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Abstract

The effective design and delivery of assessments in
a wide variety of evolving educational environments re-
mains a challenging problem. Proposals have included
the use of learning dashboards, peer learning environ-
ments, and grading support systems; these embrace vi-
sualisations to summarise and communicate results. In
an on-going project, the investigation of graph based
visualisation models for assessment design and deliv-
ery has yielded promising results. Here, an alterna-
tive graph foundation, a two-weighted hypergraph, is
considered to represent the assessment material (e.g.,
questions) and their explicit mapping to one or more
learning objective topics. The visualisation approach
considers the hypergraph as a collection of levels; the
content of these levels can be customized and presented
according to user preferences. A case study on gener-
ating hypergraph models using commonly available as-
sessment data and a flexible visualisation approach us-
ing historical data from an introductory programming
course is presented.

1 Introduction

Assessment remains a core educational activity, even
as environments continue to evolve beyond the tradi-
tional classroom. Blended, flipped, and massive open
on-line courses are supported by a wide range of assess-
ment tools and techniques [1]. Instructors have many
options for assessing the required topics of a course
in a particular offering [2]. More traditional mate-
rial includes homework assignments and examinations;
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emerging material includes question repositories and
games. This rich variety also introduces new challenges
to educational stakeholders (e.g., (e.g., students, in-
structors, administrators, education researchers) with
respect to evaluating the coverage of assessment mate-
rial and communicating achievements. Students may
find it challenging to infer their strengths and weak-
nesses with respect to the topics and their relation-
ships, which can impede their studies. Outside a class-
room program administrators, course designers, course
co-ordinators, and researchers also face challenges. Ad-
ministrators find it challenging to compare the content
and difficulty of formal assessments as well as students’
outcomes across different offerings of a course. Course
designers and co-ordinators find it challenging to en-
sure the required topics and their relationships (e.g.
questions with a combination of topics a, b and c) have
been assessed. Educational researchers need to com-
pare the achievement results between control and ex-
perimental groups.

To address these assessment challenges, a new field,
known as “Learning Dashboards” has emerged, which
embraces learning analytics and educational data min-
ing [3, 4, 5]. These dashboards help users to interac-
tively explore and understand data sets through anal-
ysis and visualisation techniques. A variety of tradi-
tional plots and charts have been adopted (e.g., pie,
box, histogram, radial) to visualise the achievements
of students. The research typically considers indepen-
dent (stand-alone) topics. Additional discussion on the
related work is presented in Section 3.

As part of an on-going project, the authors of this
paper have explored a collection of topic dependency
models (TDMs) for assessment in which the relation-
ships among topics are considered [6, 7]. The TDMs
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use a two-weighted undirected graphs foundation to
formally represent and visualise a wide variety of as-
sessment data for one or more topics (i.e., topics and
their dependency relationship) to meet the needs of di-
verse stakeholders. The collection consists of a course
reference model (to establish the topics and dependen-
cies covered in a course), in addition to classroom mod-
els, both static and dynamic. As the work presented in
this article leverages these results, a background sec-
tion on the orignal TDM collection is presented in Sec-
tion 1.

In this work, an alternative graph foundation is ex-
plored for the TDM collection: a two weighted hyper-
graph. This graph can explicitly visualise the n-ary
topic coverage and achievement inherent in questions
(i.e., a question can assess 1:N topics). However, vi-
sualisations of their more general n-ary hyperedge re-
lationships may be more difficult to understand in the
broader community. Here, a method to generate a two-
weighted hypergraph model using commonly available
assessment data and a flexible, approach to address
the complexity of the graphs are presented. The vi-
sualisation approach is a multilevel filtering approach
that considers the hypergraph as a collection of levels.
The content of these levels can be customised and pre-
sented according to user preferences. For example, in-
stead of being presented with the complete hypergraph,
the users can select topics, achievement or number of
responses (e.g., maximum, minimum, range of values)
to view part of it. In addition, the visualisations of
the levels can be presented in either a cummulative
or accumulative mode. The new models are presented
using an illustrative example. A case study that illus-
trates how the model can be applied to provide insight
for instructors in presented. This study uses historical
data from a first-year undergraduate level offering of a
course on programming and engineering design at The
University of British Columbia.

