on Kullback-Leibler (KL) divergence to recommend a set of up to k most insightful drill-down criteria. Unlike predictive models that automatically label students, AID uses machine learning algorithms to guide data exploration while still reserving judgement about interpreting student learning to instructors.

We present an application of our proposed approach using an existing LAD called Course Insights that is equipped with manual
To find interesting insights about sub-populations of students, the user has to determine what features to use for filtering. Trying all possible combinations of features may not be feasible. As the number of attributes and attribute values increases, the number of possible drill-down actions increases exponentially.

Lack of insightful results: A large number of possible drill-down criteria can lead to results which may not seem insightful. As a consequence, insightful drill-downs may be missed via a manual drill-down process. Referring to the example provided in Figure 1, many of the drill-downs, such as those presented by sub-populations B, C, H, may not seem insightful as the filtered population has similar assessment results compared to the entire population. In contrast, the two highlighted sub-populations D (students with Video Engagement='Low') and I (students with Video Engagement='High' and Residential Status='Domestic') with a significant difference in their assessment result compared with the overall population.

Considering the presented drill-down criteria, three main challenges with a manual drill-down analysis may be encountered, which we discuss in the following.

Too many drill-down choices: To find interesting insights about sub-populations of students, the user has to determine what features to use for filtering. Trying all possible combinations of features may not be feasible. As the number of attributes and attribute values increases, the number of possible drill-down actions increases exponentially.

Lack of insightful results: A large number of possible drill-down criteria can lead to results which may not seem insightful. As a consequence, insightful drill-downs may be missed via a manual drill-down process. Referring to the example provided in Figure 1, many of the drill-downs, such as those presented by sub-populations B, C, H, may not seem insightful as the filtered population has similar assessment results compared to the entire population. In contrast, the two highlighted sub-populations D and I have significantly different assessment results compared with the overall population. In sub-population D 80% of students have a low score, which is almost 35% higher compared with the overall population. On the contrary, more than 83% of the sub-population I obtained a high score, which is 56% higher than the rate of high scores in the overall population.

Table 1: A sample of a students’ dataset

<table>
<thead>
<tr>
<th>#</th>
<th>Residential Status</th>
<th>Engagement Score</th>
<th>Assessment Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Domestic Medium</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Mid</td>
</tr>
<tr>
<td>3</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>4</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>5</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>6</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>7</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>8</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>9</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>10</td>
<td>Domestic Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>11</td>
<td>International Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Each chart represents assessment-scores’ distributions of the sub-population versus the overall population. Each bar in the charts represents the percentage of students with score value of High, Mid or Low. Two drill-down criteria marked by blue arrows identify two sub-populations D (students with Video Engagement='Low') and I (students with Video Engagement='High' and Residential Status='Domestic') with a significant difference in their assessment result compared with the overall population.

Considering the presented drill-down criteria, three main challenges with a manual drill-down analysis may be encountered, which we discuss in the following.

Too many drill-down choices: To find interesting insights about sub-populations of students, the user has to determine what features to use for filtering. Trying all possible combinations of features may not be feasible. As the number of attributes and attribute values increases, the number of possible drill-down actions increases exponentially.

Lack of insightful results: A large number of possible drill-down criteria can lead to results which may not seem insightful. As a consequence, insightful drill-downs may be missed via a manual drill-down process. Referring to the example provided in Figure 1, many of the drill-downs, such as those presented by sub-populations B, C, H, may not seem insightful as the filtered population has similar assessment results compared to the entire population. In contrast, the two highlighted sub-populations D and I have significantly different assessment results compared with the overall population. In sub-population D 80% of students have a low score, which is almost 35% higher compared with the overall population. On the contrary, more than 83% of the sub-population I obtained a high score, which is 56% higher than the rate of high scores in the overall population.

Figure 1: Drill-down illustration for the example given in Table 1. (D) and (I) represent insightful drill-downs.

In this example, four attributes of Student number, Residential Status, Video Engagement and Assessment Score are captured for 22 students. Considering Assessment Score as the target feature and that Residential Status and Video Engagement each have two possible values in our data set, 8 drill-down actions can be performed. Figure 1, which is inspired by the example used in [12], shows all the possible drill-downs (labeled as B to I).
Drill-down fallacies: An incomplete drill-down analysis may produce a class of errors known as drill-down fallacy [12]. Such a fallacy occurs when incorrect reasoning for a deviation found in the dataset is attributed to a smaller sub-population while “in fact it is a more general phenomenon” [12]. For instance, as shown in Figure 2, if the user takes the drill-down path that is marked by the red arrows, they could conclude that the high percentage of ‘Low’ scores and the absence of high scores (shown chart G) is associated to international students with ‘Low’ video engagement. However, if students are filtered first to ‘Low’ video engagement (the path represented in green), the user would understand that this distribution is associated to ‘Low’ video engagement in general and not international students with ‘Low’ video engagement specifically.

