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1 INTRODUCTION

Adaptive educational systems (AES) make use of data about students, learning process, and learning products to adapt
the level or type of instruction for each student. Commonly, this adaptivity takes the form of selecting items from a
large repository of learning items to match the current learning ability of a student [18]. To do so, adaptive educational
systems rely heavily on a component called learner model that captures an abstract representation of a student’s ability
level based on their performance and interactions with the educational system [8].

The use of a Rating System (RS) and in particular Elo rating system has been widely studied for modelling students’
learning in AESs [2, 15, 20, 21]. In the educational setting, the Elo rating system is used as a learner model to conduct a
paired comparison between students and learning items as two opponents competing with each other [21, 28]. The
advantage of using Elo-based learner models is that despite being heuristic, they are simple, fast, order-sensitive, and
robust in modelling students and items [20]. These benefits make Elo-based models desirable for the development of
adaptive educational systems where it is required to update students’ proficiency level upon administration of each
learning item in real time [28]. In addition, Elo-based learner models provide explicit and interpretable estimations
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about students’ knowledge states and difficulty of learning items [3], which makes them easy to be opened to students
and other stakeholders based on the principles of open learner models (OLMs) [4].

Elo-based models, as well as many of the conventional learner models (e.g., Bayesian Knowledge Tracing (BKT)
[7], Item Response Theory (IRT) [26], Additive Factor Model (AFM) [5], and Performance Factor Analysis (PFA) [19]),
are not sensitive to the lag time between two consecutive interactions of a student within the system. Implicitly, this
characteristic assumes that students do not learn or forget knowledge between two consecutive interactions. This
assumption may be reasonable in the context of adaptive testing, where a student takes the test in one sitting within
a short time frame without receiving feedback on their answers. However, it seems less reasonable in the context of
adaptive learning systems where a student could have enhanced their knowledge proficiency by engaging with learning
materials and exercises outside of the system or that their knowledge proficiency may have declined due forgetting
[10]. As a result, many of the conventional learner models are extended to become sensitive to lag time between two
consecutive interactions of a student within the system (e.g., [6, 17, 23]).

The goal of the present article is to overcome the presented limitations of the existing Elo-based learner models
by proposing a new learner model called MV-Glicko that is built based on the principles of Glicko rating system
[12]. Similar to Elo-based learner models, MV-Glicko estimates the students’ knowledge states and item difficulties
by conducting a paired comparison between students and items. However, the distinction between MV-Glicko and its
Elo-based counterparts is that MV-Glicko does not assume that the estimation about a student’s knowledge state is
deterministic with regards to time if the student does not engage with the system. Instead, when updating a student’s
knowledge state, MV-Glicko takes into account the lag time between consecutive interactions of the student within the
system and models this lag time as a parameter that captures the confidence of the model about its current inferred
estimations. Formally, instead of using a single number for reporting the ratings, as is the case in Elo-based learner
models, MV-Glicko reports a student’s rating (knowledge state) by a 95% confidence interval. A longer lag time between
two consecutive interactions of a student leads to an increase in the range of the confidence interval, suggesting that
the model has become less confident about its inferred rating for the student. To evaluate the model, we examine the
predictive performance of MV-Glicko on three public data sets. Results suggest that MV-Glicko outperforms other
conventional learner models in predicting students’ performance. To evaluate the MV-Glicko in the context of adaptive
learning, we examine its predictive performance on three data sets obtained from an authentic online adaptive learning
platform. Results demonstrate that MV-Glicko provides superior predictive performance compared to conventional
models and is suitable to be embedded in online adaptive educational systems. Finally, we conduct a sensitivity analysis
to investigate the impact of different parameters of the model on its overall performance.

