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of each other, and (4) employ a spot-checking mecha-
nism to assist instructors in optimally overseeing the peer
assessment process.
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human centred Al, learning analytics, peer assessment

Practitioner notes

What is already known about this topic

* Engaging students in peer assessment has been demonstrated to have various
benefits. However, there are some common concerns associated with employing
peer assessment that raise questions about their trustworthiness as an assess-
ment item.

What this paper adds

* Methods and processes on how Al and learning analytics may be incorporated
to address some of the common concerns associated with peer assessment sys-
tems, which in turn, can increase their trustworthiness and adoption.

Implications for practice

» Presentation of a systematic approach for development, deployment and evalua-
tion of Al and analytics approaches in peer assessment systems.

INTRODUCTION

Peer assessment can formally be defined as “an arrangement for learners to consider and
specify the level, value, or quality of a product or performance of other equal-status learners”
(Topping, 2009, p. 20). Peer assessment can be incorporated under various settings such
as online or in-person (Yu & Wu, 2011), pairs or groups (Topping, 2010), open or blinded
(Shoham & Pitman, 2021) on a wide range of learning activities including oral presentations
(Nejad & Mahfoodh, 2019), essays (Huisman et al., 2018), portfolios (Yang et al., 2016), proj-
ects (Lin, 2018) and student-generated content (Darvishi et al., 2021).

Engaging students in peer assessment has been demonstrated to have various benefits
for the assessors, assessees and instructors. Assessors gain the opportunity to improve
their comprehension of the content (Li et al., 2010), develop a greater sense of account-
ability (Kao, 2013) and evaluative judgement (Nicol et al., 2014; Tai et al., 2018; Khosravi
et al., 2021; Gyamfi et al., 2021), improve their writing (Polisda, 2017), and gain experience
in providing constructive feedback (Lundstrom & Baker, 2009). Assessees gain the oppor-
tunity to receive more immediate and individualised feedback (Kulkarni et al., 2015) from
peers with diverse perspectives (Cho & MacArthur, 2011; Patchan & Schunn, 2015), which
are perceived as less authoritative and more open to a reciprocal exchange of views and
negotiation (Topping, 2009). Finally, instructors' workload related to student marking can be
reduced, which creates opportunities to increase enrollment (Joyner, 2017) or for them to
reinvest their time more optimally towards enhancing student learning. Additionally, the data
generated from students' engagement with the peer assessment process may be utilised by
learning analytics tools and learning analytics dashboards (Matcha et al., 2019) to comple-
ment the clickstream data captured by learning management systems to enable instructors
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to gain insights into students learning process. Due to these and other benefits, many peer
assessment systems such a PeerScholar (Paré & Joordens, 2008), Mechanical TA (Wright
etal., 2015), Aropa (Purchase & Hamer, 2018), CrowdGrader (De Alfaro & Shavlovsky, 2014)
and Peergrade (Wind et al., 2018) that facilitate peer review activities have been developed.

Despite these benefits, there are some common concerns and criticisms associated with
the use of peer assessment systems. Some of the main concerns target the nature of having
students as experts in training and are rooted in the logical argument that they may lack the
required knowledge, incentive or ability to evaluate their peers' work accurately and to pro-
vide effective feedback (Carless, 2009; Patchan et al., 2018; Sridharan et al., 2019). In peer
assessment systems where multiple reviewers review the same task, there are concerns
associated with how to accurately assign a final grade as basic aggregation approaches
such as mean and median that assume equal weight for all reviewers have been shown to
be ineffective (Abdi et al., 2020; Darvishi et al., 2021; Topping, 2009). Additionally, many of
the peer review systems do not formally provide the opportunity for the assessee and other
assessors to raise concerns and provide feedback on the reviews. In those that do, it is
challenging to develop processes and analytics that help instructors and the system to iden-
tify the main concerns raised by the students. Finally, as a follow up to the previous point,
instructors may not be able to effectively oversee the review process and to identify cases
where peer assessors might have made a poor judgement (Wang et al., 2018) without being
overwhelmed by additional work. All of these aspects lead to reducing trust defined as “a
firm belief in the competence of an entity to act reliably” (Robinson, 1996, p. 3), in peer as-
sessment systems. Consequently, many instructors and educational institutions have been
hesitant about incorporating them into their teaching (Liu & Carless, 2006).

In this paper, we explore the potential of using Al and learning analytics to address some
of the common concerns discussed above as a potential approach to increase the trustwor-
thiness of peer assessment systems. We focus on Al-assisted and analytical approaches
related to four processes carried out in peer assessments systems: (1) Individual reviews,
where assessors individually complete the assessment task, (2) Assigning grades, where the
system automatically aggregates assessors' decisions to assign a final grade, (3) Feedback
on reviews, where the assessee and assessors provide feedback on peer reviews, discuss
the outcome, and raise concerns, and (4) instructor oversight, where the instructor reviews
the work of assessors and oversees the peer assessment process. We implement and evalu-
ate our proposed approaches using a learning tool called RiPPLE that supports peer assess-
ment. Our evaluation of the proposed approaches for each of the four processes is guided
by a set of research questions, where a range of techniques such as conducting controlled
experiments, thematic analysis of student comments and descriptive analysis of data col-
lected by RiPPLE are used for answering these research questions. We conclude by exam-
ining benefits, implications and potential challenges and points for consideration in relation
to incorporating Al and learning analytics for building trustworthy peer assessment systems.

THE RiPPLE PLATFORM

RiPPLE is an adaptive educational system that dynamically modifies the level or form of
instruction based on individual student skills or preferences in order to deliver a person-
alised learning experience (Khosravi et al., 2019). Adaptive educational systems require
an extensive repository of learning resources, often developed by domain experts, to pro-
vide customised learning for students with varying knowledge levels. RiPPLE, on the other
hand, relies heavily on the learnersourcing approach, which involves students in the creation
and evaluation of a variety of learning resources (Khosravi et al., 2021; Abdi et al., 2021).
RiPPLE allows both students and instructors to generate learning resources. Users may
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FIGURE 1 Interfaces of the three main processes in RiPPLE

create multiple-choice questions, multiple-answer questions, working examples, and open-
ended notes. The interface for creating multiple answer questions is depicted in Figure 1a.

An instructor-created resource is directly uploaded to the repository of learning materi-
als, but a student-created resource must go through a peer assessment procedure. Users
can create different types of resources, including multiple-choice questions, multi-answer
questions, worked examples as well as open-ended notes. Peer assessors are requested to
evaluate the quality of student-generated content using a multiple-criteria rubric that instruc-
tors can customise for each resource type. For example, Figure 1b shows the assessment
interface peers use to evaluate a multiple-choice question by considering alignment, ac-
curacy, difficulty level and critical thinking encouragement. Before submitting their assess-
ment, assessors are required to support their judgement and offer comments to the author.
Finally, assessors express their final decision and level of confidence in their rating. RiPPLE
determines whether it is ready to make a final decision on the quality of a resource under
assessment based on the number of peer reviews received, the reliability of the assessors
and the degree of agreement between the received assessments.

