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ABSTRACT
Engaging students in the creation of learning resources has
been demonstrated to have pedagogical benefits and lead to
the creation of large repositories of learning resources which
can be used to complement student learning in different ways.
However, to effectively utilise a learnersourced repository of
content, a selection process is needed to separate high-quality
from low-quality resources as some of the resources created
by students can be ineffective, inappropriate, or incorrect. A
common and scalable approach to evaluating the quality of
learnersourced content is to use a peer review process where
students are asked to assess the quality of resources authored
by their peers. However, this method poses the problem of
“truth inference” since the judgements of students as experts-
in-training cannot wholly be trusted. This paper presents a
graph-based approach to propagate the reliability and trust
using data from peer and instructor evaluations in order to
simultaneously infer the quality of the learnersourced content
and the reliability and trustworthiness of users in a live setting.
We use empirical data from a learnersourcing system called
RiPPLE to evaluate our approach. Results demonstrate that
the proposed approach can propagate reliability and utilise the
limited availability of instructors in spot-checking to improve
the accuracy of the model compared to baseline models and
the current model used in the system.

Author Keywords
Learnersourcing; Crowdsourcing in Education; Learning
Analytics; Peer Review; Consensus Approaches; Trust
Propagation.

CCS Concepts
•Applied computing → Computer-assisted instruction;
Interactive learning environments; Collaborative learn-
ing; •Information systems → Crowdsourcing; •Human-
centered computing→ Collaborative and social computing
systems and tools;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S ’21, June 22–25, 2021, Virtual Event, Germany.
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8215-1/21/06 ...$15.00.
http://dx.doi.org/10.1145/3430895.3460129

INTRODUCTION
The concept of engaging learners as contributors to novel
content, also referred to as learnersourcing [25], is emerging as
a viable learner-centred and pedagogically supported approach
to engaging students in higher-order learning and authentic
learning experiences at scale [21]. Learnersourcing has strong
roots in the learning sciences and is aligned with established
and contemporary learner-centered approaches [33] such as
inquiry-based learning [19], contributing student pedagogy
[16] and students as partners [28]. A side benefit and an
increasingly recognised application of learnersourcing have
been to use students’ contributions within adaptive engines to
support the personification of education [18, 20, 23, 44].

Although learnersourcing offers various benefits for both stu-
dents and instructors, there are several concerns associated
with the use of learnersourcing in the educational systems.
For example, Heffernan et al. [18] stress that the main risk
inherent to the use of learnersourcing is to control the quality
of the content created by students. They also suggest that
anonymous quality ratings and peer-feedback would enable
identifying reliable and high-quality learning contents by stu-
dents themselves. Previous work has demonstrated that the
quality of students’ contribution in creating learning resources
is rather diverse, with some developed resources meeting rig-
orous judgmental criteria while other resources are ineffective,
inappropriate, or incorrect [13, 8, 1, 35, 38].

Employing peer-evaluation approaches, where multiple stu-
dents’ decisions are integrated towards inferring a resource’s
quality, is a viable candidate for inferring the quality of student-
generated resources. Engaging students as evaluators of learn-
ing resources encourage them to think critically and analyti-
cally about the learning resources, reflect on their own created
content, and help them develop evaluative judgement, which
has been recognised as an important aspect of the learning
process [36]. However, this method poses the problem of
”truth inference“ since the judgements of students as experts-
in-training cannot wholly be trusted. While some prior work
has reported on students’ ability to effectively evaluate re-
sources [6, 13, 35, 43], the consensus approaches by which
learnersourced evaluations can be meaningfully integrated
towards inferring the quality of a resource is under-developed.

The aim of this paper is to propose and evaluate a graph-based
reliability propagation approach that uses data from peer and
instructor evaluations to simultaneously infer the quality of
the learnersourced content and the reliability of users. Results



demonstrate the out-performance of the reliability propagation
approach compared to baseline models and the current model
used in RiPPLE in evaluating the quality of learnersourced
content. In what follows, Section 2 first presents an educa-
tional system called RiPPLE that relies on learnersourcing for
creating and evaluating learning content. We discuss the cur-
rent consensus approach employed in RiPPLE, the rationale
for why this approach was chosen and a data-driven reflection
of its limitations. Section 3 then presents related work on
learnersourcing, current peer review consensus approaches,
and trust propagation methods. Section 4 provides notation
and a formal definition of the problem under investigation and
Section 5 presents our proposed approach. Section 6 uses
empirical data from the adoption of RiPPLE in five courses to
evaluate our proposed approach. Finally, Section 7 discusses
the implications and potential benefits and shortcoming of in-
tegrating our presented algorithms into an educational system
that supports student creation and evaluation of the content.
We also present several interesting directions to pursue in
future work to overcome current limitations.

BACKGROUND
This section presents an overview of the moderation process
in the adaptive educational system used in this study – the
RiPPLE platform. It provides an individualised learning expe-
rience by adapting the type or the difficulty level of instruction
tailored to students’ needs or preferences. To do this, it needs
a large repository of learning resources. Relying only on do-
main experts or instructors to create such a repository would
be expensive in terms of cost and time. As such, students
are engaged to collaborate with instructors in the creation of
content and also the evaluation of their peer’s work quality.
Figure 1 provides an overview of the moderation process in
RiPPLE.
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Figure 1: Overview of the creation and moderation process.