2 Background: The Original TDM Col-
lection

A collection of TDMs has been presented in the au-
thor’s previous works [6, 7] to address some of the chal-
lenges stakeholders face that relate to the design, de-
livery and analysis of assessments. An overview of the
collection is presented in Figure 1.

Stakeholders and Scenarios of Use. The wide
variety of stakeholders interacting with these models
(e.g., students, instructors, and so on) are shown at the
top of the figure; they have roles inside and outside of
the classroom. The earlier results present a preliminary
scenario analysis that identifies 40 questions for the

stakeholders. For example, instructors interact with
the models to explore questions such as:

• What topics and their relationships do I need to
assess?

• What topics are covered each of the assessments?

• How well are the students performing on the top-
ics?

• How well are the students performing compared to
other (current or previous) classes?

• Who in the class may be at risk of failing the
course?

• How have all the topics and their relationships
been assessed?

• How much has the class improved over time on the
topics?

Input Data. The input assessment data, shown
on the left of Figure 1, includes results from current or
previous classes. The data can be from a variety of for-
mative (e.g., assignments) or summative (e.g., quizzes)
assessments; the course data includes a specification of
the course topics that need to be assessed.

Topic Dependency Models. Based on the re-
quests from stakeholders, the input data are selected
and transformed into visual models. As illustrated in
main block of Figure 1, the TDM collection consists
of two kinds of models: Course Assessment Reference
and Classroom Assessment Visualisation (static and
dynamic). The Reference model establishes and com-
municates the required topics and their relationships
for a course (e.g., a CS1 course is an introductory pro-
gramming course covering variables, branching, loops,
and so on). It provides a common foundation for all
sections of a course offered over time (e.g., CS1 Section
001 Term 1 2019 Instructor A. Smith). The reference
model helps to ensure the consistent coverage of topics
by different instructors, clearly communicate the scope
of the topics to students, and support administrative
activities related to monitoring learning objective out-
comes.

The Classroom Assessment Visualisation models
present assessment data within a class and support
comparisons of assessment data between classes at one
point in time (static) and over time (dynamic). The
assessment data are selectively visualised, e.g., for the
whole class, individual students, specific topics, and so
on. For example, the user can choose to visualise static
models, in a side-by-side comparison, for a specific as-
sessment (e.g., Assignment 3) for all of the students in
two classes. Alternatively, the user can choose to vi-
sualise dynamic models to explore the progression of a
class over time.
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Figure 1: Original TDM model collection: two-weighted undirected graph foundation [6].

Graph Foundation of the TDMs The Refer-
ence and Classroom Assessment Visualisation models
share a common graph foundation: a two-weighted
undirected graph. The vertices represent topics in a
course; the edges represent assessment material (e.g.,
questions) that address the topics the edges are related
to. The weights are reflected in the viusalisation using
a colour palette (achievement) and width (coverage).
As the graphs can only represent edges with up to two
vertices, questions involving three or more topics must
be redistributed in the models as combinations, in or-
der to visualise them.

3 Related Work

The learning analytics community continues to ac-
tively investigate approaches that support the explo-
ration of learning activities by different stakeholders.
With the increase in the use of educational technolo-
gies and the advancements in the areas of learning an-
alytics and educational data mining, a new field, com-
monly known as “Learning Dashboards” has emerged
to help make sense of data sets in learning and ed-