BUILDING TRUSTWORTHY PEER ASSESSMENT SYSTEMS

This section presents Al-assisted and analytics-driven approaches for addressing concerns
with the individual reviews, assigning grades, feedback on reviews and instructor oversight
processes in peer assessment tools.! For each of the processes, we discuss common con-
cerns, propose solutions and present a corresponding implementation in RiPPLE, and share
results via evaluating the approach using guiding research questions.2 Figure 2 provides a
graphical summary of the content presented in this section.

Individual reviews
An important step in the peer assessment process is when each assessor individually com-

pletes the assessment task. Previous work has shown that assessors may lack the incentive
to do a rigorous job (Patchan et al., 2018) or lack the ability to provide effective feedback
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FIGURE 2 A graphical summary of the four peer assessment processes considered, common problems
associated with them, our proposed approaches and results

(Carless & Boud, 2018). Students' failure to provide high-quality feedback is one of the main
points of critique that undermines the trustworthiness of using peer review as an assessment
tool, which leads to substantial negative consequences such as lowering standards (Yeager
et al., 2014), reducing trust in the outcome (Carless, 2009), and making reviewees less likely
to revise their work (Sommers, 1982). There are multiple explanations for why students may
fail to provide effective feedback. One explanation is that students are not equipped with the
required skill set to provide effective feedback. This is not surprising as many students may
never have been asked to provide formal feedback. Indeed, this explanation is supported by
a meta-analysis of 58 studies that demonstrate providing training for reviewers is one of the
most effective ways of improving the quality of peer review (Li et al., 2020). An alternative
explanation is that students may be aware of best practices for writing effective feedback but
may not have the agency to monitor their own work to ensure that they follow the best prac-
tices. Many studies from the field of self-regulated learning have demonstrated that students
benefit from strategies that help them monitor their work and regulate their learning (Jansen
et al., 2019; Lahza et al., 2022). A third explanation is that students may lack the required
incentive to provide feedback diligently (Shnayder et al., 2016). A likely reason is that they
think their contributions are not reviewed by instructors. They may therefore put minimal ef-
fort in terms of providing feedback (Topping, 2003).

Approach

To help address these concerns, we draw on insights from feedback literacy, self-regulation
and natural language processing research to develop a complementary Al-assisted peer-
review approach that incorporates training, self-monitoring, and text quality control tech-
niques for students to consider when writing their reviews. The training material employs
higher education research on feedback (Carless, 2020) to develop a set of tips with exam-
ples on writing effective feedback focusing on (1) following the criteria (alignment with rubric),
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(2) being explicit and thorough (specificity), (3) offering suggestions for improvement, and (4)
using constructive language. For self-monitoring, we incorporate a self-monitoring checklist,
as one of the well-studied strategies from the self-regulation literature (Manso-Vazquez &
Llamas-Nistal, 2015; Zimmerman et al., 1996) to encourage students to use the training ma-
terial's recommendations and assist them in monitoring whether or not they have incorpo-
rated the recommendations in their feedback. Finally, inspired and informed by the success
of using NLP methods in improving the quality of user reviews (Devlin et al., 2018; Napoles
et al., 2015; Negi et al., 2016; Ramachandran et al., 2017; Reimers & Gurevych, 2019), we
developed three quality control functions that automatically analyse the quality of provided
comments and encourage students to improve their textual feedback. The first function em-
ploys the GLEU (Google BiLingual Evaluation Understudy) to calculate the similarity be-
tween the current submitted text and the previous comments of the student moderator using
n-grams (Napoles et al., 2015), reducing the possibility of gaming the system by submit-
ting the same general comment multiple times. The second function uses a rule-based ap-
proach proposed by Negi et al. (2016) to determine whether a suggestion has been made
in the submitted comments. Finally, the third function measures the relatedness of the pro-
vided textual feedback to the resource context using SBERT (Reimers & Gurevych, 2019)
as the encoder function to calculate the cosine similarity score. SBERT is based on a neural
language model called BERT (Bidirectional Encoder Representations from Transformers)
(Devlin et al., 2018), pre-trained on a large language corpus to encode sentences in such a
way that similar sentences are close to each other in the embedding space. Figure 3 depicts
an overview of RiPPLE's interfaces for self-regulation checklist, and Al-regulation prompts.

Evaluation
Our evaluation of the proposed approach was guided by the following research questions.

RQ1-1: To what extent do students engage with the Al-assisted complementary
approach?

RQ1-2: What is the impact of the Al-assisted complementary approach on peer
feedback?

To answer these questions, we conducted a between-subjects field experiment with n = 374
consented participants from two undergraduate courses, namely The Brain and Behavioural
Sciences (NEUR, n = 234) and Introduction to Information Systems (INFS, n = 140). Table A1 in
Appendix A provides an overview of the control and experiment groups in terms of the number
of students (#Students), resources (#Resources), and peer reviews (#Reviews) in each course.
The control group (n = 187) undertook peer reviews using the standard rubric-only interface,
and the experiment group (n = 187) used the complemented peer review interface with the
self-regulation checklist and Al-generated quality control prompts. Key highlights below and
respond to the research questions below.

Response to RQ1-1: Engagement with the intervention. According to system statistics,
49.2% (ie, 92 out of 187) of students across the experiment group accessed the training ma-
terial, and 35.9% (ie, 67 out of 187 students) used the self-regulation checklist at least once.
According to these data, the training and self-regulation practices benefited almost half of
the students directly. Some other students may have also benefited implicitly from reading
the checklist without explicitly selecting the check boxes. The collected data also show
that 18.2% (ie, 282 out of 1551) of comments were flagged when submitted. However, only
35.5% (ie, 100 out of 282) of flagged reviews were modified and resubmitted by students,
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Group A
Code - Chi-Square Test (1, N = 317)
Experiment- % ‘‘‘‘‘‘‘‘‘‘ % Control Experiment

Alignment 0.62 0.79 104, p =.001,V =.18
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[H [D Suggestion 026 0.38 46,p=.031,V=.12
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FIGURE 4 Comparing students' peer review behaviour in each group. (a) The average length of comments
in words, (b) percentage of reviews that were perceived as helpful (the boxplots show data distributions as a
five-number summary: Minimum, first quartile, median, third quartile, and maximum. The highlighted points
indicate the mean. Also, the violin plots were included to display the overall distribution of the data using density
curves), and (c) results of manual coding of textual feedback comparing the quality in terms of the four criteria of
effective feedback for two groups

while students overlooked the tip and opted for “submit anyway” in the remaining 64.5% (ie,
182) comments.