An instructor-generated resource is directly approved, whereas
a student-generated resource must pass the moderation process.
Moderators use an interface, as shown in Figure 2, to evaluate
a resource quality, which guides students to consider a rubric

of four items – alignment, correctness, difficulty, and critical
thinking level of the resource.INFS1200/7900  1000   AD
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SUBMIT

Figure 2: Evaluation rubric for moderation
Then, the system determines whether or not it is ready to make
a decision on the quality of the resource under moderation
based on a number of criteria, such as the number of received
moderations, the level of agreement between the moderators,
and their reliability. If it is not ready to make a decision, then
the resource remains in the non-moderated resources repos-
itory for further moderations. Otherwise, RiPPLE uses an
explainable consensus algorithm to simultaneously infer the
reliability of student moderators and the quality of resources.
The current consensus model relies on the expectation maximi-
sation (EM) algorithm [29]. As described in [6] and Section 6,
it begins with initialising all students’ reliability to an equal
value. Then, in the expectation step, it uses a weighted ag-
gregation of students’ ratings to infer a resource’s quality.
Finally, in the maximisation step, it updates students’ relia-
bilities based on the goodness of their ratings compared to
the inferred quality. The authoring student is then encouraged
to revise their submission based on the provided feedback to
remove the approved resource’s minor issues or to review and
consider resubmitting if rejected. Figure 3 shows an example
of a moderation outcome and feedback.
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Figure 3: An example of moderation outcome and provided
feedback.

The current model was selected as: (1) it has low computa-
tional complexity to be implemented in a live setting, (2) the
inferred ratings and reliability updates are easily explainable,
and (3) our previous work shows that the system seemed fair
to students and instructors [21]. Still, it holds a flaw in its



consensus approach. Like most crowdsourcing systems, the
current algorithm mainly depends on the majority’s decision
and often diminishes judgments from a minority of wise mod-
erators. In the collected data from 5 courses (cf. Section 6),
a total number of 77,297 moderations have been submitted
on 12,803 resources from 2,141 students. Figure 4 provides a
preliminary analysis based on the 4,918 moderations on 694
resources that had also received an instructor moderation.
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Figure 4: Student moderations performed on resources that
also received an instructor moderation.
This figure demonstrates that in cases where instructors have
approved a resource (i.e., provided a rating of 3, 4 or 5), the
probability of receiving a true positive (TP) where students
have also approved that resource (i.e., provided a rating of
3, 4 or 5) is much higher (96.6%(2868)� 3.4%(101)) than
receiving a false negative (FN) where students have rejected
a high-quality resource (i.e., provided a rating of 1 or 2). In
contrast, it also shows that in cases where instructors have
rejected a resource (i.e., provided a rating of 1 or 2), the
probability of receiving a true negative (TN) where students
have also rejected that resource (i.e., provided a rating of
1 or 2) is much lower (13.5%(264)� 86.5%(1685)) than
receiving a false positive (FP) where students have approved a
low-quality resource (i.e., provided a rating of 3, 4 or 5). This
pre-analysis illustrates that consensus approaches depended
on the majority’s judgements may not accurately discern low-
quality resources. Another limitation is that the current model
does not optimally utilise the instructors spot-checking in
students’ reliability inference.

RELATED WORK
In what follows, we provide examples of learnersourcing sys-
tems that incorporate students to create learning resources and
those that use it for content evaluation. Then, we discuss a
number of consensus approaches in group decision making
and peer review. Finally, we present a brief review of com-
monly used trust propagation approaches in social networks.

Learnersourcing
A growing number of platforms primary use learnersourcing
for students’ potential to generate novel learning content. For
example, Crowdy is a platform in which students collabora-
tively develop subgoal labels on a set of instructional videos by

answering reflective surveys [42]; AXIS uses students to gen-
erate, revise, and evaluate explanations for problem-solving
tasks [44]; PeerWise is an online platform that empowers
students to author, answer, and evaluate multiple-choice ques-
tions [10]; CodeWrite offers practice support and peer review
for Java programming using exercises created by students [9];
StudySieve enables students to create free-response to ques-
tions designed by their peers [27]; UpGrade sources student
open-ended solutions to create scalable learning opportunities
[41]. We rely on RiPPLE in this study which learnersources
generation of learning activities that are used as part of an adap-
tive educational system [22]. The student-generated content
in these systems ranges from multiple-choice and open-ended
questions to instructional video annotations and solutions to
specific problems.

Beyond creating novel content, several educational systems
mainly benefit from learnersourcing for evaluating students
works or providing feedback alongside the content creation
to ensure the quality of the student-generated resources. For
example, Mechanical TA, an automated peer review system,
aims to advance review quality by involving teaching assis-
tants who evaluate reviews of novices and spot check that
of experienced students [46]; Dear Beta and Dear Gamma,
web applications, learnersource personalized hints involving
students in hint creation on their own work and on that of their
peers [14]; Aropä, an online system, facilitates peer review
activity based on a rubric provided by academics to enable
students to upload assignments, write reviews on peer sub-
missions and view the feedback given on their own works
[32]; PeerScholar, an automated online tool for writing and
critical thinking assessments, is designed to assist instructors
in managing student assignments [31]; CrowdGrader enables
students to submit, review and grade homework, and receive
feedback on the quality of their assignment and reviews [7];
edX, a MOOC platform, pairs students randomly to review
their submissions in a peer assessment system to facilitate
education in tasks such as writing and design, which are chal-
lenging to assess automatically [34]; Peergrade, a web-based
peer assessment tool, attempts to improve the feedback qual-
ity by an intelligent allocation of reviewers and automatic
flagging for instructor moderation [45]. Peer evaluation is
also used alongside the content creation in the learnersourcing
platform used in our study (RiPPLE) to control the quality
of the student-generated resources. By and large, existing
peer-evaluation systems commonly utilise summary statistics
methods like mean aggregation to integrate student decisions
on their peer’s work [31, 46, 32, 45]. While these methods
benefit ease and explainability, as demonstrated in previous
work (e.g., [6, 11]) and the results in this paper, they perform
poorly to evaluate learnersourced content.

Consensus approaches in peer reviews
A challenging task in learnersourcing is to infer a final decision
on a student-generated resource’s quality and reaching a con-
sensus from multiple peer reviews. It is challenging because
students have diverse labelling behaviours, not known at infer-
ence time. In crowdsourcing literature, the problem of optimal
integration of the crowdsourced decisions in the absence of a
ground truth has been studied under the general terms of truth



inference or consensus approaches [47, 17]. Some of these
approaches are established on Bayes’ theorem for opinion ag-
gregation, combining estimation, and truth inference [12, 24].
These approaches are mostly used for consensus over categori-
cal labels in crowdsourcing. Various techniques are utilised to
aggregate estimated ordinal labels such as ratings. For exam-
ple, a technique presented in [4] uses the posterior distribution
to identify the quality of sampled labels by optimising the
separating width among classes. An ordinal labelling model
proposed by [48] aggregates noisy ordinal labels from a crowd
by representing worker ability and item difficulty.