2 RELATEDWORK

Conventional approaches. Two conventional approaches have been widely studied for the development of learner
models. The first common approach is Knowledge Tracing (KT) that uses the sequences of students’ interaction with
the system to model the evolution of their knowledge state over time and predict their future sequence of responses [6].
The leading model in this category is Bayesian Knowledge Tracing (BKT) [7] that uses a Hidden Markov Model (HMM)
to capture students’ knowledge state through a set of binary variables that indicate whether a knowledge state has
been mastered by a student or not. One important way in which BKT has been extended more recently is to replace the
Hidden Markov model with a recurrent neural network (RNNs), often referred to as deep knowledge tracing (DKT) [22].
DKT that captures complex representations of students’ knowledge state using long short-term memory model (LMST)
showed promising results in predicting students’ performance compared to BKT [22]. The second common approach
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for learner modelling is Factor Analysis that in contrast to KT approaches, does not take the sequence of observations
into account; rather, it uses the collection of observations to learn a set of generalisable factors about data [27]. The
leading learner models in this category includes Item Response Theory (IRT) [26] and its extensions Additive Factor
Model (AFM) [5], and Performance Factor Analysis (PFA) [19]. Neither of KT or Factor Analysis approaches, however,
can be easily implemented into online adaptive educational systems as they generally require pre-calibration on big
samples of data and ongoing addition of new students and new learning items to the system necessitates nontrivial
continuous calibration of model parameters [20].

Rating Systems. Using a rating system and in particular, the Elo rating system is known as an effective alternative
learner modelling approach to the aforementioned conventional models. The Elo rating system is originally developed
for rating chess players and is developed based on the paired comparison of data about two chess players when they
compete against each other [28]. As a learner model in educational settings, the Elo rating system conducts a similar
paired comparison between students and learning items. This means that when a student attempts an item, the model
considers them as two rivals competing with each other. The initial implementation of Elo as a learner model known as
standard Elo-based model is similar to IRT, where a student’s mastery and the item difficulty are modelled using two
global parameters [21]. Two important extensions over the standard Elo-based model are the multivariate Elo-based
model [9] and hierarchical model [21], where instead of using a global knowledge parameter for students, they use an
overlay model which estimates the competency of a student in each different concept using a separate parameter. More
recently, [2] proposed an extension over these two models called M-Elo that models students and items in the presence
of items with multiple concepts. A common feature across all Elo-based learner models is that they are not sensitive to
the lag time between the interactions of a student. So, they implicitly assume that no learning or forgetting happens for
the student during that time interval. Glicko rating system [11] is another variant of rating systems originally proposed
to overcome the limitations of the Elo rating system in the context of chess games and other tournaments. In particular,
unlike Elo rating system that computes a single rating for each player, Glicko rating system computes both a rating
indicating the mastery of the player and a rating deviation (RD) representing the confidence of the model about the
estimated rating for the player[12]. Glicko then uses the rating and the RD to report a 95% confidence interval about
the player’s mastery. A high value of RD means less confidence in the inferred rating and suggests that either the player
has participated in a small number of games or that the player does not compete frequently and the lag time between
consecutive games of the player is high [11]. Despite its potential advantages, the use of Glicko-based learner model
has received little attention. Recently, [24] proposed using a Glicko-based learner model for modelling the mastery
of students studying within the Coursera platform. However, similar to the standard Elo-based learner model, their
proposed model considers only one global parameter for estimating a student’s knowledge state on the entire domain
and that their model is also not sensitive to the lag time between a student’s interactions.

3 GLICKO-BASED LEARNER MODELLING

In this section, we present our proposed Glicko-based learner model, MV-Glicko. In what follows, Section 3.1 introduces
mathematical notation and a formal definition of the problem under investigation, and Section 3.2 introduces MV-Glicko.

3.1 Notations, Assumptions, and Problem formulation

Notations Let 𝑆𝑁 = {𝑠1 . . . 𝑠𝑁 } represents a set of students who are enrolled in a course in an AES, where 𝑠𝑛 refers
to an arbitrary student. Each course offered by the AES covers a set of concepts Δ𝐶 = {𝛿1 . . . 𝛿𝐶 }, referred to as the
domain model, where 𝛿𝑐 presents an arbitrary concept. In this work, the notion of a concept is based on taxonomies of
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knowledge components described by [16]. Furthermore, let 𝑄𝑀 = {𝑞1 . . . 𝑞𝑀 } denote the content model, representing a
repository of learning resources that are available to students within the AES, where 𝑞𝑚 refers to an arbitrary resource;
Let Ω𝑀×𝐶 denote the existing association between each learning resource and concepts of the course, where 𝜔𝑚𝑐 is 1/𝑓
if item 𝑞𝑚 is tagged with 𝑓 concepts including 𝛿𝑐 , and 0 otherwise. Let 𝑡 index the timestamp of a student interaction
with the AES. Since we only require the time difference between two interactions, timestamps are presumed to be
recorded as the fraction of days passed since the first interaction of the student with the course within the AES. Finally,
let’s assume that the AES records the interaction log for 𝑠𝑛 as 𝑖𝑡 = (𝑠𝑛, 𝑞𝑚, 𝑡, 𝑎𝑛𝑚), where 𝑎𝑛𝑚 indicates the correctness
of the student 𝑠𝑛 attempt on item 𝑞𝑚 at timestamp 𝑡 ∈ R+ (𝑎𝑛𝑚 = 1 indicates that at timestamp 𝑡 student 𝑠𝑛 has
answered item 𝑞𝑚 correctly, and 𝑎𝑛𝑚 = 0 indicates that student 𝑠𝑛 has answered item 𝑞𝑚 incorrectly). As such, 𝑠𝑛 ’s
interaction log can be modelled as a sequence 𝐿 = {𝑖1, 𝑖2, ..., 𝑖𝑡 }.