4 AUTOMATED INSIGHTFUL DRILL-DOWN (AID) RECOMMENDATIONS

In this section we introduce our proposed method for recommendation of insightful drill-down criteria in LADs. Section 4.1 introduces a formal notation and our problem statement. Section 4.2 presents our approach and section 4.3 presents an illustrative example based on the data set introduced in Section 3.

4.1 Notation and Problem Statement

Assume that D is a data set containing information about a set of students $S = \{s_1, \ldots, s_N\}$ on a set of features $F = f_1, \ldots, f_M$. Data pertaining to student s_n is represented in row n of D and data pertaining to feature f_m is represented in column m of D. Therefore, d_{mn} stores information on student s_n based on feature f_m.

A rule r is defined as assigning a value to a feature (e.g., ‘program’ = ‘ComputerScience’). For a feature with numerical values in D, the corresponding rule value can be a range instead of a single value (e.g., “age” > 25). A drill-down criteria σ is defined as the conjunction of a set of rules (e.g., ‘program’ = ‘ComputerScience’ ∧ ‘age’ > 25). A drill-down criteria σ is said to cover a student s_n (i.e., include row n of D), if all of the rules in σ match the corresponding values for s_n. Consequently, applying σ to D leads to the selection of a set of students $S' \subseteq S$ such that σ covers each $s_n \in S'$. We define the coverage of a drill-down criteria C_σ as $\frac{|S'|}{M} \times 100$, which is the percentage of students S covered in the resulting sub-population S'. Based on this notation, our formal problem statement is as follows.

Formal problem statement: Given a data set D, a user provided target feature $f_t \in F$ and a constant $0 \leq \alpha \leq 1$, find a set of drill-down criteria $\Sigma = \{\sigma_1, \ldots, \sigma_K\}$ that makes use of a set of features $F' \subseteq \{F - f_t\}$ such that each criteria σ_k: (1) selects a sub-population of learners S' that deviate significantly from the class norms on f_t and (2) the coverage of σ_k is bigger than α (i.e., $C_{\sigma_k} > \alpha$).

4.2 Proposed Approach

We present our approach, by first providing a high-level overview of the underlying algorithm, and then describing the automatic drill-down process using an example. We approach the problem of finding smart drill-downs that lead to the selection of sub-populations with significant deviation from the overall population as a classification algorithm to be solved using decision trees. We opt for this method because (1) decision trees are a well established method for classification with fast model construction and good model understandability; (2) a decision tree provides a tree-like model with each branch representing a set of feature-value pairs that can be mapped to a drill-down criteria; (3), the constant α can be given as a parameter to decision tree algorithms to limit the minimum size of classified sub-populations.

Algorithm 1 provides the high-level pseudo-code of our proposed approach. It takes five parameters as input: the dataset D, the features to be used in the drill-down criteria F', the user provided target feature f_t, the minimum coverage by each recommended drill-down criteria α and the number of drill-down criteria to be recommended k. The output of the algorithm is a set of k drill-down criteria represented by Σ. The algorithm consists of three main blocks: create a decision tree; consider and score all tree paths; and find and return the top k drill-down criteria, as described in the remainder of this section.

Create a decision tree. The $LearnTree$ function takes four parameters as input: the dataset D, the features to be used in the drill-down criteria F', the target feature f_t and the minimum percentage of sub-population α. The output of this method is a decision tree T. $LearnTree$ classifies the given dataset using a decision tree algorithm and generates a tree-like collection of nodes, where each node represents a splitting rule r for one feature, and each leaf (i.e. node with no children) provides the value distribution of the target feature for the sub-population S'. The tree is generated in such a way that the size of the sub-population in every leaf is at least equal to α% of the overall population. $obtainTreePaths$ takes the generated decision tree T as input and returns a set of drill-down paths P. Each path consists of a set of feature-value pairs as well as the distribution of the target feature values in the resulting sub-population.