One of the well-adopted weighted aggregation methods in
consensus approaches is Expectation-Maximization (EM) that
estimates the quality of responses to infer the reliability [29].
EM has been widely utilised in different tasks in diverse fields,
from text classification and data clustering to chemical systems
and medicine [30, 3, 2, 5]. Whitehill et al. [43] developed an
aggregation model using EM that combines subjective ratings
from a set of students into an aggregate quality score for each
resource. They also posited that the estimated quality rating
was a better predictor of student average learning gains than
the test scores in their study. EM commonly iterates over the
entire dataset until convergence of estimated parameters in an
offline manner. In its current version, RiPPLE has aimed to
adapt EM for an online setting but has not worked well. This
study has explored the possibility of employing a graph-based
trust propagation approach to use the instructors’ contribution
optimally in the inference model.

Trust Propagation
The success and growth of crowdsourcing platforms such as
Wikipedia, Stackoverflow, and Amazon Mechanical Turk, and
social networks such as Facebook and Twitter develop the
immense scale interactions between users and information
overload. The potential of anonymity inherent in these large
scale networks allows malicious behaviour such as spamming
and providing false or misleading information, which raises
the need for trust evaluation. Trust between users promotes
their interaction in the networks with different purposes, in-
cluding recommendation, group decision making, or assess-
ment in diverse applications such as e-health, e-commerce,
and e-learning [37]. This trust can also propagate through the
users’ connections, offering them a perception of the given
information’s quality based on their previous interactions. The
well-known balance theory can explain the trust propagation
concept, where people are more likely to interact with friends
of friends than unfamiliar individuals and regulate their pref-
erence and beliefs on other objects (e.g., service or products)
based on the relationships with their peers [49]. A review
of the literature on trust propagation and opinion dynamics
in social networks and group decision-making frameworks is
provided in [37].

Most trust propagation works aim to detect spammers or un-
trustworthy users in a social network such as e-commerce
platforms. For example, a review graph model is introduced
by [39] to identify untrustworthy online-store-reviewers using
an iterative approach in an offline manner. We adapt their ap-
proach to estimating users’ reliability in a live system. Guha et

al. [15] introduce a trust propagation and also include distrust
in their framework. Following their approach, we consider
both agreement and disagreement between users to compute
the similarity and propagate users’ reliability. Besides, in most
existing algorithms, a constant value of reliability is usually
inferred for an individual and used throughout the system to
weigh all contributions. However, we believe students’ relia-
bility and or competency would gradually change throughout
the training and experience. In an educational context, the aim
is to estimate students’ reliability and then identify those who
need help or guidance to improve their skill in a particular
field or topic.

PROBLEM DEFINITION
Notations and a formal definition of the problem under inves-
tigation are presented in this section. Table 1 gives a summary
of the notations and their definitions that are used in the com-
putations of the proposed model.

Inputs
UN A set of users {u1 . . .uN} who are enrolled in a course, where

ui is an arbitrary user.
QM A repository of learning resources {q1 . . .qM} available within

the system, where q j is an arbitrary resource.
RN×M A two dimensional array in which 1≤ ri j ≤ 5 shows the deci-

sion rating given by user ui to resource q j .
Γ A threshold of quality for moderated resources.
ρ The initial value of the score for all users.

Function 1: Decision Making
WN A set of decision weights {w1 . . .wN} in which 0 ≤ wi ≤ 1

infers the decision weight of a user ui.
ΩM A set of cumulative decision weights {ω1 . . .ωM} in which ω j

shows the cumulative decision weights of trustworthy users
who moderated resource q j .

PN A set of a total number of positive ratings {p1 . . . pN} in which
pi shows the number of resources that ui approved and con-
tributed to decision making.

NN A set of a total number of negative ratings {n1 . . .nN} in which
ni shows the number of resources that ui has rejected and
contributed to decision making.

Function 2: Updating Scores
FG

N×M A function where f G
i j determines the goodness of the rating provided

by ui for q j .
FD

M A function where f D
j determines the ”discrimination” value of re-

source q j .
AN×N A two dimensional array in which aik ≥ 0 shows the number

of agreements between user ui and user uk .
DN×N A two dimensional array in which dik ≥ 0 shows the number

of disagreements between user ui and user uk .
SN×N A two dimensional array in which −1≤ sik ≤+1 shows the

similarity value between user ui and user uk .
ΦN A set of users’ score {φ1 . . .φN} in which φi shows the score

of user ui.
Function 3: Reliability Propagation

ΛN A set of users’ reliability {λ1 . . .λN} in which −1≤ λi ≤+1
infers the reliability of user ui.

TN A set of users’ trustiness value {t1 . . . tN} in which ti infers the
value of trustiness on user ui.

FN×N A two dimensional array in which fik shows the belief value
of user ui on user uk .

Output
R̂M A set of M ratings {r̂1 . . . r̂M} where each rating 1 ≤ r̂ j ≤ 5

shows the quality of resource q j .

Table 1: Descriptions of the notations used in the problem
definition and the presented approaches.
Let UN = {u1 . . .uN} denote a set of users who are enrolled in a
course, where u1 . . .uN′ represent the students and uN′+1 . . .uN
represent the instructors of the course (N′ ≤ N). Let QM =



{q1 . . .qM} denote a set of learning resources, where q j refers
to an arbitrary resource. Let RN×M capture users’ decision
ratings on evaluation of learning resources where 1≤ ri j ≤ 5
shows the decision rating given by user ui to resource q j.

Given RN×M , our aim is to infer a set of quality ratings R̂M =
{r̂1 . . . r̂M} in which 1 ≤ r̂ j ≤ 5 refers to the inferred quality
of q j.