Problem Statement. Given a sequence of students’ interaction 𝐿, our aim is to infer (1) a learner model that
estimates each student 𝑠𝑛 ’s knowledge state on each concept 𝛿𝑐 and (2) the difficulty level of each item 𝑞𝑚 .

3.2 Multivariate Glicko-based Learner Model (MV-Glicko)

MV-Glicko is derived from the Glicko rating system [12] and extend it to be used in the educational settings. In particular,
the Glicko rating system considers one parameter to model the mastery of each player. In the educational setting, this
implies that having a homogeneous domain where, for each student, one global parameter indicates the proficiency
level of the student on the entire domain. However, in practice, the domain of an AES is generally made-up of different
knowledge components, and each item that exists in the repository of the system might be associated with one or
multiple of those knowledge components. Accordingly, MV-Glicko modifies the formulation of the Glicko rating system
to fit it for the context of AESs, where there exist multiple concepts in the domain, and each learning item might be
associated with multiple knowledge components. To do so, MV-Glicko uses an overlay model which estimates the
competency of a student in each different concept using a separate parameter and a global parameter for modelling
the difficulty of each item. For each student 𝑠𝑛 on each concept 𝛿𝑙 , the estimation of MV-Glicko about the student’s
knowledge state is represented as a 95% confidence interval using two parameters: (1) 𝜆𝑛𝑙 , which represents 𝑠𝑛 ’s mean
rating on 𝛿𝑛 , and (2) 𝜎𝑛𝑙 , refereed to as the “rating deviation”, which represents the standard deviation that captures the
student’s estimated knowledge state by 95% confidence interval, where the lowest value in the interval indicates the
student’s rating minus twice the rating deviation, and the highest value is the student’s rating plus twice the rating
deviation. For example, if 𝜆𝑛𝑙 = 1600 and 𝜎𝑛𝑙 = 30, we would say that we’re 95% confident that the actual 𝑠𝑛 ’s rating
on 𝛿𝑛𝑙 lies between 1540 and 1660. Similarly, the difficulty of each arbitrary learning item 𝑞𝑚 computed by MV-Glicko
is composed of two parts: 𝑑𝑚 that represents the rating of 𝑞𝑚 which should be interpreted as the item difficulty, and (2)
𝜎𝑚 which represents the “rating deviation” of MV-Glicko about the difficulty of 𝑞𝑚 . A higher value of 𝜎𝑚 indicates that
𝑞𝑚 has been attempted only by a few students, and MV-Glicko is still not confident about the actual difficulty of the
learning item. Whenever 𝑠𝑛 attempts 𝑞𝑚 , MV-Glicko takes a four-step approach to update 𝑠𝑛 ’s knowledge state on each
concept associated with 𝑞𝑚 and updating the difficulty of 𝑞𝑚 .