Response to RQ1-2: Impact on feedback. Figure 4a shows how comments' length varied
across experiment groups. It indicates that students in the experiment group have provided
significantly longer comments (M = 29.2, SD = 16.9) than students in the control group
(M =15.8, SD =12.2, {372) = 8.77, p<0.001, 95% CI [10.34, 16.32], Hedges's gs = 0.90,
95% CI [0.69, 1.12]). For a randomly selected pair of individuals from two groups, the com-
mon language effect size (CL) indicates a 74% chance that the comment length of a person
from the experiment group is longer than the comment length of a person from the control
group [for calculations for CL, see Lakens, 2013]. While lengthier comments do not neces-
sarily imply higher quality, Zong et al. (2021) identified a significant association between
feedback quality and comment length. Furthermore, according to Zhu and Carless (2018),
offering long comments is beneficial to the reviewer, regardless of quality. This benefit might
be attributed to the fact that they worked harder to conduct the review, which, according to
Baars et al. (2020), can support learning and self-regulation.

Another indication of the quality of a review and its associated feedback is the helpfulness
likes and dislikes that it receives. Figure 4b shows the rate of users' reviews in each group
that received at least one helpfulness rating from other reviewers. This analysis reveals that
after the moderation process, the experiment group (M = 0.36, SD = 0.22) received more
likes from peers on the helpfulness of their comments than the control group (M = 0.11,
SD = 0.13), #(372) = 13.14, p<0.001, 95% CI [0.21, 0.28], Hedges' gs = 1.36, 95% CI [1.13,
1.58]. For a randomly selected pair of individuals, the CL effect size indicates an 83% chance
that the like peer review rate of a person from the experiment group was higher than the like
peer review rate of a person from the control group.

We have further evaluated textual feedback quality by manually coding 10% of randomly
selected comments from each group (ie, 163 from the control and 154 from the experiment).
The codebook is built around the four criteria presented in the training materials. One of the
authors and an independent researcher coded these randomly selected comments individ-
ually to indicate whether the feedback: (1) was aligned with rubrics, (2) was detailed and
specific, (3) suggested improvements, and (4) used constructive language. The coders were
unaware of the peer review conditions of the selected comments (ie, whether a review was
in the control or the experiment group); Cohen's kappa coefficient of 0.87 indicates excellent
agreement between them, with 94.6% inter-rater agreement across all codes.

The analysis indicated that 62% of peer reviews in the control group and 79% in the
experiment group were ‘aligned with rubrics,” as shown in Figure 3a. It also shows that
the code ‘detailed and specific’ accounted for 63% of the comments in the control group,
compared to 92% in the experiment group; ‘suggested improvements' accounted for 26% in



British Journal of
852 | Educational Technology DARVISHI ET AL.

the control group, compared to 38% in the experiment group; and 74% of comments in the
control group concerning ‘constructive language’ compared to 93% in the experiment group.
Furthermore, the Chi-Square Test of Independence revealed significant relationships be-
tween the peer review conditions and comment quality across all four criteria. On the other
hand, Cramer's V reveals only small effect sizes for feedback qualities such as alignment,
suggestion, and constructive language, but a stronger relationship between the peer review
condition and providing detailed and specific feedback, which is a dominant feature for ad-
vancing feedback execution and more practical than generic compliments or complaints
(Henderson et al., 2019; Nelson & Schunn, 2009).

In summary, according to the findings, providing students with training, self-monitoring,
and quality control features can help them offer lengthier and more useful comments to
other peers.

Assigning grades

In cases, where peer assessment is used for summative assessment, part of the challenge is
assigning a grade to the assessee (Sridharan et al., 2019). Given that judgements of students,
as experts-in-training, cannot wholly be relied upon (Darvishi et al., 2021), a redundancy-based
method is widely employed where the same assessment task is given to multiple students.
However, this approach raises the issue of “truth inference”- How can we efficiently integrate
multiple people's decisions towards an accurate final decision in the absence of ground truth?
Many peer assessment systems employ summary statistics such as mean and median (eg, Paré
& Joordens, 2008; Purchase & Hamer, 2018; Wind et al., 2018; Wright et al., 2015). However,
these basic aggregation approaches assume equal weight for all reviewers who contributed to
a peer assessment task, regardless of their abilities or interests. These basic approaches have
been shown to be ineffective and sometimes lead to a lack of differentiation between high and
low-quality submissions (Abdi et al., 2020; Darvishi et al., 2021; Topping, 2009).

Approach

To address this challenge, one possibility is to incorporate more advanced models with the
aim of inferring the reliability of each assessor (Tao et al., 2018). Below, we present four
models that can be grouped into two categories: Probabilistic models that aim to infer the
trustworthiness of an assessor based on the grades they have provided and text analysis
models that aim to infer the trustworthiness of an assessor based on the feedback they have
given. The latter approach is employable in peer assessment tasks where assessors are
expected to leave comprehensive feedback and comments.

Expectation—maximisation model (EM). One of the widely used probabilistic method
for estimating answer quality in crowdsourcing problems is the expectation—maximisation
model (EM) (Moon, 1996). It regards estimating the reliability of students as a “chicken-and-
egg” problem reliant on the other side of the problem, estimating the quality of resources.
In the absence of ground truth for both user reliability and resource quality, the first prob-
abilistic model used in this study follows an EM-inspired procedure: (1) set an initial value
for all students' reliability, (2) infer resource quality based on current values of assessors'
reliabilities and ratings, and (3) update assessors' reliability based on the ‘goodness' of their
decision compared to the final inferred resource quality.

Trust propagation: Trust propagation models have been successfully employed in various
settings such as social networks, commerce, health, and learning (Urena et al., 2019). In
the context of peer assessment, this approach is portrayed as a graph with four node types:
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students, decision ratings, resources and instructors. The first steps of the trust propaga-
tion procedure are similar to those of EM. Each student is first assigned an initial level of
trustworthiness. During the decision-making stage, the system estimates the quality of a re-
source based on the reliability of trustworthy moderators who have evaluated the resource.
Then, the assessors' gained reliability score is calculated using the resource's final inferred
quality during the user updating stage. However, there is an additional trust propagation
stage in which all other users connected to the current assessors receive an updated score
from the most reliable and trustworthy ones (Darvishi et al., 2021).

Comment Length: Rather than focusing on reviewer trustworthiness, a large body of natu-
ral language processing (NLP) research has sought to assess review quality. Commonly, the
length of a comment is used to estimate how much effort assessors put into the assessment
(Duret et al., 2018; Xiong & Litman, 2011). In this weighted aggregation model, students who
provide a more detailed explanation for their rating are rewarded. For a detailed implemen-
tation of this model please refer to (Darvishi et al., 2020).