MODERATION GRAPH MODEL
Figure 5 illustrates how the problem can be formulated in the
form of a moderation graph, which consists of four kinds of
node – students, decision ratings, resources, and instructors.
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Figure 5: Moderation graph.

In our approach for inferring a student ui’s decision weight wi,
and a resource q j’s quality r̂ j, we make use of the following
assumptions and definitions.

• We define a two dimensional array AN×N where aik ≥ 0
shows the number of agreements between user ui and user
uk. Similarly, we define a two dimensional array DN×N , in
which dik ≥ 0 shows the number of disagreements between
user ui and user uk. Information on agreements AN×N and
disagreements DN×N between users is used to define a two
dimensional array SN×N in which −1≤ sik ≤+1 shows the
similarity value between user ui and user uk.

• We define a one dimensional array ΛN where−1≤ λi ≤+1
represent the reliability of user ui. Instructors are considered
to be extremely reliable and their reliability set to maximum
(i.e., ∀i > N′ : λi = 1), and students would enter into the
system with an initial reliability value (i.e., ∀i≤ N′ : λi '
0.1).

• We define a one dimensional array TN , where ti infers the
trustiness of a ui. The trustiness of user ui is computed as
ti = ∑

N
k=1 λk× sik, which depends on the amount of similar-

ity to other reliable and non-reliable user.

• Only decisions made by trustworthy users are contributed
to inferring the quality of resources. Here, we consider
users trustworthy if their reliability, trustiness, and instructor
belief are above a threshold.

• A resource q j with an inferred quality of r̂ j is approved and
used within the system if r̂ j ≥ Γ and rejected otherwise.

Algorithm 1 presents the high-level pseudo-code of our pro-
posed peer review approach using a graph-based trust propaga-
tion approach1. This algorithm consists of three main stages–
Decision Making, Updating Scores, and Reliability Propaga-
tion. Figure 6 shows the main stages in the propagation net-
work model used in this study. First, Given a non-moderated
resource q j and decision ratings (r1 j, . . . ,rk j) from students
(u1, . . . ,uk), system starts the decision making stage when
enough reliable moderators have evaluated the given resource.
Then, r̂ j, the inferred quality of q j, is used to calculate the
gained score of the contributed student-moderators. Finally,
all other students connected to (u1, . . . ,uk) and have less reli-
ability value than them would receive an updated score. For
example, ul , who is connected to u1,u4, and uk, would re-
ceive a score of ϕl from the user uk who has a bigger value of
reliability than the others in this group.

Algorithm 1: Main procedure of the peer review process
Input :UN , QM , RN×M , Γ, ρ , α , κ

Output :R̂M
1 initialization();
2 while nonModeratedResource do
3 if newModeration then
4 receivedModeration(ui,q j)
5 end
6 end
7 Function receivedModeration(ui,q j)
8 Uq j ←∀uk ∈ rk j , 0 ; /* Set o f users moderated q j */

9 (ω j, r̂ j)← computeQuality(ui,q j,Uq j ) ; /* see Function 1 */
10 if ω j < τΩ then
11 return ∅ ; /* not ready f or decision making */
12 else
13 updateScore(Uq j ) ; /* see Function 2 */
14 propagateReliability(Uq j ) ; /* see Function 3 */
15 return r̂ j; /* Inferred quality */
16 end
17 end

In Algorithm 1, a set of variables is first defined in initialization
to be used in the moderation process. We devote an initial
amount of score (i.e., φN ← ρ) to all students. This set of
scores is transformed into an initial set of users’ reliability
ΛN . The Similarity matrix SN×N would be initialized with an
identity matrix (i.e.,∀i, j ∈UN : si j = 1 i f i = j; si j = 0 i f i ,
j) as an indicator of self similarity. Then, the Trustiness
vector TN , as a product of the similarity matrix and reliability
1The source code (in R) is available at: https://github.com/
ali-darvishi/Quality-via-Trust

https://github.com/ali-darvishi/Quality-via-Trust
https://github.com/ali-darvishi/Quality-via-Trust
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vector (i.e., TN = SN×N×ΛN), would be then initialized with
the initial values of reliability. After initialization, when a
moderation on a newly generated resource receives, the system
starts the process of inferring the quality of the moderated
resource and the reliability of users using the following stages:

1. Decision Making
This process depends on both the cumulative decision weights
of the resource ω j and the trustworthiness of the users who
moderated the resource q j. As shown in Function 1, in the
set of users who moderated the current resource (i.e., Uq j ),
only those with positive trustworthiness can contribute to the
decision making process. To have a positive trustworthiness, a
student-moderator should satisfy three criteria: (1) Reliability
(i.e., λk > τΛ), (2) Trustiness (i.e., tk > τT ), and (3) Instructors’
belief (i.e., fkN ≥ τB). We discuss each of these variables
later in the Reliability Propagation stage. Then, the decision
weight (0 ≤ wi ≤ 1) of trustworthy users is computed using
Function computeDecisionWeight (Line 21-Function 1). This
function considers the frequency of approving or rejecting a
resource and the user reliability to adjust the decision weight
of a user. To calculate and keep track of the number of times
a user has approved or denied a resource and contributed
to decision making, pi or ni are first updated based on the
quality threshold Γ. Driven by credits, students tend to game
the system by overrating the resources as the most prevalent
answer (e.g. a high rating of 4 or 5) to gain more scores in
the system. Therefore, ζ degrades the decision weight of
those users who only approve resources. On the other hand, ζ

would escalate the decision weight of trustworthy users who
deny a resource after several reliable moderations. At the
end of the decision making process, Function computeQuality
returns both the inferred quality of the resource (r̂ j) and the
cumulative decision weights (ω j) from the trustworthy users.
If ω j is less than a threshold τΩ, it means the resource has not
yet received enough moderations from trustworthy users, and it
is not ready for making a decision. Therefore, the system waits
to receive moderation from other users. Otherwise, if we have
enough trustworthy users in the moderation (i.e, ω j ≥ τΩ),
Function receivedModeration updates scores and propagates
reliability, as discussed below, and then returns the inferred
quality (r̂ j).

