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ABSTRACT
Learnersourcing is emerging as a viable learner-centred and peda-
gogically justified approach for harnessing the creativity and evalua-
tion power of learners as experts-in-training. Despite the increasing
adoption of learnersourcing in higher education, understanding
students’ behaviour while engaged in learnersourcing and best prac-
tices for the design and development of learnersourcing systems are
still largely under-researched. This paper offers data-driven reflec-
tions and lessons learned from the development and deployment of
a learnersourcing adaptive educational system called RiPPLE, which
to date, has been used in more than 50-course offerings with over
12,000 students. Our reflections are categorised into examples and
best practices on (1) assessing the quality of students’ contributions
using accurate, explainable and fair approaches to data analysis, (2)
incentivising students to develop high-quality contributions and (3)
empowering instructors with actionable and explainable insights
to guide student learning. We discuss the implications of these find-
ings and how they may contribute to the growing literature on the
development of effective learnersourcing systems and more broadly
technological educational solutions that support learner-centred
learning at scale.

CCS CONCEPTS
• Applied computing → Computer-assisted instruction; In-
teractive learning environments; •Human-centered comput-
ing → Collaborative and social computing systems and tools.
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1 INTRODUCTION
Contemporary models of learning have emphasised the importance
of learner-centred approaches that (1) engage learners in active
and higher-order learning activities [4, 40], which enable learners
to develop their own vision, reasoning, and judgement to extend
understanding, (2) provide rich and timely feedback [22, 68], which
enables learners to make sense of information about their per-
formance and use it to enhance their learning strategies, and (3)
personalise learning [38, 58], to tailor learning instructions to the
individual needs of learners. However, as the number of learners
grows, employing the classical approach of having an instructor
to facilitate via learner-centred approaches becomes more chal-
lenging [48]. One viable and increasingly recognised approach for
addressing this challenge is to employ learnersourcing [20, 36]. The
concept of learnersourcing refers to a pedagogically supported form
of crowdsourcing that mobilises the learner community as experts-in-
training to contribute to teaching or learning while being engaged in
a meaningful learning experience themselves.

Previous studies have demonstrated examples of how learner-
sourcing can be used towards facilitating a learner-centred ap-
proach based on the aforementioned three points. Examples of em-
ploying learnersourcing to engage learners in higher-order learning
tasks includes enabling students to create and evaluate knowledge
components [47], multiple-choice questions [17, 34], personalised
hints [25], summaries of steps in how-to videos [64], explanations
for peer instruction [7], solutions to open-ended questions [63],
explanations for programming misconceptions [26], and comparing
and contrasting pairs of similar learning artefacts [19]. Learner-
sourcing is also commonly used to support the delivery of feedback
using peer assessment and grading systems (e.g., [52, 67]), which
have been demonstrated to help learners develop evaluative judge-
ment, the capacity to make accurate evaluations about the quality
of their work and that of others [33, 56]. Furthermore, one of the
main applications of learnersourcing has been to support the devel-
opment and evaluation of content that can be used within adaptive
engines to support personification of education [28, 31, 35, 66].

Despite the increasing adoption of learnersourcing systems in
higher education, best practices and methods for the design and
development of learnersourcing systems are still largely under-
researched. This paper aims to contribute to filling this research
gap and further promoting the use of learnersourcing within the
learning analytics community by sharing data-driven reflections
and lessons learned from the design, development, and deployment
of a learnersourcing adaptive educational systems called RiPPLE. To
date, RiPPLE has been used in more than 50-course offerings with
roughly 12,000 students. Our data-driven reflections are targeted
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towards highlighted challenges in learnersourcing based on past
studies (as discussed in Section 3) and are guided by the following
three questions. How can learnersourcing systems: (1) accurately
and transparently assess the quality of students’ contributions?, (2)
be designed to incentivise a large portion of the student population
to offer high-quality contributions?, and (3) empower instructors
with actionable and explainable insights to provide oversight? We
discuss the implications of our findings with a focus on how we
may contribute to the growing literature on the development of
effective learnersourcing systems and more broadly technological
educational solutions that support learner-centred learning at scale.
In what follows, Section 2 provides a brief overview of RiPPLE. Sec-
tion 3 offers our data-driven reflections and lessons learned. Finally,
Section 4 provides a brief discussion and concluding remarks.

2 THE RIPPLE SYSTEM
A full description of RiPPLE is provided in [34]. Here, we provide
a brief description based on the features of RiPPLE that are rele-
vant to the context of this paper. At its core, RiPPLE is an adaptive
educational system (AES) that dynamically adjusts the level or
type of instruction based on individual student abilities or prefer-
ences [50]. To effectively adapt to the learning needs of individual
students, AESs require access to a large repository of learning re-
sources. These resources are commonly created by domain experts
[5], which makes AESs expensive to develop and challenging to
scale. RiPPLE takes the learnersourcing approach of partnering
with students to create a repository of learning resources. Students
have the ability to contribute different types of resources includ-
ing multiple-choice questions, multi-answer questions, matching
questions, worked examples, and open-ended notes.