Relatedness: Although feedback length might reveal student effort, it does not always show
how feedback relates to the assessed resource. A comment that refers explicitly to aspects
of the resource under evaluation can be more insightful and indicative of critical thinking than
a long generic comment. In this text analysis model for peer assessment evaluation, SBERT
(Reimers & Gurevych, 2019) is used to generate a semantic vector space for both the com-
ment and the resource, then compute their cosine similarity in that space to measure their re-
latedness, which is then used as the weight of the assessor's rating to infer the final decision.

Appendix B presents a formal definition for the problem under investigation, followed by
eight representative models from four categories of consensus approaches—summary sta-
tistic, probabilistic, text analysis and combined models.

Evaluation

We investigated the effectiveness of different consensus models using the following re-
search questions.

RQ2-1: How do commonly used summary statistics infer the quality of student
generated content (SGC) in the peer review process?

RQ2-2: How does incorporating probabilistic or text analysis models impact the
SGC quality inference?

RQ2-3: Do combinations of the above models improve the performance of the
SGC quality inference?

To answer these questions, we collected data from ten courses at The University of Queensland
during semester 2 of 2021. Table B1 in Appendix B presents short descriptions of each course
and the details for peer assessments regarding the number of students and peer reviews, and
Table B2 shows an illustrative dataset. There were a total of 2837 undergraduate students who
submitted 60,622 peer assessments on 11,481 resources. Additionally, instructors spot-checked
1017 resources that had received 5856 peer assessments from 1602 students. RiPPLE priori-
tises a few resources for instructor inspection based on multiple factors such as user feedback,
low effectiveness, assessor disagreements, and questionable distractors. Section “Instructor
Oversight” delves deeper into the spot-checking algorithm. These spot-checked resources were
selected as the test set for evaluation. The peer assessment process in RiIPPLE determines
whether a student-generated resource is suitable for inclusion in the approved resource repository.
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TABLE 1 Comparison between the inferred consensus ratings and the instructors' decisions evaluated with
area under the curve (AUC) and accuracy (ACC)

Category Model AUC ACC
Summary statistic Mean 0.55 0.70
Median 0.53 0.69
Probabilistic Expectation—maximisation 0.58 0.72
Trust propagation 0.77 0.80
Text analysis Length 0.66 0.76
Relatedness 0.62 0.74
Combined models Length x Relatedness 0.68 0.76
Trust + (Length x Relatedness) 0.80 0.82

Note: Numbers in bold highlight the best-gained results for each category.
Italic values show the best result for AUC and ACC.

Therefore, we conduct the evaluation at the binary level, where the quality rating = 3 serves as
the minimum required inferred rating for approval. This minimum rating is selected based on the
rubric (shown in Figure 3a), wherein the Decision section asks:” The overall quality of the re-
source is: 1 = Poor, 2 = Needs improvement, 3 = Satisfactory, 4 = Great, and 5 = Outstanding”.
The overall performance of the methods under investigation are shown in Table 1.

Response to RQ2.1: Summary statistics. As baselines, we used the mean and median
approaches from summary statistics. The results show that these baselines underperformed
and had the lowest AUC among all models, which indicate that the majority of students are
easy graders.

Response to RQ2.2: Probabilistic and text analysis methods. The EM method has mar-
ginally enhanced the AUC value by re-weighting students' contributions as compared to the
baselines. However, the results show that this model was incapable of dealing with data
skewness and was still biased towards the majority of overrated assessments. This result
is consistent with El Maarry et al. (2015)'s findings, which emphasise that using EM for con-
sensus on data with long-tail distributions may not be appropriate and may facilitate misbe-
haviour by strategic spammers who provide the most prevalent rating (eg, a high rating here)
in their evaluations. In contrast, the trust propagation model substantially improved AUC and
ACC when compared to baselines and EM. This finding implies that the graph-based model
was more effective than EM at identifying trustworthy student assessors and provided more
reliable results. Incorporating linguistic information from comments resulted in better AUC
and ACC values as compared to baselines. This improvement implies an association be-
tween the additional features from text analysis and the quality of student assessments, and it
helps estimate the reliability of reviews and minimises the contribution of strategic spammers.

Response to RQ2.3: Combined model. Although combined models can incorporate many
features from preceding models, we only report on the two models that improved perfor-
mance the most. Interestingly, while we initially assumed that an advanced feature like re-
latedness (using the BERT model) would be a better predictor of review quality, it did not
outperform a simple feature such as the length. We speculate that this could be due to the
utilised pre-trained model that often overrates short comments such as “good question.”
(ie, providing a high relatedness score, eg, >0.7) when compared to MCQ or TRUE/FALSE
questions. Nevertheless, the first presented combined model, which integrated length and
relatedness, marginally improved AUC compared to the length or relatedness models alone.
This model may address the key issue of using the length alone as a proxy for feedback
efficacy, resulting in awarded lengthy but ineffective comments. As a result, the Length x
Relatedness model could better reflect how much effort and critical thinking assessors put
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into their evaluation. The second model proved effective as it incorporates features from the
previous best-performing models—trust propagation, length and relatedness—resulting in
the best AUC and ACC.

In summary, the findings suggest that estimating the trustworthiness of student assessors
and the quality of textual feedback offered promising peer assessment outcomes, which
could significantly reduce instructors' workload in large-scale assessment tasks. However,
a considerable amount of false cases demonstrate the clear need for instructors' oversight
during peer assessment.

Feedback on reviews

Peer assessment, by design, enables assessors to review, grade and provide feedback
on the work of the assessee. This workflow, however, can end up frustrating the assessee
or various assessors as they might disagree with the consensus outcome or the provided
feedback without being given the opportunity to raise their concerns (Ashenafi, 2017). One
possible way to enhance the process and potentially increase its trustworthiness is to close
the loop and extend the workflow to enable the assessee and various assessors to review
and provide feedback on the work of their peer assessors and the outcome generated by the
system. The problem being addressed here also has commonalities with cases where high-
stake decisions in domains such as hiring, lending, criminal justice, welfare, and healthcare
are automated and made via Al. In both cases, decisions are made by non-experts (students
or Al systems), which hinders the trust in the system and may raise concerns for those that
are impacted by the decisions (Lockey et al., 2020).

Approach

Prior work on co-regulation (Zheng & Huang, 2016), feedback as a dialogue (Zhu &
Carless, 2018) or development of feedback loops (Carless, 2019) provides a strong theoreti-
cal framing on how feedback and review loops can be designed in a peer assessment setting.
Inspired and informed by these frameworks, crowdsourcing and collaborative learning ap-
proaches (Hadwin et al., 2018; Li et al., 2021; Zheng & Huang, 2016), we provide a feedback
on reviews strategy for sharing evaluations and inferred decisions with the assessee and
various assessors, allowing them to examine and provide feedback on the work of their peer
assessors and the system's outcome. In the first step of this approach, the assessee and
assessors of the same resource are requested to vote on the helpfulness of each comment
and rate the quality of the other assessors' input using like and dislike. This procedure is per-
formed prior to disclosing the results of peer assessment in order to avoid user bias based on
the outcome. Following the sharing of the result, the next step is for the participants to declare
whether or not they agree with the outcome. This enables them to reconsider their previous
decision and confirm or change their initial opinion. Finally, they are given a chance to anony-
mously offer additional comments to share their experience and possible concerns about the
peer assessment process. Figure 5 depicts RiPPLE's feedback on reviews interface.