ucation [3, 4, 5]. A variety of visualisations such as
bar charts [8], pie charts [9], histograms [10], box plots
[11], radar graphs [12], and skill meters [13] have been
adopted to show the achievements of students for in-
dependent (stand-alone) topics. [3] presents a system-
atic literature review on the use of learning dashboards.
Based on the findings of this literature review, the use
of graph-based visualisations in learning dashboards
has not received much attention. In addition, a num-
ber of studies provide strong evidence that opening
the model to learners, leading to the notion of Open
Learner Models (OLMs) [14], can be effective in help-
ing students learn [15]. The OLMs commonly use a
set of individual topics as their underlying structure
for modeling learners’ knowledge state, which ignores
relationships among topics. An emerging new field ap-
plied methods from process mining and sequential data
mining to educational data [16] to facilitate better un-
derstanding of the educational process. Educational
process mining methods predominantly use graphs, but
their main focus in on using activity logs to visualise
students’ learning process in terms of the time, place,
path, pace of learning activities.
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Hypergraphs have been adopted as a foundation
for data analytics and visualisations in a wide variety
of domains including data warehousing, communica-
tion network analysis, geospatial metadata, and cellu-
lar biology networks. To support interactive queries
in data warehousing systems, a framework for develop-
ing dashboardscalled Dashboard-by-example has been
proposed [17]. This framework adopts hypergraph-
based techniques to transform dissimilar, heteroge-
neous data into a homogeneous knowledge space of
clusters and partitions. The framework is flexible, as
the hypergraph-guided data linkages support the ex-
ploration and aggregation of data from multiple per-
spectives. For the analysis of network traffic traces,
available in massive communication logs, a hypergraph
based visualisation is proposed in [18]. The network
traffic visualization approach utilises a frequent item
set mining method to identify interesting traffic pat-
terns in the large amount of data. The patterns are
visualised as hypergraphs with explicit, multi-attribute
relationships. A framework to comprehensively address
all of the available geospatial metadata standards (i.e.,
documents) is proposed in [19]. Geospatial metadata
describe geographic digital data resources such as earth
imagery, geospatial databases and catalogues, and Ge-
ographic Information System files. The framework in-
tegrates hypergraphs and topic maps, representing the
elements and their dependency relationships. The po-
tential for adopting hypergraphs in the domain of cellu-
lar biology is introduced in [20]; recently, for example,
[21] proposes a framework that adopts hypergraphs and
associated hypergraphs to describe, analyse, and iden-
tify metabolic network alignments at the full genome
level. These alignments are used to discover important
similarities and differences between distinct molecular
networks: they reveal mappings between components
(topological, biological functional) across different net-
works.

To the best of our knowledge, a modeling and visual-
isation approach based on hypergraphs for educational
assessment is not available at this time. The TDMMH

helps to address this gap in the literature.

4. Methodology

This section define the graph foundation (hyper-
graph, level), scenarios of use, and an illustrative ex-
ample. The graph generation and visualisation algo-
rithm are presented in Section 5, using the example.
A case study demonstrating TDMMHs based on data
collected from the final exam of a large introductory
course on programming is presented in Section 6.

4.1 Hypergraph Foundation of the TDMMH

In this section, the formal definition for a two-
weighted hypergraph and the concept of a level are
presented.

Definition 1 A two-weighted, undirected hypergraph
G = (V,H), where V is the set of vertices representing
the topics, and H is the set of hyperedges. A hyperedge
h ∈ H is represented as h = (C, c1, c2), where C is the
subset of the vertices being connected, and c1 and c2
represent the two weighted values for an edge. An edge
involving only one node represents a self-loop.

In this work, the nodes are used represent topics;
the hyperedges represent the assessment material that
covers the topics. The weight c1 represents the num-
ber of learning objects that are tagged with the topics
for the hyperedge; and c2 represents the represents the
performance (e.g., achievement) on these learning ob-
jects. A simple example of a TDMMH visualisation is
illustrated in Figure 2. There are four topics in this
example (A, B, C, and D); each topic is represented
by a node. Topic B and Topic C both have a 1-ary
hyperedge (i.e., a self loop). For Topic B, the edge
has a dark pink colour and a wide width, reflecting
the poor average performance (33%) on the questions
answered and the large number of responses. The hy-
peredge for Topic C is a medium green colour and has a
medium width; this represents the good average perfor-
mance (75%) and a moderate number of responses to
questions. A 2-ary hyperedge exists between Topics A
and D. This edge is dark green and thin, in represent-
ing the excellent performance (100%) on the related
questions and a small number of responses. A 3-ary
hyperedge exists between Topics A, B, and D. This
edge is a brownish pink colour and has a moderate
weight, which represents the moderate average perfor-
mance (50%) and a moderate number of responses to
questions on these three topics.

