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Abstract. Process mining aims to obtain insights from event logs to
improve business processes. In complex environments with large vari-
ances in process behaviour, analysing and making sense of such complex
processes becomes challenging. Insights in such processes can be obtained
by identifying sub-groups of traces (cohorts) and studying their differ-
ences. In this paper, we introduce a new framework that elicits features
from trace attributes, measures the stochastic distance between cohorts
defined by sets of these features, and presents this landscape of sets of
features and their influence on process behaviour to users. Our framework
differs from existing work in that it can take many aspects of behaviour
into account, including the ordering of activities in traces (control flow),
the relative frequency of traces (stochastic perspective), and cost. The
framework has been instantiated and implemented, has been evaluated
for feasibility on multiple publicly available real-life event logs, and eval-
uated on real-life case studies in two Australian universities.

Keywords: Process mining · Drill-down recommendation · Filter
recommendation · Stochastic comparative process mining

1 Introduction

In organisational processes, users and computers interact with information sys-
tems to handle cases such as orders, claims and applications. These interactions
are logged as events, and process mining utilises such event data in the form of
an event log to gain evidence-based insights in the structure and performance of
organisational processes. In order to gain insights in a process, typically first a
process model is discovered from a log, then this model is evaluated and finally
additional perspectives such as performance, costs or resources are projected
on the process model such that analysts can identify potential problems and
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gain insights [8]. Many processes are highly variable, which may be due to geo-
graphically different entities executing the process, different customers interact-
ing with it, or different backgrounds of students being involved in it. Analysing
highly variable processes challenges analysts, as conclusions and insights might
get watered down or might not hold in all variants [5,7].

To address high variability in processes, in a typical process mining project,
discussions with stakeholders would be required to identify a set of key attributes,
after which these attributes and their values (trace features) can be used to
split the log into cohorts. For instance, the trace 〈receive claim, decide claim
〉[

ID 1234
amount 10000 ] has two trace attributes, and a trace feature of amount ≥ 5000

applies to this trace. These cohorts can then be analysed separately (drill down)
or compared to one another [7,21]. To reduce variability, trace features should
be chosen such that behavioural variability within cohorts is minimised, while
between cohorts it is maximised. We refer to this technique as cohort identifi-
cation, and automation makes it more objective, enables explorative approaches
that might reveal yet-unknown cohorts, and increases feasibility. To the best of
our knowledge, cf. data mining [9], no process mining techniques were published
that recommend trace features for drill downs based on behaviour.

In this paper, we introduce a new framework called Cohort Identification (CI)
that takes a log as input and outputs a landscape of sets of trace features which
maximise between-cohort behavioural variability. Figure 1 shows an overview of
the framework: first, CI elicits trace features from the log. Second, CI combines
them into feature sets exhaustively and, for each set, quantifies the differences
between the cohort defined by the feature set and the other traces in the log.
CI can take many aspects of behaviour into account, such as the ordering of
activities in traces (control flow), cost of executions, and relative frequency of
traces (stochastic perspective [12]). We evaluate CI on feasibility using real-life
public event logs, and we illustrate its applicability using two case studies.

The remainder of this paper discusses related work in Sect. 2, introduces
existing concepts in Sect. 3, introduces the framework and an open source imple-
mentation in Sect. 4; evaluates our approach using 21 publicly available logs and
two illustrative case studies in Sect. 5, and concludes in Sect. 6.