Evaluation

The following research questions guide our exploration of students' engagement with the
feedback on reviews interface and the effectiveness of our approach.



British J I of
856 E;Iulcsatio‘:‘arln':e:hnology DARVISHI ET AL.

l‘b 1. Please vote on the helpfulness of each moderation @ ~
5 -
H H
RS £
8| @
3 a| 2 |o
1 4 | 16% | Good question ® 9
0 0
2 | 3 |12% | Good question for the g the usage of EER-diagram .9
A highly relevant that ge of is y to the course and current )
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"arrowhead”. Also, provide a more thorough description of why the answer is correct 1fr 1

2. Having reviewed the moderations, do you agree with the out of the mc

_“

3. Please provide any further feedback.

Provide any futher feedback...

FIGURE 5 Example of feedback on reviews interface in RiPPLE, which shows six students' decisions
yielded to rejection of the resource under moderation, three comments received like after the result and
feedback of the peer assessment were shared with students, and the current user in the feedback on reviews
interface declares that they agree with the outcome

RQ3-1: To what extent do students trust the system and agree with the out-
comes given by the system?

RQ3-2: How likely is it for an assessor to change their opinion based on the
reviews of others?

RQ3-3: What are the common topics discussed by the authors and assessors
in their additional comments?

To answer these questions, we collected data from 1,348 users who engaged in 12,747
instances of feedback on reviews based on the interface shown in Figure 5, which captures
students' feedback after the results of the peer assessment were shared with them. Table C1
in Appendix C shows an illustrative dataset. Providing feedback on reviews is not mandated
in the peer assessment system, and participation is voluntary. Our data showed a significant
difference between the number of peer reviews submitted per student (medians = 16, Q1 = 12
and Q3 = 30) and their number of feedback on reviews (medians = 4, Q1 = 1 and Q3 = 11),
where Q1-Lower Quartile is 25th, and Q3-Upper Quartile is 75th percentile. Table 2 provides an
overview of the feedback on review contributions by drilling down into the users' likes/dislikes,
votes and additional comments.

Response to RQ3-1: Trust. As shown in Table 2, only around 2% of the responses dis-
agreed with the outcomes of the peer assessment process and less than 4% were unsure. In
contrast, more than 80% of the responses agreed with the outcomes of the peer assessment
process. These stats suggest that the general trust of the students in the system is quite high.
We note that around 13% of the users who submitted a feedback on reviews contribution did
not vote and therefore, we do not know whether or not they had trust in the system.
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Response to RQ3-2: Change opinion. In four cases, assessors showed a change in their
initial decision after reviewing feedback: (1) Outcome and their decision were both to reject a
resource, but they disagreed with the outcome (0.1%). This scenario was rare, with only 8 out
of 281 cases with similar conditions (probability = 2.8%). (2) Outcome was to reject a resource,
but the decision was to approve; however, assessors agreed with the outcome (1.5%). This sce-
nario was relatively common with 146 out of 213 similar condition cases (probability = 68.5%).
(3) Outcome was to approve a resource, but the decision was to reject; however, assessors
eventually agreed with the outcome (1.4%). Compared to the previous scenario, assessors
were less likely to change their minds and agree with the outcome in this case, with 133 out of
337 similar condition cases (probability = 39.4%). Finally, (4) outcome and their decision were
both to approve a resource, but assessors disagreed with the outcome (0.8%). This scenario is
the least common possibility with 75 out of 8744 similar condition cases (probability = 0.9%). All
in all, assessors changed their opinions in 3.8% of cases when they participated in the feedback
on reviews process, whereas it would be 1.3% if all submitted assessments were considered.

Response to RQ3-3: Common topics. To answer this question, we randomly sampled and
manually coded 10% (175) of the user comments to detect recurring topics. One of the authors
and a research assistant independently coded the comments. We used Roberts et al. (2019)'s
guidelines on codebook generation. The preliminary codes were deduced and applied to the
comments based on the research question. This initial codebook was then iterated several times
through an inductive process, where additional codes were formed based on the data before the
coders agreed on the final version. To achieve appropriate levels of inter-rater agreement, we
concluded the coding using a test-retest technique. The inter-rater agreement across all codes
was 93.5% with a Cohen's kappa coefficient of 0.84, indicating a strong agreement. The coders
discussed cases of disagreements between them and resolved conflicts. Our analysis revealed
that users primarily provided feedback on five topics: their peers (either assessees or other as-
sessors), themselves, the outcome, the system, and the resource under assessment. Table C2
in Appendix C reports rates of occurrence as well as positive and negative example comments
for assessees and assessors on each of these five topics. We note that a comment could have
been tagged by multiple topics. Therefore, the sum of the rates of occurrences exceeds 100% for
both assessees and assessors. Results suggest that the assessed resource's content is the cen-
tral point of discussion for both assessees (90.8%) and assessors (76.1%). However, whereas
assessees concentrated on themselves (37.9%) as the next most discussed topic, assessors
focused on their peers (39.8%). The majority of assessees' positive comments reflect their devel-
opment in feedback literacy by taking up on feedback and appreciating their peers' points of view
and suggestions (Carless & Boud, 2018). On the other hand, while some negative comments
addressed the unfairness of outcome, most of them complained about generic, non-constructive
and unhelpful textual feedback. The comments on the system topic enable RiPPLE's designer
and development team to resolve reported issues and improve the useability of the system.

In summary, while 80% of students trusted the peer assessment process and agreed with
the outcome, feedback on reviews allows peer assessors and assessees to review feedback
and engage in dialogue with one another, change their initial opinion based on others' decisions,
and express disagreement with the outcome. It also allows them to express additional concerns
about their peers' contributions, the content of the evaluated resource, and the system's func-
tionality, which can assist the system and instructors in identifying issues raised by the students.