Step 1: Determining rating deviation for the student. For each concept 𝛿𝑛 that 𝑞𝑚 is tagged with, MV-Glicko first
examines its previous estimations about the knowledge state of 𝑠𝑛 on 𝛿𝑛 . If it is the first time that 𝑠𝑛 encounters concept
𝛿𝑙 , MV-Glicko initialises the values of 𝜆𝑛𝑙 and 𝜎𝑛𝑙 . MV-Glicko assumes that before attempting any items associated
with 𝛿𝑙 by 𝑠𝑛 , their knowledge state on 𝛿𝑙 follows a normal distribution with mean 𝜆0 and variance 𝜎20 (𝑁 (𝜆0, 𝜎20 )).
Ideally, the value of 𝜆0 and 𝜎20 should be inferred from data by optimising the predictability of the outcome of students’
attempts on items. However, with the absence of any initial information about students in AESs, the initial rating
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and rating deviation for all students on all concepts are set to 1500 and 350, respectively, as the reasonable default
choices recommended by [11]. Otherwise, if 𝑠𝑛 has encountered 𝛿𝑛 previously, MV-Glicko updates its belief about the
knowledge state of 𝑠𝑛 on 𝛿𝑙 by measuring the lag time between the current interaction and the 𝑠𝑛 ’s previous interaction
that was associated with 𝛿𝑙 . MV-Glicko assumes that if time passes and 𝑠𝑛 does not practice any items associated with
concept 𝛿𝑙 , its existing estimation about 𝑠𝑛 ’s knowledge state on 𝛿𝑙 is less reliable. This, in turn, is reflected in the
estimated rating deviation for the student on that concept (𝜎𝑛𝑙 ) increasing. Assuming that at the previous interaction
which we denote with timestamp 𝑡0, 𝑠𝑛 ’s knowledge state is distributed as 𝑁 (𝜆𝑛𝑙 , 𝜎2𝑛𝑙 ), with the passage of 𝑡 units of
time without any attempts from 𝑠𝑛 on 𝛿𝑙 , the student’s knowledge state distribution on 𝛿𝑛 is updated as 𝑁 (𝜆𝑛𝑙 , 𝜎2𝑛𝑙 +𝜈

2𝑡)
, where 𝜈2 is the increase in variance per unit of time and needs to be inferred from the data. As recommended by [11],
𝜎𝑛𝑙 =𝑚𝑖𝑛(

√
(𝜎2
𝑛𝑙 (𝑡0 )

+ 𝜈2𝑡), 350) is used by MV-Glicko to update the value of rating deviation with the passage of time.
The reason for setting 350 as the maximum value of rating deviation is to ensure that the updated rating deviation is
never bigger than the initial rating deviation for students when they had no attempts on the system.

Step 2: Determining rating deviation for the item: Similar to Step 1, for learning item 𝑞𝑚 , MV-Glicko examines if 𝑞𝑚
has been previously encountered by students. If it is the first time 𝑞𝑚 is being attempted by a student, MV-Glicko
initialises the values of 𝑑𝑚 and 𝜎𝑚 . MV-Glicko assumes that the initial difficulty of each learning item follows a normal
distribution with mean 𝑑0 and variance 𝜎20 (𝑁 (𝑑0, 𝜎20 )). Ideally, the value of 𝑑0 and 𝜎20 should be inferred from data, but
similar to the explanations provided in Step 1, the values of 𝑑0 and 𝜎20 are initialised to 1500 and 350 for all items as
reasonable default choices. Otherwise, MV-Glicko restores its previous estimations about 𝑑𝑚 and 𝜎𝑚 to be used in Step
3 and Step 4. MV-Glicko does not update the rating deviation in the estimated difficulty of items with the passage of
time, as the estimations of MV-Glicko about the difficulty of the learning items are not expected to become less reliable
when students do not attempt the item for a while.

Step 3: Updating the student’s knowledge states. After MV-Glicko restores and rectifies its prior estimations about 𝑠𝑛
and 𝑞𝑚 as it was explained in Step 1 and Step 2, it uses the outcome of 𝑠𝑛 ’s attempt on 𝑞𝑚 to update its estimations
about the student’s ratings and the difficulty of 𝑞𝑚 . In what follows, 𝑎𝑛𝑚 indicates the outcome of 𝑠𝑛 ’s attempt on 𝑞𝑚
which equals to 1 if the student answers 𝑞𝑚 correctly, and 0 otherwise. To update its estimations about 𝑠𝑛 ’s rating on
each concept 𝛿𝑙 associated with 𝑞𝑚 , MV-Glicko uses the following formulation:

𝜆𝑛𝑙 :=

{
𝜆𝑛𝑙 +𝐾 · (1 − 𝐸 (𝑎𝑛𝑚 = 1 |𝜆𝑛𝑙 , 𝑑𝑚, 𝜎𝑚)), if the answer is correct (𝑎𝑛𝑚 = 1)
𝜆𝑛𝑙 +𝐾 · 𝜂 · (−𝐸 (𝑎𝑛𝑚 = 1 |𝜆𝑛𝑙 , 𝑑𝑚, 𝜎𝑚)), if the answer was incorrect (𝑎𝑛𝑚 = 0)

, 𝜎𝑛𝑙 :=

√
( 1

𝜎2
𝑛𝑙

+ 1

𝛾2
𝑛𝑙

)−1 (1)

Where 𝜂 is a constant value to control the sensitivity of estimations based on the latest attempt if the answer was
incorrect, and

𝑞 =
ln 10

400
, 𝑔 (𝜎𝑚) = 1√

1 + 3𝑞2𝜎2
𝑚/𝜋2

, 𝐸 (𝑎𝑛𝑚 = 1 |𝜆𝑛𝑙 , 𝑑𝑚, 𝜎𝑚) = 1

1 + 10−𝑔 (𝜎𝑚 ) (𝜆𝑛𝑙 −𝑑𝑚 )/400

𝛾2
𝑛𝑙 = (𝑞2 · (𝑔 (𝜎𝑚))2 · 𝐸 (𝑎𝑛𝑚 = 1 |𝜆𝑛𝑙 , 𝑑𝑚, 𝜎𝑚) · (1 − 𝐸 (𝑎𝑛𝑚 = 1 |𝜆𝑛𝑙 , 𝑑𝑚, 𝜎𝑚)))−1, 𝐾 =𝑚𝑎𝑥 ( 𝑞

1/𝜎2
𝑛𝑙

+ 1/𝛾2
𝑛𝑙

· 𝑔 (𝜎𝑚), 𝐾 ′)

Where 𝐾 ′ is a constant determining a lower boundary for the amount of updates to the student’s rating. The reason
for considering a lower boundary is that when a student frequently interacts with the AES, MV-Glicko becomes more
certain about the student’s knowledge state, so, the changes to the student’s rating becomes very slow. This has shown
to discourage students’ engagement with the AES, particularly, if the learner model is opened to students based on the
principals of open learner models [2]. By setting a minimum threshold for 𝐾 , we ensure that the student’s rating is
updated appreciably, even if the student interacts very frequently with the AES. In addition, 𝐸 (𝑎𝑛𝑚 = 1|𝜆𝑛𝑙 , 𝑑𝑚, 𝜎𝑚)
represents the expected outcome of the student’s attempt on 𝑞𝑚 from the student’s perspective.
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Step 4: Updating the difficulty of the learning item. To update the difficulty of 𝑞𝑚 , the model first computes 𝜆𝑛𝑚 =∑𝐿
𝑙=1

𝜆𝑛𝑙 × 𝜔𝑚𝑙 and 𝜎𝑛𝑚 =
∑𝐿
𝑙=1

𝜎𝑛𝑙 × 𝜔𝑚𝑙 to estimate 𝑠𝑛 ’s average competency on the concepts associated with 𝑞𝑚 ,
and the average of their corresponding rating deviations, respectively. It then updates the difficulty of 𝑞𝑚 and its
corresponding rating deviation using the following formulas:

𝑑𝑚 := 𝑑𝑚 + 𝑞

1/𝜎2
𝑚 + 1/𝛾2

𝑚

· 𝑔 (𝜎𝑛𝑚) · (𝑎𝑜𝑛𝑚 − 𝐸 (𝑎𝑜𝑛𝑚 = 1 |𝜆𝑛𝑚, 𝑑𝑚, 𝜎𝑛𝑚)), 𝜎𝑚 :=

√
( 1

𝜎2
𝑚

+ 1

𝛾2
𝑚

)−1 (2)

Where 𝑎𝑜𝑛𝑚 is the result of the attempt from 𝑞𝑚 perspective, i.e., it is 0 if the student answers the item correctly and
is 1 if the student answers it incorrectly, and