Previous work has shown that the quality of learnesourced con-
tent is rather diverse with some developed resources meeting rigor-
ous judgemental criteria while others are ineffective, inappropriate,
or incorrect (e.g., [6, 23]). Consequently, to effectively utilise a learn-
ersourced repository of content, there is a need for a selection and
moderation process to separate high-quality from low-quality re-
sources. One approach for doing this is to engage instructors as
experts in evaluating the quality of the resources; however, the
instructor-led quality evaluation is not scalable and can be expen-
sive due to the potentially large size of these repositories. An alter-
native solution, which is employed by RiPPLE, is to develop a formal
evaluation process that again relies on learnersourcing, where stu-
dents review and evaluate existing resources. RiPPLE follows the
process of academic journals and assigns each resource to be eval-
uated by multiple moderators. However, given the large number
of resources generated by students, it is unrealistic to expect in-
structors to act as a meta reviewer and make a final decision on the
quality of resources that have been evaluated by students. There-
fore, as discussed in Section 3.1.1, RiPPLE automates the decision
making process for inferring the quality of a resource.

Fig 1-a shows the personalised practice interface in RiPPLE. The
upper part contains an interactive visualisation widget allowing
students to view an abstract representation of their knowledge
state based on a set of topics associated with a course offering.
The lower part of the practice interface displays learning resources
recommended to a student based on their learning needs using

the recommender system outlined in [32]. Fig 1-b illustrates an
example of the interface used for creating learning resources. The
provided example shows the page used for creating multiple an-
swer questions. Fig 1-c illustrates the interface used by a student or
instructor moderator for evaluating a resource. It includes a rubric
of four items, which asks the moderator to consider the alignment,
correctness, difficulty level, and critical thinking level of a resource.
Moderators then provide a final decision and their confidence in
their own rating. Moderators are expected to justify their decision
and provide feedback to the author before submitting their evalu-
ation. Finally, Fig. 1-d shows an example of how evaluations and
the inferred outcome are shared with the author, moderators and
instructors. The authors of approved resource are encouraged to
update their resources based on the feedback provided. Their re-
source is added to a repository of resources that are used in the
adaptive engine of RiPPLE. The authors of rejected resources can
update and resubmit their resource; however, if resubmitted, the
resource will be considered as a new submission and will have to
go through the moderation process again.

3 DATA-DRIVEN REFLECTIONS AND
LESSONS LEARNED

In this section, we synthesise the findings from the literature with
reflections and lessons learned from designing, developing and de-
ploying RiPPLE. Our synthesis draws insights from piloting RiPPLE
in over 50 courses across a range of disciplines including Medicine,
Pharmacy, Psychology, Education, Business, Computer Science and
Biosciences with roughly 12,500 students who have authored over
20,000 learning resources and 70,000 formal evaluation and over 1
million interactions on these resources study1.

3.1 Assessing the Quality of Learnersourced
Content with Accurate, Explainable and
Fair Approaches

In decision-making tasks, due to the potential that the decision
made by an individual might be incorrect, many systems employ a
redundancy-based strategy and assign the same tasks to multiple in-
dividuals. The problem of optimal integration of the crowdsourced
decisions in the absence of a ground truth towards making an
accurate final decision has been studied extensively within the
crowdsourcing community [72]. Many of the state-of-the-art crowd
consensus approaches rely on machine learning algorithms (e.g.,
([16]) to simultaneously infer the true outcome and contributors’
reliability. Past studies have shown that the use of machine learning
algorithms have significantly improved the accuracy of the models
compared to averaging aggregation functions [72]; however, these
methods often lack understandability and transparency (in terms
of how individuals were rated and how a final decision was made).
The literature suggests that the use of explainable AI (XIA) [61] is
not always wanted or necessary [11]. However, the use of machine
learning algorithms with black-box outcomes seems to be particu-
larly inadequate for educational settings where educators strive to
provide extensive feedback to enable learners to develop their own

1Approval from our Human Research Ethics Committee with id #2018000125 was
received for conducting the studies and observations reported.
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Figure 1: Four of the main interfaces of RiPPLE

vision, reasoning, and appreciation for inquiry and investigation
and fairness.

Much of the existing work on the need for open and XIA models
in education has been conducted in the field of open learner models
[9] where models are often opened through visualisations, as an
important means of supporting learning through various systems
such as learning analytics dashboards [10, 54], intelligent tutoring
systems [53], educational recommender systems [3], and adaptive
learning platforms [34] (please see Section 3.3 for further discussion
on use of explainable AI in education). In terms of learnersourc-
ing systems, the problem of assessing quality of learnersourced
contributions has been referred to or studied in previous work
[19, 25, 47, 63]; however the focus has generally been on maximis-
ing accuracy rather than explainability. So how can learnersourcing
systems employ crowd consensus approaches that are accurate but
also explainable? How can they enable students or instructors to
raise concerns if they think the outcome is unfair? What criteria
should students be asked to consider in their evaluations? The re-
mainder of this section provides data-driven reflections from our

attempt on answering these three questions within the RiPPLE
system.