Instructor oversight
An important element that gives credibility to peer assessment is that instructors, as the ex-

perts, are overseeing the process. However, despite the plethora of previous work on peer as-
sessment, methods and processes on how instructors can best oversee the peer assessment
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process are underexplored. One simple approach would be for instructors to review all peer-
reviewed cases; however, this approach requires a significant instructor effort and would be
unrealistic to implement in large classes. An alternative approach that has received some at-
tention is the development of spot-checking mechanisms (Lee et al., 2018; Wang et al., 2018)
that aim to identify a small subset of peer assessment outcomes that would benefit the most
by being checked by instructors (Yang et al., 2019). This is a promising approach that can im-
prove the trustworthiness of peer assessment systems while optimally using the expertise of
time-poor instructors. However, much of the existing work on spot-checking has had a theoreti-
cal nature and has only been evaluated on simulated or offline data sets rather than empirical
evaluation in peer assessment systems (Han et al., 2020; Wang et al., 2020).

Approach

Informed by spot-checking (Wang et al., 2020) and active learning (Lee et al., 2018) ap-
proaches, we developed a set of learning analytics that help instructors to effectively use
their time to review the most controversial cases. RiPPLE incorporates a spot-checking
algorithm that employs a blend of human-driven and data-driven metrics for identifying re-
sources that would benefit the most from being reviewed by instructors. Human-driven met-
rics include outcome disagreement (assessors/authors disagree with the final decision on a
resource), low efficacy (a high proportion of downvotes (dislikes) relative to upvotes (likes)),
and reports (resources reported as unsuitable or having incorrect answers by students).
Data-driven metrics take into account assessment items with questionable distractors, in
which the popular answer is not the one provided by the author. When flagging a resource
for spot checking, RiIiPPLE uses absolute and relative points of comparison to help instruc-
tors make sense of why a resources has been flagged for review. Table D2 in Appendix D
shows examples of metrics used for spot-checking along with their descriptions, explana-
tions and examples. Each resource receives a risk score between 0 to 5 on each of the
metrics where 5 presents the highest level of risk or need for expert review.

We computed an overall ranking score for resources based on their priority to require in-
structor judgement. To obtain a ranking score, we made use of stochastic dominance (Levy
& Robinson, 2006) from decision theory where one set of outcomes (set of metric risk scores
for a resource) could be considered superior to another set of outcomes (set of metric risk
scores for another resource). The aim was to order the resources in such a way that one
resource has a lower priority than another if their distribution of outcomes is both smaller on
average and less variable, while resources with a higher priority have larger scores on aver-
age and more variability. For obtaining our function, we considered the following two criteria,
which are related to the first-order and second-order stochastic dominance: (1) The overall
ranking score for a resource r dominates the overall ranking score for resource r’ if each
metric risk scores of resource r dominates that of scores of resource r’. (2) If the average of
the metric risk scores of resource r is equal to that of resource r’, then the resource with the
higher standard deviation across metric scores will have a higher overall score. This crite-
rion would give a higher overall ranking score to resources that have a high score on some
metrics over those that have a medium score across all metrics. Figure 6 shows the RiPPLE
interface in which the system prioritises items based the metrics described in Table D2.

Evaluation

Our evaluation of the spot checking approach was guided by the following research questions.
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FIGURE 6 Example of instructor oversight in RiPPLE
TABLE 3 Summary of instructors' oversight
(a) Instructors' actions and decisions
Instructor action
Final decision Flag cleared Revised Total
Reject 17 521 538
Approve 410 380 790
Total #resources 427 901 1328
(b) Instructors' actions based on number of flags
Number of flag per item
Instructor action 1 2 3
Flag cleared 405 22 0
Revised 781 106 10
Total #flags 1186 256 30

RQ4-1: How have instructors engaged with the spot-checking algorithm?

RQ4-2: How effective was each metric in urging instructors to revise the out-
come of a resource?

To answer these questions, we collected and analysed data on 1328 cases where instruc-
tors reviewed an item that the system prioritised for inspection using one of the metrics men-
tioned earlier. Table D1 in Appendix D shows an illustrative dataset. Our data from ten different
courses revealed that instructors had been generally involved and spot-checked less than 2%
of all student submissions, with the median of 1.97%, lower quartile Q1 = 1.46%, and upper

quartile Q3 = 7.28%.
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TABLE 4 |Instructors' action based on the type of metric

Users' Assessors' Questionable
Instructor action Low effectiveness reports disagreement distractors
Flag cleared 10.7% 18.1% 22.3% 44.6%
Revised 89.3% 81.9% 77.7% 55.4%
Total #flags 56 298 524 610

Response to RQ4-1. Table 3a shows that instructors cleared flag on 32% (ie, 427 out of
1328) of the prioritised resources by the assisted spot-checking, which means that these
items did not need instructors' intervention. However, this table also shows that instructors
revised 901 out of 1328 of items prioritised by the system, indicating the spot-checking al-
gorithm's 68% efficacy in detecting resources that benefit from instructors oversight. Also,
instructors rejected 58% (ie, 521 out of 901) of the revised items, while the remaining 42%
of approved cases were also revised by providing a new grade. A number of resources were
flagged by more than one metrics. Table 3b shows that the chance of revising a resource
has increased by the number of flags from 66% in 1-flagged items to 83% in 2-flagged items
and 100% in 3- or 4-flagged items.

Response to RQ4-2. According to Table 4, questionable distractors and assessors' dis-
agreement appear to have been front-runner metrics used by the system to flag potential
undependable resources with 610 and 524 cases, respectively. They are followed by users'
reports and low effectiveness with 298 and 56 flagged items, respectively.

Regarding the number of ratings provided by instructors, assessors' disagreement had
the most cases (ie, 407), but 117 flagged cases by this metric were cleared which makes its
efficacy 77.7%. However, low effectiveness, despite its low contribution in detecting prob-
lematic resources, at 89.3% (ie, 50 out of 56 cases) was the most successful metric in
encouraging instructors to revise and submit a new rating. Users' reports had the second-
highest efficacy rate of 81.9% with 244 re-rated items out of 298 cases. While questionable
distractor had the highest number of flagged items, 44.6% of items flagged by this metric
were eventually cleared by instructors, making it the least effective one with a 55.4% effi-
cacy. This suggests that students simply misunderstood a question in many questionable
distractor cases due to the question difficulty level.

In summary, our proposed analytics and recommender system for identifying resources
that need instructor attention seems to be effective as a large portion of the recommended
resources receive a revision grade from instructors.