2 Related Work

In this section, we first discuss three types of techniques (trace clustering, con-
cept drift detection, cohort identification) to reduce variance in logs. Second, we
discuss how our approach complements process comparison techniques.
Trace Clustering aims to find groups of structurally similar traces, such that
these groups can be studied in isolation [6,21,23]. Secondary, the relation
between these groups and trace attributes can be analysed using standard data
mining techniques. For instance, a recent trace clustering approach [17] clusters
traces based on control flow and performance patterns, and recommends clus-
ters of traces to users, after which users can inspect KPIs of selected clusters.
While trace clustering techniques take similar behaviour and search for relations
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with trace features, our approach does the opposite: it takes trace features and
searches for relations with behaviour. Trace clustering inherently cannot consider
the frequency of trace variants within groups, typically do not provide an expla-
nation to justify their grouping (“black box”), provide little additional insights
into the log, and are challenging to use for drill-down recommendations.
Concept Drift Detection aims to identify points in time where the process
changed. The behaviour before and after the drift point might have a lower
variance, and the changes can be studied comparatively (e.g. [15]). CI could be
seen as a generalisation of concept drift techniques as it can detects changes in
behaviour related to trace features, including when traces happened.
Cohort Identification [2] uses decision points in a process model and event
attribute clustering to identify groups of traces, and performs significance tests to
limit the reported groups. In contrast with our approach, this technique requires
a process model and operates on event features (rather than trace features),
however it would be interesting to extend CI with similar significance tests in
future work.

Attribute clustering techniques first cluster the features of traces, after which
the corresponding groups of traces can be studied in isolation. For instance,
in [14], an extensive framework for correlating, predicting and clustering is pro-
posed. This framework supports the splitting of logs based on extensive analyses
on event features, however has a different focus than CI: event vs trace features
and clustering rather than recommending drill downs.

To the best of our knowledge, no techniques have been published that rec-
ommend trace features for drill downs in process mining, based on behaviour.
In addition: none of the mentioned techniques considers the relative frequency
of behaviour (i.e. the stochastic behaviour recorded in logs) as a source of
behavioural differences.

Complementing: Process Comparison. The CI framework recommends feature
sets that relate to differences in stochastic behaviour, however does not explain
what these differences are, for which a process comparison technique can be
used. In a recent literature review of such techniques [22], three types of tech-
niques were identified: discriminative (pattern extraction), generative (compar-
ison through process models) [21] and hybrid (a combination of both). For

event log

elicit features measure cohorts

drill-down
(trace attribute filters)

recommendations
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method
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Fig. 1. Overview of the Cohort Identification (CI) framework.
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instance, differences between logs have been visualised on their transition sys-
tems [3] or compared simply by hand [20].

Process cubes provide skeletons for process comparison by selections (cells)
of traces based on trace features, and enable slicing and dicing the log to find
cohorts of interests. For instance, in [1,4], process cubes were used to study
differences in students’ online learning activities (similar to one of our case stud-
ies). CI recommends which cells might be of interest, based on their behaviour,
without having to resort to process discovery techniques.

CI acts as an enabler for these techniques, making them applicable to a single
log cf. at least two logs. Finally, these techniques could also be used within CI,
if they return a number expressing the equivalence between logs.

3 Preliminaries

In this section, we introduce existing concepts.

3.1 Event Logs

An event log or log L is a collection of traces. A trace represents a case han-
dled by the business process, and is a sequence of events. A trace is annotated
with trace attributes, which represent properties of the trace. An event rep-
resents the execution of a process step (an activity). An event is annotated
with event attributes that denote properties of the event. For instance, the trace

〈receive claim
[

date 20-02-20
resource online

]

, decide claim

[
date 21-02-20

resource Dave
decision approved

]

〉

[ ID 1234
amount 10000
gender F

]

consists of a single trace, which consists of two events, indicating the execution
of two process steps (“receive claim” and “decide claim”). This trace has three
trace attributes: an ID, a claim amount and the gender of the claimant. The first
event has two event attributes: a date that it was executed and the resource that

executed it. Given an event e

[ a1 v1
... ...
an vn

]

, we write ea1 = v1 to retrieve the value of
an attribute that e is annotated with. If e is not annotated with an attribute x,
then we define ex = ⊥. Retrieving trace attributes is similar.