3.1.1 Developing Accurate and Explainable Consensus Approaches.
Fig 2-Left provides an analysis based on the 3,464 student modera-
tions that were performed on 1,011 resources which also received an
instructor evaluation. The figure demonstrates that in cases where
instructors provided a rating of 3, 4 or 5, the chance of receiving
a true positive (TP) (i.e., students also providing a rating of 3, 4 or
5) is much higher (2399 ≃ 92.7%) than receiving a false negative
(FN) (i.e., students providing a rating of 1 or 2) (189 ≃ 7.3%). In
contrast, the figure demonstrates that in cases where instructors
provided a rating of 1 or 2, the chance of receiving a true nega-
tive (TN) (i.e., students providing a rating of 1 or 2) is much lower
(162 ≃ 18.5%) than receiving a false positive (FP) (i.e., students
providing a rating of 3, 4 or 5) (714 ≃ 81.5%). This demonstrates
that only a minority of students seem to be accurately identifying
low quality resources. Therefore, simple aggregation functions are
likely to perform poorly in learnersourcing systems as they may
make a decision based on the judgements from a majority of less
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knowledgeable or careless moderators instead of a minority of more
knowledgeable or dedicated moderators.

Figure 2: Left: the relationship between student and instruc-
tor moderations based on 1,101 resources that were evalu-
ated by both groups; Right: the relationship between stu-
dents ratings and their provided confidence based on 64,044
moderations.

The consensus algorithm currently used by RiPPLE, as described
in [15], employs a set of moderators’ ratings of the quality of a
resource (1=lowest rating of quality to 5= highest rating of quality)
as well as their assessment of their confidence (1 = very low to 5 =
very high) in their rating to simultaneously infer the reliability of
student moderators and the quality of resources. At a high-level,
it follows the principles of the expectation maximisation (EM) al-
gorithm [46]. It first sets the reliability of all student moderators
to an initial value of α . In the expectation step, it computes the
quality of a resource as a weighted average of the ratings provided
by the moderators. In the maximisation step, it updates the rating
of the moderators based on the goodness of their decision rating.
The update is computed as the height of a Gaussian function based
on the distance between the inferred quality rating of the resource
and the decision rating provided by a moderator where a smaller
distance leads to a greater increase (reward) in the moderator rating.
Similarly, a larger distance leads to a greater decrease (punishment)
in the moderator rating. A moderator’s self-assessment of their
confidence in their rating is viewed as the moderator betting on
themselves. Selecting a higher confidence level can lead to a bigger
reward or punishment, whereas selecting a lower level of confi-
dence can lead to a smaller reward or punishment. The use of this
algorithm in a learnersourcing system seemed appropriate because:
(1) the computations are light and can easily be performed on the
fly; (2) the outcome in terms of inferred rating of the resource
and changes in student moderator ratings are easy to explain to
the learners; (3) the system encourages moderators to honestly
assess their confidence; and (4) the system seemed fair based on
our conducted studies with students and instructors.

In practice, the consensus algorithm has generally worked well
but has had significant shortcomings. Fig 2-Right demonstrates
the relationship between students ratings and their provided confi-
dence based on 64,044 moderations from 2,410 students on 14,559
resources. Overall, it demonstrates that students are most likely to

provide a high rating with a high level of confidence. The Dunning-
Kruger effect [37], in which low-performing students tend to over-
estimate their abilities may be one of the factors that contribute
to the large number of students who self-assess their confidence
as high. Examining the leaderboards for many of the courses that
are piloting RiPPLE shows that the students on top of the boards
seem to have found a dominant strategy, according to game theory
literature [14], to game the system. Given that the vast majority of
the resources are approved, an optimal strategy would be to give a
rating of 5 and confidence of 5 in the evaluation regardless of the
quality of the resource. Our recent work [15], shows that training
a machine learning algorithm with simple features extracted from
provided comments such as the length and sentiments of the com-
ments to compute the reliability of moderators can significantly
increase the correlation between instructor decisions and the in-
ferred decision from the system. However, it is worth noting that
addition of simple features such as length of comment in a live
setting must be done with care to prevent students from new ways
of misusing or gaming the system. For example, a student may
figure out by experiment that longer comments tend to increase his
reliability rating and therefore submit longer comments that add
no value (e.g. submitting “a great great great great great question”
instead of “a great question”).