Function 1: Decision Making
1 Function computeQuality(ui,q j,Uq j )
2 if (i > N′) then /* ui is an instructor */
3 r̂ j ← rei j; /* instructor decision on q j */
4 ω j ← τΩ; /* cumulative decision weight = threshold */
5 else /* ui is a student */
6 if (ri j ≥ Γ) then
7 pi← pi +1 ; /* Increment #positive ratings */
8 else
9 ni← ni +1 ; /* Increment #negative ratings */

10 end
11 ω j ← 0; r̂ j ← 0;
12 for ∀uk ∈Uq j do
13 if ((λk > τΛ)&(tk > τT )&(F [k,N]≥ τB)) then

/* uk is trustworthy */
wk ← computeDecisionWeight(uk,q j);

14 r̂ j ← r̂ j +wk× rk j; ω j ← ω j +wk;
15 end
16 end
17 r̂ j ← r̂ j/ω j;
18 end
19 return (ω j ,r̂ j)
20 end
21 Function computeDecisionWeight(uk,q j)
22 if (rk j ≥ Γ) then
23 θ ← (pk +nk)/pk;
24 else
25 θ ← (pk +nk)/nk;
26 end
27 ζ ← 0.1/(0.1+ e−θ/2); wk ← λk×ζ ;
28 return wk
29 end

2. Updating Scores
Function 2 shows how we update the students’ scores. The
score φi of user ui would change based on the “goodness” of
the user’s decision rating ri j and the “discrimination” value
of resource q j. The amount of this change ϕi j = f G

i j × f D
j is

computed using two functions – FG
N×M and FD

M as shown in
Equations (1) and (2). f G

i j estimates the ”goodness” of ui’s
rating on q j using the threshold Γ and Gaussian functions at
value (ri j− r̂ j) with centre (µ) 0 and variance (σ ) 1 as:

f G
i j =


κϒ je

−(ri j−r̂ j)
2/2

√
2π

ri j, r̂ j ≥ Γ∨ ri j, r̂ j < Γ,

κϒ je
−(ri j−r̂ j)

2/2−κϒ j√
2π

Otherwise.

(1)

Where 1 ≤ κ ≤ ρ adjusts the maximum value of re-
ward/punishment that a user can achieve per each moderation,
and 0≤ ϒ j ≤ 1 is the maximum value of the reliability among
the users who moderated resource q j. In other words, FG

N×M
will grant a large positive value (reward) to users if their rating
ri j and the final inferred resource quality r̂ j have the same
polarity based on the threshold Γ (in terms of approved or
denied) and ri j is close to r̂ j and will be a large negative value
(punishment), otherwise. Figure 7a shows the reward/punish
function used in this study (κ = 100). f D

j determines the
“discrimination” value of resource q j using another Gaussian
function at value r̂ j.



f D
j =

1− e−(r̂ j−µ)2/2σ2

σ
√

2π
+ ε (2)

where µ = Γ = 3 in our 5-scale rating system, ε is a small
value that determines the minimum discrimination for the
resources with inferred quality r̂ j = 3. Resources with a r̂ j
close to Γ are considered “close calls” where the system has
less confidence in the decision. Informally, FD

M determines
how much we can rely on a resource to distinguish a good
moderation from the bad one. Grounded on common sense,
we assume that with an inferred quality close to Γ = 3 (i.e.,
minimum satisfactory quality value), it is hard to judge the
quality of moderation, and the reward/punishment value will
be diminished by FD

M . On the other hand, if an inferred quality
is close to 5 (i.e., outstanding quality) or close to 1 (i.e., poor
quality), FD

M will consider a higher impact for that resource to
update the scores. The variance of this Gaussian function is se-
lected as σ = 0.455 to have the maximum discrimination value
Max( f D

j )' 1 for r̂ j = 1 or 5 and ε is selected as 0.1 to have
the minimum discrimination value (i.e., Min( f D

j ) = 0.1) for
r̂ j = 3. Figure 7b illustrates the final resource discrimination
function used in this study.

Also, to calculate similarities between users, the numbers
of their direct agreements and disagreements based on the
threshold of resource quality (Γ) are counted. Two users (e.g.,
ul and uk), who contributed on the moderation of resource q j,
agree if their decision ratings are both less than the threshold
or greater than or equal to the threshold (i.e., rl j,rk j ≥ Γ∨
rl j,rk j < Γ), and disagree otherwise. A two dimensional array
AN×N records the number of agreements between all users, and
DN×N records the number of disagreements. Here, following
the approach by [39], a logistic function is used to translate the
agreement and disagreement matrices to a similarity matrix
(SN×N between users as shown in Equations (3):

slk =
2

1+ e−(alk−dlk)
−1 (3)

where −1 ≤ slk ≤ +1, shows the similarity value between
user ul and user uk. A, D, and S matrices are symmetric (e.g.,
AT = A : alk = akl) and sparse.

3. Reliability Propagation
Here, we aim to propagate the reliability from those who
achieved scores by contributing to the moderation of a re-
source to other users connected to them in the system network.
In this scenario, users’ score would be changed based on the
quality of their own collaborations and also their peers who
are directly connected to them as a result of their collaboration
in the previous moderations. Function 3 shows the main steps
for the propagation process. Two main criteria are needed
to be satisfied by a user (e.g., ul) other than the current mod-
erators to achieve a score,: (1) ul should directly connected
to one or more users from the set of current moderators (i.e.,
∑uk∈Uq j

|slk| , 0), and (2) ul only receives a score from the

Function 2: Updating Scores
1 Function updateScore(Uq j )
2 ϒ← Max

uk∈Uq j

(λk) ; /* Max reliability o f users in Uq j */

3 for ∀uk ∈Uq j do
4 ϕk ← computeReward

using Equation (1),(2)
(rk j, r̂ j,κ,ϒ);

5 φk ← φk +ϕk;
6 for ∀ul ∈ (Uq j −uk) do
7 if ((rl j ≥ Γ) & (rk j ≥ Γ) ) ‖ ((rl j < Γ) & (rk j < Γ) ) then
8 alk = alk +1 ; /* Increment #agreement */
9 else

10 dlk = dlk +1 ; /* Increment #disagreement */
11 end
12 end
13 end
14 SN×N ← updateSim

using Equation (3)
(AN×N ,DN×N);

15 end

most reliable moderator (e.g., uk) who must have a greater reli-
ability than the receiver (i.e., λk > λl). The amount of updating
score ϕl is calculated by the similarity value between two users
and a discount factor for propagation steps (β = 0.5).