𝑔 (𝜎𝑛𝑚) = 1√
1 + 3𝑞2𝜎2

𝑛𝑚/𝜋2
, 𝐸 (𝑎𝑜𝑛𝑚 = 1 |𝑑𝑚, 𝜆𝑛𝑚, 𝜎𝑛𝑚) = 1

1 + 10−𝑔 (𝜎𝑛𝑚 ) (𝑑𝑚−𝜆𝑛𝑚 )/400

𝛾2
𝑚 = (𝑞2 · (𝑔 (𝜎𝑛𝑚))2 · 𝐸 (𝑎𝑜𝑛𝑚 = 1 |𝑑𝑚, 𝜆𝑛𝑚, 𝜎𝑛𝑚) · (1 − 𝐸 (𝑎𝑜𝑛𝑚 = 1 |𝑑𝑚, 𝜆𝑛𝑚, 𝜎𝑛𝑚)))−1

It should be noted that the updates to the students’ knowledge states (Equation 1) and the difficulty of items
(Equation 2) are performed simultaneously. Please refer to [12] for more information about the derivation of the closed
form computations used in Step 3 and Step 4 for updating the knowledge state of students and difficulty of items.

4 EVALUATION

We evaluate MV-Glicko using two sets of experiments. In the first experiment, we evaluate the predictive performance
of MV-Glicko by comparing it with five conventional learner models on three public educational data sets, and three
data sets obtained from an authentic AES called RiPPLE. We then conduct a set of experiments to investigate the
sensitivity of MV-Glicko to the different values of the model hyper-parameters. In what follows, Section 4.1 introduces
the public data sets and RiPPLE data sets, Section 4.2 explains the experimental setup, Section 4.3 presents the results of
the conducted predictive performance analysis, and finally, Section 4.4 presents the results of the conducted sensitivity
analysis. The code for MV-Glicko is implemented in Python and is available on GitHub [Blinded Citation] for replicating
the results.

4.1 Data Sets

4.1.1 Public Data Sets. We use three publicly available educational data sets: ‘Algebra I 2005-2006’ (Alg2005), ‘Algebra
I 2006-2007’ (Alg2006) and ‘Bridge to Algebra 2006-2007’ (BAlg2006). These data sets are obtained from Carnegie
Learning’s Cognitive Tutor and were made available as “Development” sets in KDD Cup 2010 [25]. As it is recommended
by the organisers of the KDD Cup 2010 challenge, in our experiments, we use the concatenation of the problem and the
“Step ID” for identifying each learning item. We use the train/test split provided by the challenge organisers, discard
interactions related to items that are not explicitly associated with any knowledge components, and discard students
whose interactions with the system is less than 5. Finally, we use the combination of user, item, and timestamp to
remove the duplicated rows from the data sets. More information about the data sets is provided in Table 1.

4.1.2 RiPPLE Data Sets. We use three data sets obtained from an AES called RiPPLE which recommends learning items
to students based on their estimated knowledge states from a pool of learning items [13, 14]. Each learning item in
the repository is associated with one or more concepts (KC) covered in the course. The three data sets used for the
experiments are (1) Introduction to Information Systems (InfoSys), (2) The Brain and Behavioural Sciences (Neuro),
and (3) Biological Fate of Drugs (Pharm). Each of these three data sets is obtained from using RiPPLE in the course for
the duration of 13 weeks of the semester. For the experiments, we discarded students whose interaction with RiPPLE
was less than 5. These data sets do not incorporate any duplicated rows. To split the data into train set and test set, we
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Table 1. Data sets
Type Data Set Students KC Items multi-KC1 Interactions
Public Alg2005 572 112 173,650 59,083 609,971

Alg2006 1,649 713 554,039 31,891 1,824,580
BAlg2006 1,141 493 129,553 1,212 1,822,680

RiPPLE InfoSys 422 7 2008 313 47,266
Neuro 530 21 4,807 379 59,950
Pharm 111 14 641 24 18,158

sorted the data chronologically, and for each student, their first 80% of interactions on a concept were used as the train
set, and the remaining 20% were used as the test set. Overall information about these data sets are provided in Table 1.

4.2 Experimental Setting

Models for comparison. We compare the predictive performance of MV-Glicko to IRT, PFA, and AFM that are explained
previously. For this comparison, we used the KTM framework [27] for the implementation of IRT, PFA, and AFM. We
also compare the predictive performance of MV-Glicko to two Elo-based learner models: standard Elo and M-Elo [2].
As commonly used in evaluating the predictive performance of learner models, in these experiments, we report the
area under the curve (AUC), root mean squared error (RMSE) and accuracy (ACC) for each of the learner models.