Consider and score all tree paths. The decision tree embodies several possible drill-down paths, of which not all will necessarily result in a sub-population with a significantly different deviation. $scorePath$ takes each path p as input and scores the path by measuring the distance between S and S' using KL divergence defined as $\sum_{x \in X} S'(x) \log \left(\frac{S'(x)}{S(x)} \right)$, where d is the distance between the distribution of the values in S and S'. And, X is a set that consists of the distribution of each target value in S'.

Find and return the top k drill-down criteria. Finally, our algorithm picks the k highest scored paths, converts them to a set of drill-down criteria σ and returns a recommendation to the user.
4.3 Illustrative Example

In this section, we explain how our algorithm is used to find the top 2 insightful drill-down criteria for the dataset D given in Table 1. [Residential Status, Engagement] as F' and Assessment-score as the target feature f_k, $K = 2$ and $\alpha=20\%$ are selected for this example to better demonstrate the approach. Initially, the dataset is classified using a decision tree algorithm. As shown in Figure 3, the resulting decision tree includes three leaves that can be mapped to drill-down paths of P_1: [Video Engagement = 'High' and Residential Status='Domestic'], P_2: [Video Engagement = 'High' and Residential Status='International'] and P_3: [Video Engagement = 'Low'].

Our proposed algorithm uses a scoring function based on KL divergence to evaluate the ‘insightfulness’ of each of these paths. For instance, path P_1 with the distributions: Low: 0%, Mid: 16.66%, High: 83.33%), and the distributions in the overall population: Low: 45.45%, Mid: 27.27%, High: 27.27%) will be scored as $\frac{0 \cdot \log\left(\frac{0}{45.45}\right) + 16.66 \cdot \log\left(\frac{16.66}{27.27}\right) + 83.33 \cdot \log\left(\frac{83.33}{27.27}\right)}{\log(45.45)} = 36.85$. The score of P_2 (5.10) and P_3 (16.94) are computed in a similar way. These drill-down paths and their resulting coverage and significance scores are shown in Figure 1 (P1 shown in Chart I, P2 shown in Chart H, and P3 shown in Chart D).

The two paths with the highest scores (P_1 and P_3) are converted to a set of drill-down criteria and are recommended to the user. Figure 4 shows the prototype of AID interface in Course Insights, representing the input and the resulting recommendations including the drill-down criteria, coverage and significance. Furthermore, an arrow indicating the average result of Assessment Score in the sub-population in comparison with the average result in the overall population. Note that the returned result satisfied the second criteria of the problem statement; the coverage of both drill-down criteria exceeds α.

5 APPLICATION

This section presents an application of AID using an existing LAD called Course Insights, which is equipped with manual drill-down functionality. Section 5.1 introduces Course Insights and its main segments. Section 5.2 provides insights on how manual drill-down functionality was employed by 71 Course Insights users. Finally, Section 5.3 presents results from applying our approach on student data from one of the courses that have previously employed Course Insights. The recommended drill-down criteria and how they are presented to users are explored and discussed in this section.

5.1 Course Insights

Course Insights is a LAD that provides filterable and comparative visualisations of aggregated students’ daily activity and learning events. Course Insights aims to provide actionable insights for teachers by linking data from several sources including the Students Information System, Blackboard, edX Edge, and a number of embedded learning tools (such as Echo360, Kaltura) to create a multi-dimensional educational data set. Course Insights is equipped with a filtering system to enable instructors to drill-down into the data and explore the behaviour of sub-populations of learners.

Course Insights consists of seven analytical segments (i.e. dashboard screens). Only the segments with filter related functionality is discussed here due to lack of space. (1) **Enrollment** providing statistical information about students’ demographic and educational features; (2) **Engagement** providing time-based statistical data about online learning activities; (3) **Assessment** providing statistical data about students’ assessment results and (4) **Students** providing intervention facility enabling educators to use filters to identify and contact groups of students. The Students segment, displays a tabular view with a row for each students and columns for all features collated for a student. A Prototype of the platform demonstrating the instructor view is available online at https://analytics.ital.iq.edu.au/dev/insights/index.html.