Function 3: Reliability Propagation
1 Function propagateReliability(Uq j )
2 for ∀ul ∈ (UN −Uq j ) do
3 maxΛ← λl ;
4 ϕl ← 0;
5 for ∀uk ∈Uq j do
6 if slk , 0 ; /* uk is directly connected to ul */
7 then
8 if (λk > maxΛ) then
9 maxΛ← λk;

10 ϕl ← β ×ϕk× slk;
11 end
12 end
13 end
14 φl ← φl +ϕl
15 end
16 ΛN ← updateReliability

using Equation 4
(ΦN ,α);

17 TN ← SN×N ×ΛN ; /* U pdate trustiness */
18 FN×N ← SN×N ×SN×N ; /* U pdate belie f */
19 end

The user score can turn into a very high positive point or
even a very low negative one. Therefore, to have a more
meaningful value in user decision weight calculation, this
score is then transformed to a reliability value λk for user uk in
the range between [−1,+1] using a logistic function as shown
in Equation (4):

λk =
2

1+ e−αφk
−1 (4)

Where 0 < α ≤ 1 and is selected based on the range of score
ΦN . Here, we set α = 0.001 so that the reliability score would
saturated for very high score (e.g., > 4000) as shown in Fig-
ure 7d. Then, users’ trustiness would be then updated using
the users’ reliability vector (ΛN) and similarity matrix (SN×N).
The trustiness of uk is the aggregation of all users’ similarity



Data INFS1 INFS2 NEUR1 NEUR2 COMP

Total Selected
Spot-
Checks

Total Selected
Spot-
Checks

Total Selected
Spot-
Checks

Total Selected
Spot-
Checks

Total Selected
Spot-
Checks

# Resources 2,095 911 112 1,835 921 41 4,875 4,851 145 2,803 2,757 303 1,195 926 93
# Students 389 378 250 385 372 127 532 526 304 535 527 483 300 295 191
# Moderations 6,991 4,321 508 6,182 4,158 165 28,152 28,071 728 30,642 30,512 3,131 5,330 4,882 386

Table 2: Data sets details.
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Figure 7: Scoring functions: (a) goodness of user ui’s decision
on resource q j, (b) discrimination of resource q j, (c) similarity
between user ul and user uk, and (d) reliability of user ui.

against uk multiple by their reliabilities (i.e., tk = ∑
N
i=1 sik×λi).

Notice that both similarity and reliability can be either positive
or negative. Hence, if a user’s similarity towards an unreliable
user is negative, the trustiness value increases.

Finally, we introduce a belief matrix with one step propagation
of the similarity matrix, following the work by [15]. The simi-
larity matrix is relatively sparse as students only interact with
a small group of their peers during the moderation process.
By propagating the similarity values, we can have an estima-
tion for unseen values. Consequently, using these estimated
values, we are able to predict the instructors’ “ belief” in all
students, including those who had no history of interactions
on the spot-checked resources. The belief of instructors on
user uk is essentially the aggregation of all users’ similarity
against uk multiple by their similarity with the instructor (i.e.,
fkN = ∑

N
i=1 sik× siN). These three values of λk, tk, and fkN

are used to determine the trustworthiness and to determine
whether user uk’s rating rk j can participate in quality inference
of resource q j as discussed earlier in Decision Making stage.
Due to this network’s dynamic nature and regular update of
users’ scores in the live system, the thresholds – τΛ,τT , and
τB – are also set dynamically as the current first quantile of
users’ reliability (λN), users’ trustiness (TN), and instructor’s
belief vector ({ f1N . . . fN′N}), respectively.

Instructors’ participation in the moderation process allows
us to have ground truth on the spot-checked resources’ in-
ferred quality. We use this opportunity to readjust students’

reliability scores by comparing their decisions to the expert’s
decision in the “Updating Scores” and “Reliability Propaga-
tion” procedures. We set the instructors’ reliability score as
the maximum to escalate the impact of the instructor decision
in the calculation of score and in the propagation of the reli-
ability. Therefore, for ϒ←Max(λi) in Function 2 that is set
as the maximum value of the reliability among the users who
moderated resource q j, we can have ϒ← 1 as the reliability
value of the instructor and also the discount factor would set
β = 1 which provides a more significant change in scores than
cases with student-moderators only where we set β = 0.5.

EVALUATION
Data Sets.The data sets used in this study are obtained from
piloting RiPPLE in five course offerings at The University of
Queensland. Two of the offerings (Introduction to Informa-
tion Systems (code: INFS1) and The Brain and Behavioural
Sciences (code: NEUR1)) ran in Semester 1, and three of the
offerings Introduction to Information Systems (code: INFS2),
The Brain and Behavioural Sciences (code: NEUR2), and Ar-
tificial intelligence (code: COMP) ran in Semester 2. Overall
information about the collected data from these offerings is
presented in Table 2. RiPPLE collects and records all submit-
ted moderations on student-generated resources. However, we
only use resources with at least 4 moderations for evaluation
as recommended by [26]. They suggest that the number of
annotations per instance should not be less than 3 annotations
per instance to conduct a fair comparison between proposed
methods and baselines.