3.1.2 Employing Human-in-the-loop and Responsible AI. As dis-
cussed in Section 3.1.1, RiPPLE uses a consensus approach to auto-
matically predict the quality of a resource. Predictive models have
been extensively used in learning analytics tools and have demon-
strated promising results in the automatic identification of students
in need of assistance [30, 44]. However, with the wide-adoption
of predictive models to support automatic decision-making, there
are increasing concerns about using predictive models without hu-
man oversight in decision-making tasks that affect individuals [27].
Many factors, such as identifying important variables, dealing with
poor quality or imbalanced data, determining the appropriate algo-
rithm and model for the problem at hand, hyperparameter tuning,
and knowing when to retrain the algorithm with new data, may
bias or reduce the accuracy of the result of a predictive model. To
address these issues, human-in-the-loop AI methods that aim to de-
sign hybrid system architectures that leverage human intelligence
and judgement alongside the power of AI are receiving increasing
attention. These methods generally seek human judgement on de-
cisions which the AI model has low decision confidence or where
they can help in post-processing the AI-based decision by making
sure aspects like fairness are taken into account [70]. In the context
of education, the development of fair, accountable and transparent
AI systems that rely on human-judgement has been recognised
as an important line of research [35, 53, 55]. Within RiPPLE, we
have incorporated the following mechanisms for enabling users to
provide feedback.

Flagging resources. While interacting with learning resources
on the platform, RiPPLE provides students the ability to report
resources that have already passed moderation as being incorrect,
inappropriate or ineffective. Reported resources are passed on to
instructors who can decide whether they need to be deleted, edited
or remain as is. To date, 998 resource reports have been submitted
by students of which 393 have received an action by an instructor.
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Given the relatively large number of reports, we have been consid-
ering how we may prioritise and best utilise instructors’ availability
towards checking resources. An overview of the currently adopted
approach is discussed in Section 3.3.

Challenging the outcome of a moderation. In many instances,
students who did not agree with the decisionmade about the quality
of a resource, reached out to instructors via email or discussion
forums. To streamline the process of enabling students to voice
their concern while reducing instructor’s workload in responding
to enquires, RiPPLE now enables students to provide feedback
about moderation decisions through the platform. In the updated
workflow, once RiPPLE makes a decision about the quality of a
resource, the author and the moderators are notified of the outcome
and are given the ability to view the decisions and comments from
the moderators. They are then given the ability to provide feedback
on whether or not they think the right decision was made. The
feedback provided is used in the spot checking algorithm discussed
in Section 3.3. Given that this feature has recently been added to
the system, we currently do not have data on its use or impact.

Providing ratings, comments and general feedback. The modera-
tion process only captures the evaluations from a few moderators.
However, for resources that have gone through moderation and
have become available on the platform, students are encouraged
to share their opinion in terms of providing ratings or comments
on the resources. To date over 188K ratings and 4000 comments
have been provided on these resources. RiPPLE also has a general
feedback form that enables users to either anonymously or by name
provide feedback about the platform. To date we have received 59
feedback comments which have assisted us in making updates to
many parts of the platform.

3.1.3 Employing Appropriate Criteria for Evaluating the Quality of
Learning Resources. This section reports our data-driven reflections
on the significance of the role of the evaluation rubric on students’
judgement on the quality of learnersourced content. Fig. 3-left il-
lustrates the initial rubric employed in RiPPLE for evaluation of
resources. The top part of the rubric has three Likert scale state-
ments capturing moderators’ perceptions on alignment with course
content, correctness and coherence of the resource in their evalua-
tion. These three criteria were selected based on suggestions from
the literature (e.g., [69]). The bottom part of the rubric has two
Likert scale statements capturing moderators’ perceptions on the
overall quality of the resource (referred to as quality-rating) and
their confidence in their judgement as well as space for moderators
to provide an open-ended comment. Analysis of 41,048 student
moderations based on this rubric revealed the following response
distribution on quality-rating: strongly disagree = 1%, disagree =
3%, neutral = 9%, agree = 35%, strongly agree = 51%, where more
than a half of the students provided the highest quality-rating to
the resources. The length of the provided comments to support
quality-rating had a mean of 8.06 words with a standard deviation
of 11.12. We were interested in identifying the main criteria that
students might have referred to in their justification of their pro-
vided quality-rating. Therefore, we conducted a qualitative analysis
of 45% (515) of comments obtained from evaluations conducted in
the first 8 weeks of a first-year engineering course piloting RiPPLE.
To begin the analysis, 5% of the selected comments were manually

coded. The codes represented the criteria participants articulated in
assessing the effectiveness or quality of the resources they moder-
ated. The codes were used to manually tag the remaining comments.
Results revealed references to the three criteria captured by the
rubric alignment (10%), correctness (17%) and coherence (20%) as
well references to difficulty level (19%) and critical thinking or depth
(10%) by students in their comment justifications. Overall, our anal-
ysis highlighted the following shortcomings of the rubric being
used: (1) it led to the majority of the students rating the quality of
resources as the highest possible value which is 5, (2) students pro-
vide a very short comment for justifying their quality-rating, and
(3) the rubric misses reference to two important criteria (difficulty
and critical thinking) that students associate with the quality of a
resource.