The concept of a level is used in this work to support
the visualisation. For example, in the simple example
above, there are three levels. Level1 is a subset of the
hyperedges with one vertex (i.e., h1, h2), Level2 is a
subset of the hyperedges with two vertices (i.e., h3),
and Level3 is a subset of the hyperedges with three
vertices (i.e., h4). More generally, Leveli is the subset
of hyperedges involving i vertices.

4.2 Scenarios of Use

As with the orignal TDM models, the users can se-
lect the assessment data of interest. For example, they
may need to explore data for formative or summative
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Figure 2: Example of a two-weighted hypergraph: def-
inition and visualisation

assessments (e.g., one or more assignments or examina-
tions); the data can be from one or more classes. Here,
scenarios of use include filtering by topic(s), or con-
straints involving achievement or coverage. Additional
filters can be added in a straightforward way. Cur-
rently, the scenarios focus on using the static models;
the reference and dynamic models for the TDMMH are
planned in future work. Two examples, derived from
the scenario analysis in [6], are described below.

Topics. How are the students doing on a specific
topic? One or more topics of interest can be selected
in order to identify topics that may need additional
attention. For example, an instructor can select one of
many topics covered in a course; the levels are filtered
to emphasize the topic(s) of interest.

Achievements. What topics have poor achieve-
ment? A constraint for visualising a particular achieve-
ment level can be selected. For example, an instruc-
tor can select to view the minimum achievement scores
over all topics in order to identify those that need ad-
ditional attention; the levels are filtered to emphasize
the achievement scores of interest.

The users can choose to combine filters. In other
words, they can filter the visualisations based on one
or more constraints such as selecting both a topic and
an achievement constraint, e.g. highest performance
involving topic T1. The results are presented on a level-
by-level basis (a level is described in Section 4.1.

When visualising the results, the user can also
choose to view the results in either the cummulative or
accumulative mode. In the accumulative mode, only
the results for one level are presented. In the cummu-
lative mode, the results up to and including the current
level of interest are presented.

4.3 Illustrative Example

An example based on six students, three formative
assignments (five questions per assignment), and six
topics has been defined by the authors. The following
constraints are considered for creating the illustrated
example:

• The questions must span a range of one to four
topics.

• There must be a range in the individual student
achievements in the responses (low to high scores).

• There must be a range in the number of responses
to the questions.

• There must be a range in the average scores for
the questions (0%-100%).

• Assessments on groups of topics demonstrate a
range of achievements (very poor to very strong);
one or more questions address the groups of topics.

• The multilevel visualisation algorithm with a list
of filtering options (e.g., selected topic(s), achieve-
ment, cumulative/accumulative mode) can be
clearly illustrated.

Table 1 presents a sample data set meeting these
constraints. As input to the TDMMH generation algo-
rithm, the data are formatted into two CSV files: (1) A
student-question-answer (SQA) file that contains the
student identifier, question identifier, and score (cor-
rect/incorrect), and (2) a question-topic (QT) file that
contains the question identifier and topics (i.e., tags) it
addresses.

5 Generating and Visualising TDMMH

In this section, the approach to generating and fil-
tering a TDMMH is presented. Section 5.1 presents
methods for generating the graph and Section 5.2 ex-
plores filtering mechanisms to address the complexity
of hypergraph visualisations.