RiPPLE flags and prioritises a limited number of resources
to be inspected by instructors based on several criteria such
as disagreements between student-moderators, questionable
distractors, reported resources, and low effective resource
based on student answers. The spot-checked resources are
then used to evaluate the presented methods’ performance in
the quality inference according to the instructors’ decisions.

Models for comparison
Baselines. We take a set of well-known aggregation ap-
proaches for reaching consensus as baselines including Ma-
jority Vote, Mean, Median, and Debiased Mean. These ap-
proaches only use the student provided numerical ratings (i.e.,
RN×M) and assume an equal weight for all moderators (i.e.,
WN ← 1). Majority vote, which is viewed as a fair approach
in categorical applications, takes the decision given by the
majority as the final result. Mean is the most simple aggregate
statistics that uses the average of all provided ratings as the
outcome (i.e., r̂ j = ∑

k
i=1 ri j/k where k is the number of moder-

ators). Median is another common simple aggregation method
that also considers all moderators equally and infers the qual-
ity of a resource as r̂ j = Median(r1 j, . . .rk j). Debiased Mean
remove the bias of users in decision making. First, the average



Model INFS1 INFS2 NEUR1 NEUR2 COMP
TPR TNR AUC ACC TPR TNR AUC ACC TPR TNR AUC ACC TPR TNR AUC ACC TPR TNR AUC ACC

Majority Vote 0.96 0.15 0.56 0.68 0.94 0.04 0.49 0.44 0.99 0.06 0.53 0.68 1.00 0.02 0.51 0.63 0.98 0.02 0.50 0.52
Mean 0.97 0.21 0.59 0.71 0.94 0.09 0.52 0.46 1.00 0.08 0.54 0.70 1.00 0.03 0.52 0.63 1.00 0.02 0.51 0.53
Median 0.99 0.15 0.57 0.70 0.94 0.04 0.49 0.44 1.00 0.08 0.54 0.70 1.00 0.00 0.50 0.62 1.00 0.00 0.50 0.52
Debiased Mean 0.95 0.15 0.55 0.67 0.94 0.13 0.54 0.49 1.00 0.08 0.54 0.70 1.00 0.03 0.51 0.63 0.98 0.07 0.52 0.54
Current Model 0.95 0.33 0.64 0.73 0.94 0.17 0.56 0.51 1.00 0.10 0.55 0.70 0.99 0.03 0.51 0.63 0.96 0.13 0.55 0.56
Graph Model 0.81 0.62 0.71 0.74 0.94 0.57 0.75 0.73 0.88 0.52 0.70 0.76 0.94 0.43 0.68 0.75 0.90 0.22 0.56 0.57

Table 3: Comparing the inferred quality using baselines and graph models with the instructors’ spot-checks evaluated with True
Positive Rate (TPR), True Negative Rate (TNR), Area Under the Curve (AUC), and Accuracy (ACC) for moderation decisions.

decision rating of user ui is computed as r̄i. Next, the aver-
age decision rating of all users is computed as r̄ = ∑

N
i=1 r̄i/N.

Then, the bias of user ui is computed as bi = r̄i− r̄. Finally, the
quality of a resource in debiased mean is inferred by removing
moderators’ bias as r̂ j = ∑

k
i=1(ri j−bi)/k.

Current model. A weighted aggregation approach based on
the well-adopted Expectation-Maximisation (EM) technique
is currently applied in our educational system. The resources’
quality and the users’ reliability are highly dependant on each
other where knowing the true value of one set can be used to es-
timate the other one. However, in the absence of ground truth,
the current model uses the following steps to infer the quality
of the resource and adjust the reliability of the users based on
the EM method. First, the scores of all students set to an initial
value such as ρ . Next, in the expectation step, the quality of a
resource r̂ j is inferred based on the provided ratings r1 j, . . .rk j
on q j and the current values of students’ score φ1, . . .φk as
their decision weights (i.e., r̂ j = ∑

k
i=1 φi× ri j/∑

k
i=1 φi). Then,

in the maximisation step, the users’ scores φ1, . . .φk are up-
dated based on the “goodness” of their rating ri j in comparison
with the inferred quality r̂ j using the height of a Gaussian func-
tion with centre 0 as ϕi =(2κe−(ri j−r̂ j)

2/(2σ2)−κ)/(2σ
√

2π),
φi = φi +ϕi, where 1≤ κ ≤ ρ and the variance 0≤ σ ≤ 1 ad-
just the value of reward/punishment that a user can achieve as
a score (here, we set ρ = 1000, κ = 100 and σ = 0.7 across
all courses).

Results and Analysis
Table 3 shows the performance of the presented consensus
inference models by comparing the inferred to the expert rat-
ings. We report True Positive Rate (TPR), True Negative Rate
(TNR), Area Under the Curve (AUC), and Accuracy (ACC)
for the binary classification task where a resource is automat-
ically moderated as acceptable or unacceptable to be shown
to students, which is one of the main goals of this work. We
compared baseline models, the current implemented model in
RiPPLE based on EM, and proposed network-based models.
In both current and graph models, we first calculate the cur-
rent decision weights of students based on their gained scores
from previous moderations to infer the quality of the resource
under moderation. This inferred quality is separately recorded
for evaluation and comparison with instructors’ spot-checks.
Then, if an instructor also moderated the resource (e.g., q j),
the inferred quality would be set to the instructor’s decision
(i.e., r̂ j = rN j) and students’ scores (ΦN) would be updated
based on this decision.

The baseline approaches (Majority Voting, Mean, Median, and
Debiased Mean) assume an equal contribution to all student
provided numerical ratings for moderation. These approaches
are commonly used in various applications; however, based
on our analysis and the reported results, they do not work well
for reaching a robust consensus on peer-reviews of student-
generated content. Results in Table 3 indicate that Baselines
have the highest value of TPRs (INFS1: 0.99, INFS2: 0.94, and
NEUR1-2&COMP: 1.00) and the lowest value of TNRs (INFS1:
0.15, INFS2: 0.04, NEUR1: 0.06, and NEUR2 & COMP: 0.00) across
all courses. Taken together, these results suggest that most
students tend to overrate, resulting in approval of low-quality
content in the baseline models mentioned above.