The updated rubric being employed in RiPPLE, illustrated in
Fig. 3-Right, attempts to address these limitations. The rubric now
has additional criteria that refer to difficulty level and critical think-
ing. In addition, we have now moved away from Likert scale state-
ments, which are commonly used to capture perceptions in surveys.
Instead, we use words that refer to the quality of outcome ranging
from poor to outstanding, which is more commonly used in rubrics.
Finally, the rubric now specifically ask students to justify their deci-
sion and provide feedback rather just having space for a comment
without specific instructions. Analysis of 41,048 student moder-
ations based on the new rubric revealed the following response
distribution on quality-rating: poor = 1%, needs improvement = 3%,
satisfactory = 23%, great = 58%, Outstanding = 15%, which suggests
a significant shift in moderators’ responses. The length of the pro-
vided comments to support quality-rating had a mean of 13.69 with
a standard deviation of 16.36.

Comparison of results from the use of the rubrics, as highlighted
in Fig. 3, illustrates that the new rubric has managed, to some
extent, address the problem of students being “lenient markers”,
as it has lowered the quality-ratings provided by students. It has
also managed to significantly increase the length of the provided
comments (justifications), which as discussed in Section 3.1.1, can
be employed to increase the accuracy of the system in inferring the
quality of resources.

3.2 Incentivising High Quality Contributions
A common phenomenon, referred to as participation inequality
or the 90-9-1 rule [49], has been observed in many systems that
rely on users to create content. Participation inequality suggests
that roughly 90% of users are lurkers (i.e., observe but do not con-
tribute); 9% of users contribute from time to time and 1% of users
participate a lot and account for most contributions. While previous
work has reported on challenges related to engaging students in
learningsourcing [35, 65], implications of participation inequality
for learnersourcing systems, and best practices for incentivising a
larger portion of students to engage with learnersourcing activities
are largely unknown. On a related note, many of the successful
systems and platforms that users interact with on a daily basis
(e.g., gaming and social media apps or platforms that stream con-
tent) have been designed with the prime intention of increasing
engagement without considering the quality of the engagement.



LAK21, April 12–16, 2021, Irvine, CA, USA Khosravi et al.

Figure 3: Left: the old rubric; Right: the updated rubric, which is currently being used in RiPPLE.

For example, YouTube would monetarily benefit from a user engag-
ing with a video regardless of whether or not they are paying close
attention to the content. In contrast, educational tools have the
general intention of improving learning which is more associated
with high-quality active engagement rather than purposeless high-
quantity engagement. In the context of learnersourcing, past studies
have referred to incentivising students to contribute as one of the
important learnersoucing challenges that need to be addressed
[28, 34, 66]. So how can learnersourcing systems be designed to
encourage a large portion of the student population to contribute
high-quality learnersourcing activities? In the remainder of this
section, we share our experience in developing open learner models
for learnersourcing systems (Section 3.2.1), tying learnersourcing to
assessment (Section 3.2.2) and employing gamification mechanisms
(Section 3.2.3) for attempting to address this challenge.

3.2.1 Open Learner Models for Learnersourcing Systems. Learner
models capture an abstract representation of a student’s knowledge
state. To date, there have been two main use cases for modelling
learners: They are (1) employed as a key component of adaptive
educational systems to provide personalised feedback or adaptivity
functionalities and (2) externalised and made accessible as open
learner models (OLMs) [9] to students and instructors with the aim
of monitoring, incentivising and regulating learning. In both of
these cases, it is essential that the learner model accurately rep-
resents the competencies and the current knowledge state of the
student. By and large, existing learner models such as Bayesian
Knowledge Tracing (BKT) [12], Item Response Theory (IRT) [43]
and Elo-based modes [2, 51] are grounded in psychometrics and
approximate a student’s knowledge state solely based on their per-
formance on assessment items. This can probably be attributed to
the fact that in many educational learning systems, students are
prominently involved in just answering assessment items. Initially,
RiPPLE only leveraged students’ responses to assessments items

for assessing their mastery level in its open learner model [2]. How-
ever, ignoring students learnersourcing contributions in modelling
students presented multiple challenges and limitations:

• Discouraging learnersourcing contributions. The system, by
design, was encouraging (rewarding) students to engage
with attempting assessment items while discouraging (ig-
noring) their learnersourcing contributions.

• Missing the opportunity to leverage learnersourcing data in
modelling students. Given the strong evidence from the learn-
ing sciences that engaging students in higher-order learning
tasks such as learnersoucing enhance learning, it is reason-
able to expect that leveraging data from students’ learner-
sourcing contributions towards modelling their mastery can
improve the accuracy of the model.