3.2 Cohorts

Let L be a log, and let a be a trace attribute. Then, let Fa denote all the values
of a in L: Fa = {v = ta | t ∈ L∧ v '= ⊥}. We refer to the combination of a trace
attribute a and a range of its values F ⊆ Ff as a trace feature aF . Given a log
L, we refer to the sub-log of traces that have trace feature aF as the projection
L|aF . For instance, let L = [〈g1, . . . gn〉[ amount 100 ], 〈h1 . . . hm〉[ amount 50 ]] be a
log. Then, L|amount≥70 = [〈g1, . . . gn〉[ amount 100 ]]. We refer to such a sub-log of
L as a cohort of L.
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4 A Framework for Cohort Identification (CI)

Given a log, CI aims to recommend trace features to drill down on, that is, to
identify cohorts whose behaviour differs considerably from the other traces in
the log in terms of process, frequency of paths and event attributes. The main
input of CI is a log, and its output is list of recommendations (that is, a list of
feature sets with their cohort distances).

Figure 1 shows an overview of the framework, while Algorithm 1 shows its
pseudocode. First, trace features are elicited from the log using an elicitation
method E. Second, for each sub-set of features of size at most k and of which
the corresponding sub-logs are large enough (according to a cohort imbalance
threshold α), a distance between the cohorts is computed, using a cohort distance
δc parameterised with a trace distance δt, which in turn is parameterised with an
event distance δe. Instantiating the framework requires the mentioned functions
E, δe, δt, δc and D. In the remainder of this section, we discuss the steps of CI
in more detail and we introduce an instantiation.

Algorithm 1. Cohort Identification framework
1: procedure CIE,δc,δt,δe,D(log L, cohort imbalance threshold α, max feature set size

k, correction repetition ϕ)
2: F ← E(L) # elicit features
3: M ← ∅
4: for S ⊆ F ∗ such that |S| ≤ k do # for each feature set
5: L1, L2 ← L|S , L \ L|S
6: if min(|L1|, |L2|) ≥ α × |L| then # prune too-small cohorts

7: d ←
δc(δt(δe))

(L1,L2)

1
ϕ

∑
L′
1,L′

2ϕ randomly fromLs.t. |L′
1|≈|L1| δc(δt(δe))

(L′
1,L

′
2)

8: # compute corrected cohort distance
9: M ← M ∪ {(S, d)}
10: end if
11: end for
12: return M
13: end procedure

4.1 Feature Elicitation

The first step of CI is to obtain a collection of features from the log. Trace
attributes with literal values straightforwardly yield one feature for each value,
or could be clustered for reduced complexity. Numerical trace attributes need
to be discretised, after which a feature can be added for each discrete value.
The framework supports any discretisation, for instance using numerical value
clustering or by using quartiles, though it is important that sufficiently large
groups of traces remain.
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Our instantiation elicits features for numerical attributes by discretising them
in two bins, separated by the median. That is, let L be a log and let a be a
numerical trace attribute in L. Then, two features are added: a≥m and a<m, in
which m is the median of Fa. Finally, for any typed attribute a, a feature a⊥ is
added, which expresses that a is missing.

4.2 Measure Cohorts

Second, CI aims to find the cohorts that differ the most from the other traces in
the log, in terms of process, frequency of paths and other event attributes. To
this end, it considers all possible feature sets S that can be made of combinations
of the elicited features. Each such feature set S defines two cohorts: one cohort
of traces that possess each feature in S (L1 = L|S) and the other cohort of traces
that do not possess any feature (L2 = L \ L1).

In the cohort measuring step, CI measures the distance between pairs of such
L1 and L2, using event and trace distance measures:

Definition 1 (Distance measures). Let δe be an event distance measure,
such that for all events v, v′ it holds that 0 ≤ δe(v, v′) ≤ 1. Let δt(δe) be a trace
distance measure, such that for all traces u, u′ it holds that 0 ≤ δt(δe)(u, u

′) ≤ 1.
Let L, L′ be logs. Then, 0 ≤ δc(δt(δe))(L,L

′) ≤ 1 is a cohort distance measure.