5.1 Generating TDMMH

This section demonstrates how commonly available
input data (student achievements/grades for specific
questions and the mapping from the questions to the
course topics) are transformed into a TDMMH . High-
level code and notation are presented in Algorithm 1.
The algorithm consists of three high level steps: cre-
ate working dictionaries and matrices; define the TDM
graph elements (vertices and edges); and visualise (i.e.,
plot) the TDM graph.
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Q Topic List Student ID
S1 S2 S3 S4 S5 S6

Assignment 1
Q1 T1 - 1 - - 0 1
Q2 T3 1 1 1 1 1 1
Q3 T4 0 1 0 1 1 1
Q4 T1, T2 1 1 0 1 1 0
Q5 T1, T4 1 - - 0 1 0
Assignment 2
Q6 T4 0 0 1 0 0 1
Q7 T1, T4 - 0 1 1 0 0
Q8 T4, T5 0 1 0 0 0 1
Q9 T1, T4, T5 0 0 0 0 - 1
Q10 T1, T2 ,T4, T5 0 0 0 1 0 1
Assignment 3
Q11 T1, T4 1 - 0 1 - 1
Q12 T2, T6 0 0 0 0 0 0
Q13 T1, T2, T6 - - 1 1 - 1
Q14 T1, T2, T4, T5 - 0 1 0 0 1
Q15 T2, T4, T5, T6 - 0 0 1 1 1

Table 1: Illustrative example: questions, topic lists,
and student responses. The value 1 indicates the ques-
tion is answered correctly; 0 indicates it is answered
incorrectly; and - indicates it is not attempted.

The first six steps of Algorithm 1 transform the data
in the SQA.csv and QT.csv files into working dictionar-
ies and matrices. In Steps 1, 2, and 3 of the algorithm,
three dictionaries are created, QDict, SDict, TDict,
to map array and matrix indices to question, student,
and topic identifiers. In Steps 4, 5, and 6, three working
matrices are created: T, A, and R. The information on
topics assigned to each question is represented in ma-
trix T , in which tij = 0 indicates that question i is not
tagged with topic j and tij = 1 indicates that question
i is tagged with topic j. The correctness of the an-
swers provided by the users are represented in matrix
A, where aij = 0 indicates that user i has answered
question i incorrectly, aij = 1 indicates that user u has
answered question i correctly, and aij = n indicates
that user u has not attempted question i. Matrix R
is used to keep track of attempted questions, where
rij = 0 if user i has not attempted question i and one
otherwise.

Steps 7 and 8 in Algorithm 1 establish the graph
vertices and hyperedges. V List stores the list of the
vertices of the TDMMH graph and HList stores the
list of its hyperedges. The coverage and competency
associated with an edge are both computed using T ,
A and R within the ComputeH function. The cover-
age (Cov) associated with a hyperedge among a set of
vertices V = vj , ..., vk is computed using the following
formula:

Algorithm 1 Generating a TDMMH

Require: SQA.CSV , QT.CSV , filters
Create dictionaries and matrices for efficient
indexing

1: QDict← CreateQDict(SQA.CSV )
2: SDict← CreateSDict(SQA.CSV )
3: TDict← CreateTDict(QT.CSV )
4: T ← CreateT (QT.CSV,QDict, TDict)
5: A← CreateA(SQA.CSV, SDict,QDict)
6: D ← CreateD(SQA.CSV, SDict,QDict)

Compute the Graph Elements: Vertices and
Edges

7: V List← ComputeV (TDict)
8: HList← ComputeH(T,A,D, TDict)

Create and visualise the Graph
9: TDMStatic← CreateTDM(V List,HList)

10: V isualise(TDMStatic, filters)

Cov(V ) =
∑

i∈QDict

tij × ...× tik
∑

u∈SDict

dui (1)

The outer summation loops through all of the ques-
tions. A question i contributes to cov(V ) only if it is
tagged with exactly the topics that are included in V
(i.e., tij× ...× tik = 1). For example, a question tagged
with topics (T1, T2, T3) attempted by nine learners con-
tributes 9

1+0 = 9 to the coverage of Cov({T1, T2, T3}).
The achievement (Achv) associated with a hyper-

edge between a set of vertices V = vj , ..., vk is com-
puted using the following formula:

Achv(V ) =

∑
i∈QDict tij × ...× tik

∑
u∈SDict aui

Cov(V )
(2)

A question i contributes to Achv(V ) only if it is
tagged with exactly the topics that are included in
V (i.e., tij × ... × tik = 1). The extent of the contribu-
tion is determined by the the number of learners who
have correctly answered the question, which is com-
puted by

∑
u∈SDict aui. The numerator of this formula

computes the number of times questions tagged with
exactly topics that are included in V . Dividing this
number by Cov(V ) produces the probability of cor-
rectly answering questions on topics in V . Note that
Cov and Achv of self-loops can also be computed via
the same two formulas by using V = vj .