• Advancing the belief that learnersourcing does not contribute
to learning. The explicit association between attempting as-
sessment items and the OLM while ignoring learnersourcing
contributions may present the impression that learnersourc-
ing cannot contribute to learning.

So how can we develop OLMs in learnersourcing systems that
accurately represent students’ mastery level while promoting self-
regulation and positive behaviour that contributes to learning in
students? We have developed two learner models that leverage data
from students’ learnersourcing tasks alongside data on attempt-
ing assessment items in modelling the knowledge state of learners.
The first model extends the knowledge tracing machines (KTMs)
framework [60]. At its core, the algorithm utilises the number of
creation and evaluation opportunities that the student has had in
modelling learners. Results from two empirical studies based on
data from past courses that have adopted RiPPLE show that the our
proposed model outperform traditional learner models that only
use assessment data [1]. Our findings are aligned with results from
other recently published papers from the community that suggest
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Table 1: Comparison of students’ engagement with different
activities based two different open learner models

# Users # Activities # Create # Evaluates # Answer
Control
Group

163 60.17 2.9 ± 1.2 12.9 ± 3.7 44.3 ± 20.6

Experiment
Group

161 59.35 3.1 ± 1.3 13.4 ± 4.1 43.3 ± 14.2

modelling knowledge acquisition using student contributions be-
yond attempting items improves the accuracy of the model [71]. A
limitation of this model is that it cannot intuitively be opened to
learners to promote self-regulation and positive behaviour.

The second proposed model extends the popular Elo model,
which has been used as an open learner model in the literature [2].
In the traditional educational Elo approach, students and learning
items are viewed as competitors each having a rating representing
the mastery level of the student and difficulty level of the item. The
probability that the learner answers the item correctly is estimated
using a logistic function of a difference between the ratings[51]. In
the extended model, learnersourcing contributions are also used for
updating the learner model. Similar to the outcome of attempting a
resource, outcomes of creating a resource or evaluating a resource
are also considered as a win or a loss for the student. Creating
a resource that passes moderation is considered a win and not
passing moderation is considered a loss. Similarly, a moderation
evaluation that agrees with the outcome of the moderation (e.g.,
a student recommended accepting the resource and the resource
was accepted) is considered a win and disagreeing with the out-
come is considered a loss. To determine the impact of the Elo-based
extension, we conducted a randomised between-subject design ex-
periment in a first-year computer science course with 324 students
at The University of Queensland where participants were randomly
assigned to one of two open learner models. Participants in the
control group had access to the initial OLM used in RiPPLE, which
only leveraged students’ responses to assessments items for assess-
ing their mastery level. The experiment group had access to the
proposed Elo-based extension. Overall, as illustrated in Table 1, the
new OLM, had the desirable outcome of increasing students’ em-
phasis on learnersourcing contributions, but the impact was small.
Conversely, the adoption of the new model across the platform
incentived undesirable behaviour in roughly (1%) of the student
population who provided quick and careless evaluations to increase
their OLM rating. For example, the student with the highest mas-
tery level in a first-year course in Psychology had submitted over
600 moderations approving all of the evaluated resources with no
provided comments.

There are many interesting future directions for further research
in development of open learner models for learnersourcing systems.
How can we measure the learning acquired by contributing to a
learnersoucing task? How can this measure be compared to other
tasks such as attempting an assessment item? How can an OLM in
a learnersourcing system accurately represent students’ mastery
level while promoting self-regulation and positive behaviour that
contributes to learning in students?

3.2.2 Tying Learnersourcing to Assessment. Initially, RiPPLE was
mostly used as a formative tool to support student learning. In this

setting, engagement followed the 90-9-1 rule in which the general
quality of the contributions was high, but they were mostly coming
from a small portion of the student population. With the aim of
engaging a larger portion of students in learnersourcing, many
courses began tying learnersourcing activities to assessment. The
common approach has been introducing three or four rounds where
for each round students are asked to create at least one resource
and moderate at least five resources. This change introduced two
challenges that we have had to address.