The results obtained from the currently implemented consen-
sus approach in RiPPLE indicate some improvements in the
TNR values in almost all courses ( INFS1: 0.33, INFS2: 0.17,
NEUR1: 0.10, and COMP: 0.13) except for (NEUR2 0.03). This
method reweights students’ contribution using the EM method
based on how well their rating aligns with the inferred rating.
However, with a slight decline in TPR values, no significant
and consistent improvements were observed in most cases
in terms of AUC values compared to the best in baselines
(INFS1: 0.59↗ 0.64, INFS2: 0.54↗ 0.56, NEUR1: 0.54↗ 0.55, NEUR2:
0.52↘ 0.51, and COMP: 0.52↗ 0.55). Therefore, these findings in-
dicate that the current model is still biased toward the majority
who overrate.

The use of the graph model substantially improves the TNRs
(INFS1: 0.62, INFS2: 0.57, NEUR1: 0.52, NEUR2: 0.43, and COMP:
0.22) across all courses. Updating scores and propagating
reliabilities using instructors’ decision in the graph model
provides additional improvements in the results in terms of
AUC scores compared to the current model (INFS1: 0.64↗
0.71, INFS2: 0.56↗ 0.75, NEUR1: 0.55↗ 0.70, NEUR2: 0.51↗ 0.68,
and COMP: 0.55↗ 0.56). This finding is promising, suggesting
that the graph-based trust propagation model works well by
identifying the reliable and trustworthy student-moderators
with a little help of instructors’ intervention and supervision.

Table 3 also demonstrates that commonly used metrics such
as accuracy (ACC) or error rate are not sensitive to long-tail
distributions. For example, the median model has TNR values
of 0.08 and 0.00 in NEUR1 and NEUR2, respectively, which
means it fails to identify poor-quality resources. However, the
accuracy metric (ACC) shows a performance of 0.70 and 0.62
for the median model in NEUR1 and NEUR2, respectively,
which results from a higher proportion of the positive class
(approved resources) and might be misleading. In contrast,
AUC shows the performance of 0.54 and 0.50 for the me-
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Figure 8: Outcomes of a baseline model (Majority Vote), the current model (EM) and the graph model in NEUR1

dian model in NEUR1 and NEUR2, respectively, which better
shows the median model’s failure in identifying the poor- from
high-quality resources. Despite the insensitivity of the ACC
in our case as skewed data, the graph model also outperforms
all other presented models in terms of accuracy.

Figure 8 offers further insights on applying different models
on NEUR1. From the left, the first plot illustrates students’
ratings on resources that have been moderated by an instructor.
From 145 spot-checks in this course, instructors have approved
97 resources and have rejected the remaining 48. These re-
sources have also received 728 moderations from students. For
the approved resources by the instructor, 446 students have
submitted moderation where 427' 96% have also approved
(i.e., TP). For the rejected resources by the instructors, 282
students have submitted moderation where only 57 ' 20%
have rejected (i.e., TN). Therefore, it can be concluded that
while the majority of learners usually provides high ratings, a
minority (i.e., reliable student moderators) correctly identified
the poor-quality resources. The second plot demonstrates the
outcome at the resource level for the majority vote model. It
illustrates that this model has approved more than 97% of the
resources in this evaluation set. This outcome suggests that
judgments from a minority of wise moderators are often over-
turned by decisions from a majority of less-wise or careless
moderators in the baseline models using basic aggregation
approaches. The current model has moderately improved the
outcomes. It has increased the decision weights for the reliable
students and has reduced the value of inferred quality for the
rejected resources compared to the majority vote. However,
no significant improvement has been achieved, and the current
model still fails to discern the poor-quality resources.

In contrast, the graph model, as shown on the right side of
Figure 8, was able to better identify those minority of wise
moderators by using reliability propagation. This model pro-
vides a higher agreement between instructors’ ratings and the
inferred quality from students’ ratings. The TN cases have
been significantly increased from 5 in the current model to 25
in the graph model at the expense of moderately increasing
FNs in a few borderline cases. Employing the trust propaga-
tion approach has addressed the issue of reliability inference in
the presence of a prevalent answer (high positive rating here)
which causes long-tail distributed data and biased users. This

approach proved to be able to discern high- and low-quality
moderations well, as results indicate. While the results have
improved, we have 23 FP cases that have not been identified
as poor-quality resources. Interestingly, in 19 of these cases,
all student-moderators had approved a resource that had been
rejected by instructors. Given that no student-moderator had
rejected these resources, any consensus approach would have
failed to classify these resources correctly. This result, aligned
with previous studies’ findings [40, 13], suggests an evident
need for instructors to provide oversight during the moderation
process.

CONCLUSION AND FUTURE WORK
Employing peer review has been demonstrated to be a viable
approach for evaluating the quality of student generated con-
tent. However, it poses the problem of “truth inference” as
students evaluations may be inaccurate. Reflecting on peer
evaluations conducted in a system called RiPPLE, we showed
that identifying low quality resources based on peer review
is a challenging task as many of the students tend to be easy
graders. This paper presented a graph-based trust propagation
approach that simultaneously infers the quality of the student-
generated content and estimates the reliability of moderators
at scale. Results shows that updating users’ reliability using
the proposed trust propagation approach improves the perfor-
mance over baseline models and the current model used in the
system. A close inspection of the results demonstrate that the
model was particularly successful in identifying low quality
resources.

There are several interesting directions to pursue in future
work. In the current study, the evaluation was conducted based
on existing offline data sets. One potential future direction is
to conduct the experiment in a live setting where we can inves-
tigate the impact of sharing students’ reliability scores with
them on their behaviour. Another potential future direction
is to use trust propagation towards recommending resources
for spot-checking. The current spot-checking mechanism is
mostly concerned about the quality of resources rather than the
reliability of users. We can update the spot checking recom-
mendation algorithm to consider recommending resources that
would propagate the maximum amounts of reliability within
the network.
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