Figure 5 illustrates the two filter interfaces that are supported by Course Insights. The top part of the figure shows the Basic Filtering interface, which only allows drill-downs on students’ age, program, gender, study-load, and residential-status attributes. The bottom part of the figure shows the Advanced Filtering interface, which allows users to build their filters more freely. Advanced filtering allows users to select attributes from demographic, assessment, engagement and enrolment features. The selected set of attributes

![Algorithm 1: Finding a set of k smart drill-down criteria](image-url)
To understand the common challenges with manual drill-downs (presented by ‘Match Any’). When a filter is applied in Course versus unfiltered students’ results for a target feature.

5.2 Insights: Manual Drill-downs

To understand the common challenges with manual drill-downs in LADs, and to study how they are being used, we have analysed logs from Course Insights. Our investigation was guided by the following questions: (1) how complex are the manual drill-downs applied by users? and (2) which manual drill-downs are commonly applied? To answer these questions, we processed 356 manual drill-down actions performed by 71 teaching staff members who were involved in teaching courses during 10 weeks of a semester at The University of Queensland in 2019. To answer the first question, the average length of each drill-down action was examined. To answer the second question, the frequency of the use of performed manual drill-down actions was examined. At the time the data was collected, the Students segment (i.e. dashboard screen) was the only segment that provided advanced filtering.

Analysis of data related to the first question shows that using a combination of attributes was less common. Overall, 84% of drill-downs were performed on a single attribute and the average number of attributes for each drill-down was <2 (Enrolment = 1.35 ± 0.55, Engagement = 1.34 ± 0.68, Assessment=1.29 ± 0.59 and Students=1.15 ± 0.36). Interestingly, despite having access to the Advanced Filter, the Student segment had the lowest average length of drill-down actions. This result might be explained by the well-established phenomena called choice overload [6] from Choice Theory that suggests increasing the number of choices given to a user may increase their effort in decision making. The 10 most common drill-down actions are reported in Table 2. The results of this table confirm the findings from the previous study, indicating that most of the drill-downs were consist of a single-attribute. Only one of the 10 most common drill-downs used a combination of more than two attributes.

As evident, teaching staff have commonly used a small subset of the features and rarely drilled-down more than one level into the features. This may suggest that the drill-down functionality has been under-utilised and that many users may require assistance to fully benefit from ‘drill-down’ operation. An alternative explanation supported by findings of Wise and Yeonji [21] is that “instructors did not always come to analytics use with specific questions, but rather with general areas of curiosity”. Examples of this include questions such as ‘how did international students or female students perform compared to other students, which were commonly asked, as evident by the results of Table 2, by Course Insights’s users. Our future work aims to partner with academics through a co-creation lens [4] to investigate (1) how manual drill-down criteria are formed by academics, (2) how academics judge the insightfulness of a given drill-down operation, and (3) how academics compare and contrast data-driven exploration compared to curiosity-driven exploration in LADs.

5.3 Insightful Drill-Downs in Action

This section takes the case of one of the courses that have used Course Insights to explore how the manual drill-downs compare to recommendations provided by AID. For this comparison, we use an introductory course on ‘Calculus and linear algebra’ offered in 2019 to 875 undergraduate students. We have selected a set of attributes: {Brand New (YES, NO), edX Edge click-stream (High, Low, Med), Gender (Male, Female, Other), Program (48 different programs), Residential Status (Domestic, International)} as the selected attributes F and the assessment called ‘final exam-Section A’ as the target feature f_t. A total of 1728 drill-down actions were possible for this data set. The reported results are based on running AID three times for three different α: 2%, 10% and 30%, and the value $k = 3$ as the number of most significant drill-down criteria. The three variations of α are used to demonstrate its impact on the recommendations. In all reported cases, the recommendations were generated instantly.

Figure 3 presents the recommendations generated for this course. The arrows indicate the average result of the target attribute in the sub-population compared with the average result in the overall population as in Figure 4. As demonstrated, the use of $\alpha = 30\%$ leads to

Table 2: Top 10 common manual drill-downs

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Single Criteria</th>
<th>Multi Criteria</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>98</td>
<td>Age & Study Load</td>
<td>22</td>
</tr>
<tr>
<td>Program</td>
<td>71</td>
<td>Age & Gender</td>
<td>6</td>
</tr>
<tr>
<td>Residential Status</td>
<td>66</td>
<td>Program & Gender</td>
<td>6</td>
</tr>
<tr>
<td>Study Load</td>
<td>35</td>
<td>Program & Age</td>
<td>6</td>
</tr>
<tr>
<td>Gender</td>
<td>32</td>
<td>Program & Residential Status & Study Load</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 5: Course Insights Filtering Interface