(1) Increasing participation at the cost of decreasing the general
quality of engagement. Tying learnersourcing to assessment has
changed the contribution pattern on RiPPLE from a 90-9-1 discussed
above to 25-50-25 where roughly 25% of the students provide high
quality contributions and exceed assessment expectations, 50% of
the students aim to just satisfy the assessment requirements with
minimal effort and 25% of the students entirely disengage with
the activity. We have attempted introducing quality measures to
increase the quality of contributions. For example, the assessment
criteria ask for creation of an effective resources, where a resource
is considered effective if it passes the moderation process, which is
administered by students and the teaching team. For moderations,
introducing quality measures has been more challenging. In two
offerings, one in psychology and one computer science, the assess-
ment criteria was defined as having effective moderations, where
an effective moderation was defined as a moderation that agrees
with the inferred outcome (approved or rejected) by the system.
However, this method of defining an effective moderation had the
undesirable effect of encouraging the minority of critical reviewers
who were helping to identify low-quality resources to follow the
majority and provide high ratings tomaximise their chance of agree-
ing with the inferred outcome. Another computer science course
defined an effective moderation as “completing the moderation
rubric and providing a detailed justification for your judgement as
well as constructive feedback on how the resource can be improved.
Simply saying a resource is “good” does not qualify”. This method
did not have the undesirable effect of encouraging the minority of
critical reviewers to become less critical. However, an interesting
observation from this course was that students sometimes were
writing longer generic comments (e.g., “Good explanation and ques-
tion. I think this will work well.”, “It’s simple and straightforward
which is useful for platforms like RiPPLE.” or “Great question, the
solution was well explained and simple to understand.”), which
were not very helpful as they did not relate to the actual content of
the resources. In all cases, we found that the quality control may
require some spot-checking from the teaching team, as discussed
in Section 3.3, to examine the quality of the contributions.

(2) Supporting Assessment logistics. The second problem of ty-
ing learnersourcing to assessment was related to the logistics of
enabling instructors to communicate the requirements of the as-
sessment and for students to track their progress towards the com-
pletion of the assignment. There were many enquires from students
related to not knowing whether or not they have met the require-
ments for completion of their assessment. Figure 4 provides an
overview of how we have attempted to support the use of assess-
ment in RiPPLE. Figure 4-a shows the instructor view where they
can create a rubric for an assessment round. The creation of the
rubric is scaffolded using multiple steps were instructors determine
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Figure 4: An overview of assessment support in RiPPLE.

their assessment requirements. At any time, instructors can view
general statistics about completion rate and average grade per cri-
teria or simply download grades in CSV format. Figure 4-b shows
the student view where students can track their progress on the
current round. Clicking on the “view more” button shows them
their grades for the completed rounds as shown in Figure 4-c.

3.2.3 Employing Gamification Mechanisms. There is a general con-
sensus that motivation is regarded as one of the most important
factors leading to academic success [41]. Employing mechanisms
that are typically used in games in non-game contexts, commonly
referred to as gamification, has been viewed as a viable option to
increase participation and engagement in many different settings
including education. While there have been contradictory findings
on the effects of interacting with gamified systems in education [57],
evidence suggests that if game elements target behaviours that can
improve learning then gamification can have a positive impact on
student engagement and learning [18]. Data from a survey on RiP-
PLE conducted in a graduate course with 75 students on database
principles at The University of Queensland illustrates students’
view on gamification features of RiPPLE. A total of 56 students
completed the survey, which had 15 questions that were based on 5-
point Likert scale statements. 73% of respondents agreed or strongly
agreed that the weekly awards motivated them to use RiPPLE and
78% of respondents agreed or strongly agreed that the leaderboard
motivated them to use RiPPLE. Future work aims to formally in-
vestigate the impact of these different gamification strategies on
student engagement and performance using the methodology used
in [18].

3.3 Empowering Instructors with Actionable
and Explainable Insights

In recent years, the learning analytics community has developed
many tools and technologies that provide a large range of analytics

to help instructors make data-informed decisions about students’
learning. For example, learning analytics dashboards have been
successful in developing visualisations that help with sensemak-
ing and displaying information about student performance and
behaviour. In spite of some promising results, the actual impact of
learning analytics dashboards has been found to be relatively low,
questioning their ability in presenting feedback that can meaning-
fully be translated into actionable recommendations to improve
learning [8, 45]. On the other hand, a diverse range of educational
tools have utilised recommender and adaptive engines to person-
alise the user experience of students or instructors [21]. Commonly,
these systems operate as a “black-box”, giving users no insight into
the rationale of their recommendations, which can lead to trust
issues, especially when users do not agree with the proposed recom-
mendations [29, 59]. The Human-Computer Interaction research
community has been looking at how users interact with recom-
mender systems and how such interaction can feed back and be
leveraged to improve system design. Classic studies [13] looked
at the impact of the recommender system interface on how the
system is perceived by users. They observed how the rating scale
and the display of prediction have the strongest impact on how
users perceive system effectiveness. Their conclusions suggest a
users’ preference towards finer-grained rating scales and a strong
sensitiveness to recommendation inaccuracies. [42] looked at how
to improve the usability and user acceptance of recommender sys-
tems by combining automated algorithms with the ability for users
to interact and explore the collection of items showing the im-
provements obtained by such a hybrid approach. To understand
the importance of explainable systems, [39] recently looked at how
recommender systems can explain the reasons why they suggest
items as compared to humans. Authors concluded that the quality
of explanations provided by humans is still perceived as superior
and they observed that the better the explanation the better the
recommendation is perceived to be by users. Some initial work on
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Figure 5: An overview of the old and new approaches of supporting spot-checking.

the development of transparent recommender systems have been
conducted in the learning analytics community [3], but overall, the
topic is still under-developed and under-researched and.