Figure 3 represents the data which are stored in dic-
tionaries QDict, SDict and TDict and matrices T , A
and R.
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Figure 3: The data represented in Table 1 are organized
into two input files: SQA.csv and QT.csv. The data
are loaded, transformed into three dictionaries: QDict,
SDict and TDict (Steps 1, 2 and 3 in Algorithm 1).
The dictionaries and the input files are used to create
three working matrices: T, A, and R (Steps 4, 5 and 6
in Algorithm 1). These matrices are used to create the
TDMMH model.

Steps 9 and 10 of Algorithm 1 create and visualise
the graph. Figure 4 illustrates the resulting model,
without any filtering. It has six vertices as the ques-
tions in this data set are tagged with six topics: T1, T2,
T3, T4, T5, and T6. The coverage of the hyperedges are
computed using Formula 1. For example, the hyper-
edge with id h5 has coverage of 13, which consists of
contributions of 4 from question 5, 5 from question 7,
and 4 from question 11. The achievement of the hyper-
edges are computed using Formula 2. For example the
achievement of the hyperedge with id h5 is computed
as 7

13 = 0.54.

5.2 Visualising TDMMH (static model)

In Step 10 of Algorithm 1, the TDMMH can be
presented in either whole or part according to the fil-
ters the user selects. To address the complexity of
the model, the topology of the graph is used; the il-
lustrative example (with six nodes) provides six lev-

Figure 4: Complete TDMMH for the data set provided
in Table 1 using Algorithm 1 (no filtering). The exam-
ple does not have questions involving five or six topics.

els. Table 2 illustrates the levels before any filtering is
done. For example, Level1 is the subset of hyperedges
{h1, h2, h3}.

If the user does not select any filters, then all levels
are displayed by default, including all topics, achieve-
ments, and coverage of the learning objects as illus-
trated in Figure 4. Alternatively, the selected filters
are applied to each level. The selected elements are
presented using the original TDM colour palette; other
items are greyed out. Level′i ← filter(Leveli, t, a, n),
where the parameters t, a, and n represent optional
constraints for the topics, achievements, and number
of learning objects. For example, if a user requests to
filter with respect to topic T1, the resulting filtered lev-
els are illustrated in Table 2. In this case, for example,
the filtered Level′i is the subset of hyperedges {h1}, as
only h1 contains Ti.

After the levels are filtered, they are ready to be vi-
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Figure 5: Multilevel visualisation: one topic is selected (T1) as a filter (accumulative mode).

Level Level Level’
ID Membership Membership (T1)

Level1 {h1, h2, h3} {h1}
Level2 {h4, h5, h6, h7} {h4, h5}
Level3 {h8, h9} {h8, h9}
Level4 {h10, h11} {h10}
Level5 ∅ ∅
Level6 ∅ ∅

Table 2: Levels in the illustrative example graph: be-
fore and after filtering (e.g., topic T1).

sualised. The user can choose to present them in either
an accumulative or cumulative mode. In the accumu-
lative mode, only the hyperedges for one level are pre-
sented at a time. The first four levels are illustrated in
5 in the accumulative mode. In the cummulative mode,
the presentation for a level includes the hyperedges for
the current levels and the previous levels. A prelimi-
nary layout algorithm is used in the prototype tool at
this time; however, adopting a more effective proposal
from the literature is planned in the next step.

This straightforward visualisation example based on
filtering the levels for one topic can be extended to
combinations of one or more topics, achievements, and
coverage. The options to highlight part of the graph,
in either cummulative or accumulative mode, provide
a flexible approach for users. However, to easily ac-
cess more detailed information (e.g., exploring spe-
cific achievement values for hyperedges), additional re-
search is needed to extend the TDMMH visualisations.