Figure 6: Statistical and graphical demonstration of filtered versus unfiltered students’ results for a target feature.
the generation of simple drill-down actions (average length = 1) with
a low significance score (average significance = 0.40) that find rela-
tively large sub-populations (avg coverage = 33%). In comparison, the
use of α = 10% leads to the generation of more complex drill-down
actions (average length = 2.33) with a higher significance score
(average significance = 1.38) that find smaller sub-populations (av-
average coverage = 17%). The generated recommendations for α = 2%
provide some interesting insights: compared to the previous two
cases, as expected the significance score has increased (average
significance = 12.28), and the sub-populations size has decreased
(average coverage = 5.3); however compared to α = 10%, the average
length of the drill-down criteria has decreased (1.6).

The main insights gained from our application of AID are (1)
AID can generate insightful (high significance score) drill-down
recommendations instantly, making it suitable for integration into
LADs (2) Contrary to our initial assumptions, the average length
of a drill-down action is not necessarily a good indicator of its
insightfulness. However, it is worth noting that finding insightful
drill-down criteria of even size 1 in the presence of attributes with
a large number of potential values (e.g. program with 48 different
values) is still a challenging task; (3) α plays a very important role
in the quality of the generated recommendations. A poor selec-
tion in α may lead to disappointing results for the user. Our future
work aims to (1) extend AID such that the algorithm itself sug-
gests promising values of α as well as to partner with academics
through a co-creation lens to investigate (2) what criteria (perhaps
instead of maximising deviation) can be used for determining in-
sightfulness and (3) what would be the best way, if at all, to present
recommendation drill-down criteria to academics.

6 CONCLUSION

The OLAP drill-down operation is commonly used in data-driven
dashboards to enable users to meaningfully zoom in to explore data
at a more granular level. In the context of LADs, this operation can
be used to enable users to identify a sub-population of learners who
deviate from class norms and who may require special attention.

In this paper, we outlined common challenges with manual drill-
downs in LADs and address these challenges by providing a method,
referred to as AID, for finding and recommending a set of insightful
drill-down actions. AID uses a decision tree classification method
to examine the insightfulness of all drill-down paths and uses KL-
divergence to rank and select the highest ranked paths for the user
to consider.

Initial findings, based on analysis of user logs from a LAD equipped
with manual drill-down functionality, suggest that manual drill-
downs may be under-utilised by LAD users. Using AID to generate
recommendations for a course that has used this LAD demonstrates
that AID has the potential to be effectively integrated into LADs
to provide insightful (with high significance score) and instant
drill-down recommendations to guide data exploration while still
reserving judgement about interpreting student learning to instruc-
 tors. In future research, we aim to partner with LAD users to explore
the practical implications of AID in LADs and refine it based on
the derived insights.

REFERENCES

Using Learning Analytics to Increase Student Success. In ICLAK. 267–270.
Xhaku, and Katrien Verbert. 2018. Open Learner Models and Learning Analytics
Australian higher education.
Together in Learning Analytics towards the Co-Creation of Value. Journal of
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. DMKD (1997),
29–53.
[8] Sara Hajian, Francesco Bonchi, and Carlos Castillo. 2016. Algorithmic Bias:
From Discrimination Discovery to Fairness-aware Data Mining. In ACM SIGKDD
ICDM. 2125–2126.
[9] Ioana Jivet, Maren Scheffel, Marcus Specht, and Hendrik Drachsler. 2018. License to
Evaluate: Preparing Learning Analytics Dashboards for Educational Practice.
In ICLAK. 31–40.
Interactive data exploration with smart drill-down. IEEE Transactions on Knowledge
and Data Engineering 31, 1 (2017), 46–60.
[12] Doris Jung-Lin Lee, Himed Dev, Huizi Hu, Hazem Elmeleegy, and Aditya Para-
meswaran. 2019. Avoiding Drill-down Failures with VisPilot: Assisted Explora-
tion of Data Subsets. In ICL. 186–196.
Discovery Assistant: A Holistic Solution for Accelerating Visual Data Exploration.
early prediction of at-risk students in a course using standards-based grading.
2019. A Systematic Review of Empirical Studies on Learning Analytics Dash-
VLDB. 307–316.
224–239.
Learning at a Glance: A Systematic Literature Review of Learning Dashboard
Situated Model of Instructional Decision-Making. Journal of Learning Analytics
6, 2 (2019), 53–69.