So how can learnersourcing systems couple analytics and recom-
mendations to empower instructors with actionable and explainable
insights to guide student learning? Below, we provide an example
of coupling analytics and recommendations with the aim of em-
powering instructors with actionable and explainable insights from
RiPPLE.

Given the limited availability of instructors, RiPPLE incorporates
a spot-checking algorithm [62] to identify resources that would
benefit the most from being reviewed by an expert. RiPPLE’s spot-
checking approach has focused on identifying resources that have
passed moderation but are likely to be incorrect or ineffective. At a
high-level, the spot-checking algorithm in RiPPLE employs a range
of human-driven metrics (e.g., high-disagreement in moderation
evaluations, a high ratio of downvotes in comparison to upvotes)
and data-driven metrics (e.g., assessments items that have a low
discrimination index or questionable distractors where the popu-
lar answer is not the one proposed by the author) to categorise
resources into having high, medium, low or no priority for being

reviewed. Figure 5-a illustrates the old version of the user interface
used for supporting spot-checking, where instructors were able to
see the priority category of each resource without any justifica-
tion. Figure 5-b illustrates the old user interface of what instructors
would have seen once they clicked on a recommended resource,
which is essentially the page presenting the resource. While in-
structors expressed a general appreciation for the spot-checking
algorithm, many of themwere not sure why a resource was selected
as having a high priority for being reviewed.

Figure 5-c illustrates the updated interface where we have at-
tempted to provide rationale for the spot-checking recommenda-
tions. There are two main additions: (1) resources are now tagged
with metrics that have been employed in the categorisation of their
priority class and (2) instructors are provided with a search bar
where they can provide additional constraints such as use of partic-
ular metrics or topics for selecting resources to review. Figure 5-d
illustrates the top part of the updated interface that instructors now
see when they click on a recommendation. The main addition is
that instructors are now provided with additional rationale for why
a resource was flagged for being reviewed. In the given example,
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rationale for why the resource was flagged based on three met-
rics are provided: (1) low effectiveness as the resource has received
more down-votes than up-votes, (2)stats on questionable distractors
that seem to be incorrect, and (3) an overview of a student report
indicating the question is incorrect. Below the flag component, in-
structors can view the actual resource as illustrated in Figure 5-b.
Once an instructor has reviewed the provided rationale and the
resource, they can either clear the proposed flags or take action by
deleting the resource or providing feedback to the author. Informal
feedback has been very positive about this change. Experiments
on the impact of providing these additional analytics to support
recommendations on instructors’ perceptions and behaviour are
underway.

4 CONCLUSION
The overarching aim of this paper is to contribute to the growing
literature on the development of effective learnersourcing systems
and more broadly technological educational solutions that sup-
port learner-centred education at scale. Data-driven reflections and
lessons learned throughout the paper can be summarised into the
following suggestions for developing learnersourcing systems: (1)
employ accurate and explainable consensus approaches for assess-
ing the quality of resources (see Section 3.1.1), (2) empower students
and instructors to raise concerns in relation to irresponsible use of
AI and fairness (see Section 3.1.2), (3) reflect on the criteria used in
the evaluation of the quality of resources and investigate its impact
(see Section 3.1.3), (4) employ OLMs that accurately show student
mastery while promoting high-quality learnersourcing contribu-
tions (see Section 3.2.1), (5) develop required features and logistics
to support tying learnersourcing to assessment (see Section 3.2.2),
(6) employ various gamification mechanisms to incentivise high-
quality learnersourcing contributions (see Section 3.2.3), (7) couple
analytics and recommendations to empower instructors with ac-
tionable and explainable insights (see Section 3.3) and finally (8)
conduct rigorous empirical studies to investigate the impact of var-
ious features of the platform. In terms of implications for practice
and research, our findings reiterate the emphasis on the interdis-
ciplinary nature to enhance the impact of learning analytics. In
particular, the findings are inline with the definition of learning
analytics as crossroads between data science, design, and educa-
tional theory [24]. The findings specifically emphasize that while
the adoption of machine learning in learning analytics can be bene-
ficial, it is not sufficient to achieve desirable outcomes. Instead, a
careful integration of machine with pedagogical interventions and
design of user interfaces is essential for learning (e.g., for learner
modelling and moderation of student evaluations). Likewise, design
of user interfaces and pedagogical interventions in learning ana-
lytics should harness the benefits that stem from developments in
artificial intelligence (e.g., to improve peer feedback or moderation).
It is also critical to approach iteratively the development and im-
plementation of systems empowered with learning analytics. Each
iteration should evaluate effectiveness of interventions introduced
including those based on pedagogy, user interface design, machine
learning, and their combinations.
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