6 Case Study

This section presents a case study that demonstrate
the applications of multilevel hypergraph TDMs. This
case study is based on data collected from a first-
year undergraduate level offering of a course on pro-
gramming and engineering design at The University of

British Columbia. This offering of the course had 377
students and was held during the Fall of 2016. The
course covers many topics that are generally included
in an introductory course on programming and engi-
neering design in 8 modules: number conversions, pro-
gramming fundamentals, conditionals, loops, file I/O,
functions, arrays, strings, and DAQ systems. Func-
tions, strings and DAQ systems received two weeks of
lecture time; all of the other modules received roughly
one week of lecture time.

We use data collected from the final exam of the
course, which is captured captured via the Gradescope
platform [22], a system for the on-line assessment of
handwritten exams, are used. The final exam of this of-
fering had 17 independent sub-questions that formed a
total of eight main questions. The questions are tagged
using 20 concept-level topics, defined by the instruc-
tors, based on the 8 modules that are covered in this
course. For example, the Strings Module is further
decomposed into three topics: String-Length, String-
Copy, and String-Compare, providing a finer level of
granularity.

Figure 6 shows the hypergraph TDM for this exam.
It indicates that the exam adequately covered all of
the modules of the course and that all modules except
Conversions (including the Hex and Octal topics) were
highly connected to one another. The exam included
questions that had only a single topic (e.g., h1 on Hex),
two topics (e.g., h14 on While loops and DAQ-write),
three topics (e.g., h9 on Printing, File output and 2D
arrays) and four topics (e.g., h17 on For loops, 1D ar-
rays, Write functions and String-compare).

The further decomposition to concept-level tags pro-
vides insights which might have not been possible to
gauge using module-level tags. For example it shows
that students did well on questions on String-Copy and
String-Compare but not so well on questions on String-
Length. As another example, further decomposition
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Figure 6: TDMMH for the final exam of an offering of a first-year course on programming and engineering design

of items from the Arrays Module shows that students
were able to do well in 1D-Arrays, but did quite poorly
on questions on 2D-Arrays.

Figure 7 applies the cumulative topic-based level4
filter on the “Write Functions” concept. This filter
will enable instructors to determine the coverage and
performance of students on a particular concept. The
TDM in the given example demonstrates that write
function has been extensively covered in the exam.
The performance of students on questions that cov-
ered write functions in combination with 1D arrays,
String-copy and String-compare have been quite good
while their performance on questions that covered write
functions in combination with 2D arrays, Casting and
Printing has not been as good.

Figure 7: Cumulative topic-based level4 filter on
“Write Functions” is selected.

Figure 8 applies the cumulative achievement level3
filter with “≤ 60”. This filter enables instructors to

determine gaps in students’ knowledge. The TDMMH

in the given example demonstrates questions concept
combinations that the students have performed poorly
on in this exam. Interestingly, all of the hyperedges
that include Printing are selected in this filter. This
may suggest that there is a general misunderstanding
or misconception about how print statements are used.

Figure 8: Cumulative achievement level3 filter with
“≤ 60” is selected.

7 Conclusions and Future Work

The preliminary results of investigating an alterna-
tive graph foundation, a two-weighted hypergraph, for
a collection of TDMs are reported in this work; the
new model is called TDMMH . The generation and
visualisation of TDMMH are presented. The genera-
tion of the model utilises matrix computations, which
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makes it scalable and efficient. The visualisation helps
to address the complexity of a hypergraph through a
flexible, multilevel approach. A case study that illus-
trates how TDMMH can be applied to provide insight
in the context of a large university course is presented.

A number of directions are planned for the next
steps in this research, including exploring the TDMMH

dynamic model, refining the prototype tool, and addi-
tional validation studies, in particular a user study to
compare the strengths and limitations of the original
TDM and TDMMH . In addition, highly interactive
3D visualisations of the TDMMH may also be of great
value to the diverse stakeholders who are involved with
the design and delivery of assessments.
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