DISCUSSION AND CONCLUSION

In this work, we presented Al-assisted and analytic approaches to address some of the main
concerns associated with the use of peer assessment systems. By doing so, we aimed to give
instructors, students and institutes a firmer belief in the competence and reliability of peer as-
sessment systems, which based on the definition by (Robinson, 1996, p. 3), can contribute to
their trustworthiness. In particular, our results provide evidence that our proposed approaches
(1) enable students to write lengthier and more helpful feedback comments, (2) infer student
grading reliability such that the results are more accurate than current baseline model, (3) en-
able students to provide peer feedback over peer reviews and raise concerns when needed
and (4) enable instructors to incorporate system's recommendations to more optimally identify
cases that need instructor oversight. The findings point to a future in which peer assessment
may be incorporated more frequently and reliably to facilitate learning at scale.
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Implications

The paper has two important implications for learning analytics and Al in education. First,
this paper gives researchers and practitioners a novel systematic approach to incorporating
advances in Al-driven learning analytics by having a strong grounding in a theoretical model
of relevant education or learning processes. Specifically, the paper—through the conceptu-
alisation of the four phases of peer-review process—demonstrated how a theoretical model
can be used to structure the program of research, development, deployment, and evaluation
by addressing a problem (ie, trust in a peer-review system) that may emerge in practice. This
is an important contribution that complements existing calls for integration of theory and
design with computational methods of Al and data science in learning analytics (Gasevi¢
et al., 2017; Martinez-Maldonado et al., 2021). Second, the studies reported in the paper
provide fresh empirical insights that can inform the development of future Al-driven learning
analytic systems that seek to enhance trustworthiness of peer-review. To this end, the paper
advances existing research that mostly focuses on design proposals (Er et al., 2021) for the
use of learning analytics to support peer feedback and make use of learning analytics to
evaluate peer assessment approaches (Kulkarni et al., 2015).

Limitations

We see two main limitations to the current study. First, while the applied methods are pre-
sumed to be context and domain agnostic, this study only examined data from a single
system with a particular context of peer assessment, which might lead to potential bias in
findings. Our future work aims to replicate the presented studies in other peer assessment
systems. Second, we have approached increasing trustworthiness by aiming to address
some of the main concerns associated with using peer assessment systems. However, in
this work, we have not directly measured the impact of our approaches on users' percep-
tions of trustworthiness. Future work aims to incorporate self-reports and to conduct focus
groups for triangulation of findings and to evaluate the effectiveness of our approach on
increasing trust.

FATE concerns

While we have shown examples of how Al and analytics can assist in addressing con-
cerns with peer assessment, there are also increasing concerns about the FATE (Fairness,
Accountability, Transparency, and Ethics) of Al-based systems (Shin, 2020; Darvishi et al.,
2021). Here we provide one example of a potential pitfall for each of the four peer assess-
ment processes we have studied to indicate that further exploration and evaluation are re-
quired before we aggressively incorporate Al and analytics in peer assessment.

Individual reviews

The use of NLP algorithms seems effective in helping students develop algorithmic literacy
(Koenig, 2020; Long & Magerko, 2020; Darvishi et al., 2022); however, inaccurate prompts
and recommendations by the system (eg, asking a reviewer to add an explicit suggestion,
while the review already has one) may lead to students and instructors losing their trust in
the system. An interesting future direction is to explore best practices for developing trust-
worthy recommender systems (Hassan, 2019).
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Assigning grades

We have demonstrated that the use of probabilistic and text-based models can improve the
accuracy of peer grading in comparison to baseline summary statistics. However, grades
inferred via these models are also less explainable and interpretable by students and in-
structors, which itself can increase distrust in the system. An interesting direction for future
work, which is aligned with the broader work on the emerging field of explainable Al (Arrieta
et al., 2020), is to develop methods that are both explainable but are also highly accurate.

Feedback on reviews

Providing the ability for students to provide feedback on reviews of each other by rating the
assessors and raising concerns seems like a promising approach to increase trust in peer
assessment systems (Ahmad & Bull, 2008; Bodily et al., 2018). However, these additions
introduce the expectation in students that instructors will closely examine and act on their
feedback, when appropriate, to change results. This itself can be a source of frustration for
both instructors (in terms of additional work) and students (in terms of unmet expectations),
leading to less trust and confidence in the system. An interesting direction for future work
is to explore feedback on reviews processes that empower students in peer assessment
systems without directly increasing instructors' workload.

Instructor oversight

Spot-checking algorithms can assist instructors to review only a small portion of the as-
sessments. However, there is a concern that the selection process may be prone to data
and algorithmic bias (Baker & Hawn, 2021), which may generate underlying discrimination
that might unfairly benefit or harm certain groups of students. An interesting direction for
future work, which is aligned with the broader work on human-centred Al, is to evaluate the
fairness of our approach against various demographic groups using methods that consider
fairness measures (eg, [Gardner et al., 2019]) and to develop new approaches that are less
prone to user or algorithmic bias.
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APPENDIX A

SUMMARY OF DATASET USED IN INDIVIDUAL REVIEWS

TABLE A1 Overview of the experimental groups in individual reviews

#Peer
Course Group #Students #Resources reviews
NEUR Control 117 703 1290
Experiment 117 573 1247
INFS Control 70 165 342
Experiment 70 216 304
Total 374 1657 3183

" p  Sudents y
ecision \

(A diy (A dip (A dyy (A dpy [ dy [ diq [ dip [ o [ gy [ dyg B dew
T T e / o

E a1 E a2 Resources E g @ a
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(a) Moderation graph (b) Sample propagation network

FIGURE A1 Graph-based trust propagation. (a) Moderation graph with four kinds of node—Students,
decision ratings, resources, and instructors, and (b) main steps in the propagation network model
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APPENDIX B

INFERENCE MODELS AND DATASET USED IN ASSIGNING GRADES

This Appendix presents a formal definition and notation for the problem under investigation,
followed by eight representative models from four categories of consensus approaches—
summary statistic, probabilistic, text analysis, and combined models.

Problem definition

Given a non-moderated resource g; and a set of students {u1 uk} who provided decision

ratiﬂgs dyj, ..., ds accompanied with comments cy;, ..., ¢y, infer the quality of g; denoted

asfrj.

Summary statistics o
Mean. This is a simple consensus approach based on summary statistics: /r\j = &=
Median. The median is usually situated between the mean and the mode in skewed nor-

mal distributions: 7; = Median (uy, ... u).

Probabilistic

Expectation-Maximisation. In the absence of ground truth, resource g; quality (/r\j) is
inferred based on current values of student reliability scores 14, ... 4, and, ratings dy, ... di
on g;; and then reliability of the students 4, ... 4, are updated using Equation 1 as follows:

K
_ it Ai X dj

A=A+ ER(d) (1)
Tk '

if»

N2
256~ (i71) /(20%)
- 20\ 2n

where fUR (dj.7)) =° determines the ‘goodness’ of d;jbased on7;as the height of
a Gaussian function at value (dj —?/) with centre 0, standard deviation ¢ = .7 and peak § = 100.