These measures are parameters to CI, and can take any event attribute into
account, which makes the CI flexible. Thus, any event, trace and (aggregated)
log attribute could contribute to the cohort distance measure given appropriate
distance measures. Still, instantiations can opt not to if desired.

On small cohorts, distance measures may be meaningless, as too-small
cohorts merely represent outliers. Also, as the number of possible feature sets
is exponential in the number of features, CI takes a cohort imbalance threshold
0 ≤ α ≤ 1

2 , which sets the maximum imbalance in the two cohorts: if either
|L1| < α × |L| or |L2| < α × |L|, then the feature set S is discarded.

In our instantiation, we use the Earth Movers’ Stochastic Conformance
(EMSC) [12] as the cohort distance measure. EMSC considers both logs as piles
of earth, and computes the effort to transform one pile into the other, in terms
of the number of traces to be transformed into other traces times the trace dis-
tances of these transformations. Thus, the stochastic perspective is inherently
taken into account by EMSC. Another option for δc could be to discover two pro-
cess models, and cross-evaluating these models with the cohorts [21], although
this has the downsides of incorporating model discovery trade-offs, asymmetry
of the cohort distance measure, and the inability to include the stochastic per-
spective.

For the trace distance, as in [12], our instantiation uses the normalised Lev-
enshtein distance, which expresses the minimum cost in terms of insertions,
deletions and swaps of events to transform one trace into the other. Normal-
isation is achieved by dividing the minimum cost by the maximum possible
cost, which is the length of the longest trace. The cost of insertions, deletions
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and swaps of events is determined by the event distance. Where EMSC uses
unit event distances, we generalise this to any event distance measure δe, thus
enabling analysts to compare traces based on any event attribute. Our instanti-
ation allows a user to choose several event attributes, and uses a generic event
distance measure for each attribute, based on whether the attribute is textual
or numerical.

For a textual attribute a (δeT ) and a numerical attribute b (δeN ), in which
m is the difference of the minimum and maximum of b over the entire log:

δeT (v, v′) =

{
0 if va = v′a

1 otherwise
δeN (v, v′) =






|vb−v′b|
m if vb '= ⊥ ∧ v′b '= ⊥

0 if vb = ⊥ ∧ v′b = ⊥
1 otherwise

An extension would be to choose multiple attributes and taking their
weighted average. Even though any event attribute can be used, one should
be careful to avoid the curse of dimensionality: when the number of involved
attributes increases, the expected overall distance between arbitrary events
approaches 0, which could render the comparison less useful.

4.3 Corrected Cohort Distance

For each feature set S and cohorts L1, L2 of log L, a cohort distance measure
δc(δt(δe))(L1, L2) is computed, which is parameterised with a trace measure func-
tion δt, which in turn is parameterised with an event measure function δe.

A log with a high variety of traces will in general have higher cohort dis-
tances than a log with a low variety of traces, as cohorts of the first will inher-
ently differ more than cohorts of the second. To correct for this, CI scales the
computed cohort distance for variance in the log as follows: the traces of L are
randomly divided over sub-logs L′

1 and L′
2, such that |L′

1| ≈ |L1|. The distance
δc(δt(δe))(L

′
1, L

′
2) between these sub-logs is measured, the procedure is repeated

ϕ times and the average cohort distance is taken as the corrected cohort distance
(see line 8 of Algorithm 1). Intuitively, the corrected cohort distance shows the
gain in information about process behaviour of a feature set S: given L, a value
of 0 indicates that S provides no extra information over a random division of L,
while a value of 1 indicates that S fully distinguishes all behaviour of L.

The output of the cohort measuring step is a list of feature sets annotated
with their corresponding corrected cohort distance, sorted on this distance. That
is, the feature set that relates the most to differences in stochastic behaviour,
thus providing the most information, is on top (see an example in Sect. 5).