Graph-based trust propagation. Figure Ala shows the moderation graph consisting of
four nodes—students, decision ratings, resources, and instructors. The trust propagation
model has three main stages: decision-making, updating scores, and reliability propaga-
tion. Similar to EM, in the decision-making and updating score stages, students' ratings

TABLE B1 Short descriptions of each course and the number of students and peer reviews

Course #Peer
code Description School #Students reviews
MEDI Ethics and Professional Practice Medical School 415 6467
INFS Introduction to Information Systems Info Tech & Elec Engineering 379 4951
NEUR The Brain and Behavioural Sciences Psychology School 554 20,939
AGRC Applied Mathematics & Statistics Agriculture Food Sciences 292 11,462
CRIM Introduction to Criminal Justice Social Science School 160 2492
ECON The Macroeconomy Economics School 256 4510
PHRM Quality Use of Medicines Pharmacy School 227 2541
COMP Artificial Intelligence Info Tech & Elec Engineering 301 3543
NUTR Nutrition & Exercise Human Movement & Nutrition Sci 195 3051

ANIM Wildlife Technologies Agriculture Food Sciences 58 666
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TABLE B2 Anillustrative dataset used for assigning grade, consisting of 4 resources assessed by 10
students. Resources g1, g2, and q3 have been mostly received high ratings (ie, decision >3), but resource
g4 has controversial decisions ranging from 2 (reject), 3 (satisfactory) to 5 (outstanding). Comments length in
words and relatedness score (between [0, 1]) were also used to measure textual feedback quality

Resource User Comment Relatedness
ID ID Decision Final comment length score
q1 ul 4 Very effective resource for learning the basics 11 0.440993
of the PACE framework
q1 u2 4 | like the explanation, this is a good question for 16 0.200965
my own review of the content
ql u4 5 Very helpful, great revision tool for 10 0.404459
remembering the PACE framework
q1 u10 4 This question is a good review of the PACE 28 0.537852

framework and a good way to test your
knowledge of the framework. The answer
explanation is appropriate and helpful

q2 ul 4 Great question to develop critical thinking skills. 21 0.344651
It was difficult trying to workout which of the
two last answers were correct

q2 u2 4 This is a great question that tested my recall on 27 0.430061
the PACE model, in a way which required
me to think about particularly between C
and D

q2 u10 4 This question is a good review of the PACE 31 0.380155
framework. | like how each answer choice is
a different part of PACE and they are each
covered in the question explanation

q2 u8 4 | really like that the author used an example 19 0.577151
to test our understanding of the PACE
framework of escalating

q3 ul 4 Solid question, | think it has strong potential as 12 0.19901
an exam question

q3 u3 ® | like how you have discussed the topic of risks 16 0.501467
and threats in healthcare, great work

q3 ud 5 Very helpful, very good tool for revision of direct 13 0.043853
content from lecture slides

q3 ubs 3 Good resource to revise types of risks 7 0.499096

q4 ué 5 Concise and accessible notes for 21 0.459132

understanding the components of shared
decision making and examples on how to
put these into practise

q4 u7 & good resource added at the bottom allows 20 0.257424
students to further read if they choose to,
adding explanations helped give context

q4 u8 2 Very superficial resource. I'm not certain what 29 0.36531
the take home is in terms of KLIs. I'm not
sure the formate chosen is the best way to
transmitting this information

q4 u9 3 If you could put which week this information 22 0.223229
was relevant to, it would help those going
back to revise the material:)

q4 ud 3 Good layout and helpful for revising. May have 15 0.290562
been more helpful as a practice question
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and current reliability scores are used to infer the quality of the resource g;, and the inferred
quality ?j is then utilised to update the students' gained reliability score. However, there is
an additional stage here where all other users linked to this set of students (ie, (u1, ,uk))
will receive an updated score from the most trustworthy moderator. As shown in Figure A1b,
users' reliability would be updated by ¢; in this model based on the quality of their work and
similarities to their peers s;, who are directly connected to them due to their partnership in
earlier moderations. For additional information, please refer to (Darvishi et al., 2021).

Text analysis

Length. The length of their comments can be used to estimate how much effort students
put towards moderation. The LCy, notation is introduced, where Ic; represents the length
of comments (ie, the number of words) provided by user u; on resource g;. Equation 2 is used
to calculate the final rating:

k
K ixd;

Pi= —Z’—1k e )
Dict Ai

where 4; is set to Ic;, approximating u; ‘effort’ in assessing q; based on comment length.
Informally, this strategy rewards students who provide a more detailed explanation for their
assessment.

Relatedness. As shown in Equation 3, comment c; and resource q; are encoded in a
semantic vector space, and their cosine similarity in that space is measured to determine
their relatedness.

¢ j=Encoder(c;) & §;=Encoder(q;), 3)
Relatedness(c;,g;) =cos (¢ ;.G ;)

SBERT Reimers and Gurevych (2019) is utilised as the encoder function in Equation 3 to
capture semantic relatedness rather than depending solely on exact lexical matching. Then,
the cosine similarity score is used to reflect relatedness and ranges in [-1, 1], subsequently
employed in Equation2 as the user decision weight 4;.

Combined models

In these models, we explore integrating features from different inference models indi-
cated above in A; of Equation 2. For instance, in a model consisting of relatedness from text
analysis and trust from probabilistic models, 4; would be a product of the relatedness of the
submitted comment multiplied by the user's reliability score.
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APPENDIX D

EXAMPLES OF METRICS AND DATASET USED FOR INSTRUCTOR OVERSIGHT

TABLE D1 Anillustrative dataset used for instructor oversight, consisting of 27 resources spot-checked by
8 instructors, shows their flags' severity level (between [0,5])

Low Users Assessors Questionable

Resource Instructor Instructor effectiveness reports disagreement distractors
ID ID Outcome action severity severity severity severity
q1 sut Approve Revised 0 0 4 0

q2 su1 Reject Revised 0 2 0 0

q3 su2 Approve Revised 0 0 2 0

q4 su2 Approve Revised 0 0 4 0

q5 su3 Approve Revised 0 2 0 8

q6 su3 Reject Revised 0 0 0 8

q7 su4 Reject Revised 1 0 0 g

q8 sub Reject Revised 0 0 0 5

q9 su5 Approve Cleared 0 2 0 1

q10 sub Reject Cleared 0 2 0 0

qi1 sub Reject Revised 0 2 0 0

q12 sub Approve Cleared 0 0 0 5

q13 su6 Reject Revised 0 2 0 0

q14 su6 Approve Revised 0 2 0 0

q15 sub Reject Revised 0 2 0 4

q16 sub Approve Cleared 0 0 0 8

ql7 su7 Reject Revised 5 2 0 1

q18 su6 Reject Revised 0 2 0 2

q19 su6 Reject Revised & 5 0 4

q20 su6 Reject Revised 5 2 0 0

q21 su6 Reject Revised 5 2 0 0

q22 su6 Approve Revised 0 2 & 0

q23 su6 Reject Revised 0 2 2 5

q24 su8 Approve Cleared 0 2 0 1

q25 su8 Reject Revised 1 2 0 0

q26 su8 Reject Revised 0 2 0 0

q27 su8 Reject Revised 0 2 0 0
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