4.4 Implementation

CI and our instantiation of it have been implemented as a plug-in of the ProM
framework (see http://promtools.org), and are open source https://svn.win.tue.
nl/repos/prom/Packages/CohortAnalysis/Trunk, SVN revision 43272. On top
of the trace attributes present in the log, CI considers the total trace duration

http://promtools.org
https://svn.win.tue.nl/repos/prom/Packages/CohortAnalysis/Trunk
https://svn.win.tue.nl/repos/prom/Packages/CohortAnalysis/Trunk
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as well. To save time computing the corrected cohort distance δc′ , our imple-
mentation caches the cohort distance between randomly divided sub-logs of 10
sub-log sizes, rather than for each feature set separately.

5 Evaluation

We evaluate CI and our instantiation threefold. First, we illustrate its feasibility
and use on publicly available logs. Second, we study its explorative and question-
driven capabilities, and its embedding in process mining projects in two case
studies, with a brief empirical evaluation with stakeholder feedback.

5.1 Public Logs

To illustrate our instantiation, we applied it to 21 real-life publicly available
event logs. We applied CI to each of them with the maximum feature set size (k)
ranging from 1 to 5. The results show that our implementation of CI is feasible
on real-life logs for small k (for k = 1, 18/21 logs finished in 74 s or less, with a
maximum of 36 h; the maximum feasible number of feature sets was around 107).
The experimental results indicate that while the number of activities does not
seem to have an influence on the run time, an exponentially increasing number of
feature sets does. Hence, it suggests that our instantiation of CI could be used
to derive initial insights into logs without analysts having to consider models
with hundreds of activities. For more details, please refer to [13].

5.2 Case Study I: Digital Learning Environment Interactions

Course Insights is a learning analytics dashboard (LAD) that provides com-
parative visualisations of students interacting with a digital learning environ-
ment [18], by filtering on trace attributes such as residential status, gender,
program or assessment grade. Drill-downs has been under-utilised: rarely more
than one feature is filtered for [18]. We applied CI to a log from a calculus and
linear algebra course offered to 736 undergraduate students at the University of
Queensland, containing 18,883 events, 51 activities (per chapter: read material,
submit quiz and review solutions), and 2,447 trace feature sets (k = 4). In col-
laboration with the instructor, who was not otherwise involved in this study, we
selected a cohort with a high distance: international students with a high exam
grade (9% of the traces, 0.16 distance, IH), and compared it with the other
students (¬IH). We found clear differences in their process: while IH alternates
between the types of activities troughout the semester, ¬IH mainly performs
quizzes sequentially at the end of the semester. To verify that these patterns are
not also present in IH’s super-cohorts of international students (I) or students
with high exam grades (H) (to avoid a drill-down fallacy [10]), we repeated the
analysis on I and H, and did not find these patterns.

The feedback of the instructor can be summarised as follows: (1) the recom-
mendation of filters enables finding the differences between students’ cohorts,



100 S. J. J. Leemans et al.

while the current number of filtering choices in the LAD is too overwhelming to
use; (2) the findings of learning behaviour that have led to successful outcome
can be used for positive deviance [16] purposes. The instructor showed inter-
est in sharing the findings about IH’s learning process as a successful learning
pattern with students to encourage early engagement; (3) getting notified (by
the system) during the semester of any deviation of cohorts which might lead to
learning failure could help with supporting students in-time. Thus, the integra-
tion of CI in the LAD has been considered [19]. This case study illustrates that
certain insights might only be found using k > 1.

5.3 Case Study II: Research Student Journeys

The Queensland University of Technology utilises electronic forms (e-forms) to
support higher degree research students with milestones. A log was extracted of
1,520 traces (students), 42,426 events, 15 activities (submission of forms, checks,
approvals, . . . ) and 4 trace attributes: faculty, scholarship, study mode (full/part
time), and residency. Stakeholders’ questions were whether processing was con-
sistent across (q1) faculties and (q2) other student groups. To answer these
questions, we applied CI with k = 1. The results showed that faculty B had the
highest distance (0.19). In answer to q1, process models [11] of B and the other
traces (¬B) are similar, indicating little difference in control flow. However, the
likelihoods of choices and rework were different. Second, the results conveyed
that there was minimal variation related to other demographic factors such as
mode of study or domestic and international students: their distances were close
to 0, which indicates that these features contribute no more to behaviour than
randomly selected cohorts.

As a brief empirical evaluation, we presented key findings to stakeholders
who were otherwise not involved in this study. The results were well-received:
(1) insights regarding high variations across faculties were used to propose stan-
dardisation of e-forms processing, and (2) objective evidence was found that
student demographic factors had no influence on the stochastic behaviour of
processing e-forms. In summary, this case study demonstrates the utility of CI
in a question-driven context in which its outputs were used to directly answer
stakeholders’ questions and can lead to actionable insights.

5.4 Discussion and Limitations

In Sect. 5.1, we showed that CI is feasible on real-life logs, however for higher k,
its exponential nature kicks in. Further pruning steps could use monotonicity,
which however does not hold for our current instantiation with EMSC: a cohort’s
distance is not a bound for the distance of including additional features. Our
instantiation could be extended to include smarter elicitation of numerical ranges
using e.g. clustering, and to include more elaborate ways to combine several
event-distance measures into δe without hitting the curse of dimensionality.

The two case studies showed that CI can lead to insights by itself, and that CI
can assist explorative and question-driven process mining efforts as a first step
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before existing process comparison techniques are applied (for which the case
studies provided examples). Furthermore, the case studies highlight that the
recommended cohorts cannot be identified by existing techniques: trace clus-
tering techniques (e.g. [17]) would not be able to provide clear-cut trace feature
drill-down recommendations, and existing cohort identification techniques either
require a process model and operate on event features only [2], or do not provide
trace feature recommendations at all [14]. While there are currently no pub-
lished techniques to recommend trace attributes for filtering based on behaviour,
it would be interesting to compare CI with existing approaches of log variance
reduction (using e.g. variance metrics), or commercial feature recommendations
(using e.g. user studies) , all of which we leave as future work.

6 Conclusion

Applying process mining techniques to event logs with high variance is challeng-
ing, which can be addressed by filtering sub-logs of traces (cohorts) defined by
trace attribute value ranges (features), in order to compare behavioural differ-
ences between cohorts or to drill down into a particular cohort. To the best of our
knowledge, no cohort identification techniques have been published, that is, tech-
niques that recommend feature sets for logs, based on behavioural differences,
which may include control flow and frequency of trace variants. In this paper, we
proposed the Cohort Identification (CI) framework to automatically recommend
feature sets that correspond to the largest differences in behaviour, where users
can select what data or information constitutes behaviour. The framework was
instantiated and implemented as a plug-in of the ProM framework.

Our evaluation found that CI can be applied in reasonable time to public
real-life logs. Furthermore, we reported on two case studies in two Australian
universities, showing that question-driven application led to addressing questions
from stakeholders that could only be answered using stochastic-aware techniques.
Stakeholders who were not otherwise involved in this work verified the findings.

Future extensions of CI could include clustering of numerical values in the
feature elicitation step, and further heuristics to prune the feature sets to be
considered. Second, it would be interesting to integrate CI in process mining
methodologies such as [8] to assist in drill-down cycles. Third, stochastic log-log
comparison techniques could be used to highlight differences in the stochastic
behaviour of cohorts. Finally, we intend to perform elaborate user studies into
the usefulness of the recommendations, similar to [17], in combination with an
evaluation of, potentially new, log-log comparison techniques.
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