Implementation considerations. An important consideration about MV-Glicko is that it calibrates the difficulty of
items on the fly. This means that the difficulty of one item for a student that attempts it early in the semester would be
different from another student that solves this item later in the semester when the model has a well-established estimate
of the item difficulty [24]. In the long run, this may cause differences in the calculations of students’ knowledge states
who have performed exactly the same within the system. Accordingly, as recommended by [24], to provide reliable
estimates of students’ knowledge states, we run MV-Glicko twice. First, we run MV-Glicko to get a well-established
estimate of difficulties. In the second run, the item difficulties are held fixed, students’ knowledge states are initialised,
and MV-Glicko is executed again to update students’ knowledge states. The reported results for MV-Glicko are based
on the second run.We follow the same approach for the other rating system based models, i.e., Elo and M-Elo.

Hyper-parameters values. A grid search was conducted to specify the hyper-parameter 𝜈 that determines the increase
of rating deviations in students’ rating as the result of the passage of time and 𝜂 that controls the impact of an incorrect
answer on the updates to the students’ rating for MV-Glicko. Across all experiments on public data sets, the value of 𝜈
was set to 50, and 𝜂 was set to 0.7. For RiPPLE data sets, the value of 𝜈 was set to 20, and the value of 𝜂 was set to 0.7.
For Elo and M-Elo, the value of hyper-parameter 𝛾 was set to 1.8, and the value of hyper-parameter 𝛽 was set to 0.05.
These hyper-parameter values comes from [2], but as reported by [2] and [21], Elo and M-Elo are not sensitive to the
changes in these parameters. The other learner models did not have any specific hyper-parameters that requires tuning.

4.3 Predictive Performance Analysis

4.3.1 Predictive Performance on Public Data Sets. Table 2 compares the predictive performance of each of the models
mentioned above. As it is presented, on all three data sets, MV-Glicko outperforms other conventional models based on
the three evaluation criteria. The predictive performance of MV-Glicko is followed by M-Elo that is ranked as the second-
best performing model. In comparison to M-Elo, MV-Glicko provides +0.0380 AUC improvement on Alg2005, +0.0909
AUC improvement on Alg2006, and +0.0410 AUC improvement on BAlg2006. The ranking of the best performing
models suggests that, despite the simplicity and ease of implementation, the models developed using rating system
approach are robust in predictive performance and can be considered as practical models for the implementation of
real-world AESs. Among the other models, IRT and Elo provide almost similar performance on the three data sets and
1multi-KC in Table 1 indicates the number of items tagged with two or more knowledge components (KCs)
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Table 2. AUC, ACC, and RMSE for public data sets. ↑ (↓) shows the higher (lower) is the better.
Model Alg2005 Alg2006 BAlg2006

AUC ↑ ACC ↑ RMSE ↓ AUC ↑ ACC ↑ RMSE↓ AUC ↑ ACC ↑ RMSE ↓
IRT 0.7736 0.8154 0.3779 0.6649 0.6171 0.4865 0.7322 0.8236 0.3638
AFM 0.6924 0.7912 0.4180 0.5761 0.6047 0.4519 0.6567 0.8249 0.3943
PFA 0.7499 0.8054 0.3796 0.6894 0.8128 0.3792 0.7393 0.8315 0.3545
Elo 0.7795 0.8127 0.3652 0.7272 0.8084 0.3769 0.7384 0.8303 0.3558
M-Elo 0.7983 0.8249 0.3679 0.7318 0.7702 0.3898 0.7727 0.8288 0.3679
MV-Glicko 0.8363 0.8402 0.3465 0.8227 0.8516 0.3504 0.8137 0.8549 0.3309

Table 3. AUC, ACC, and RMSE for RiPPLE data sets). ↑ (↓) shows the higher (lower) is the better.
Model InfoSys Neuro Pharm

AUC ↑ ACC ↑ RMSE ↓ AUC ↑ ACC ↑ RMSE↓ AUC ↑ ACC ↑ RMSE ↓
IRT 0.7299 0.7203 0.4302 0.7249 0.7168 0.4329 0.7556 0.81840 0.3703
AFM 0.6419 0.7026 0.4474 0.6308 0.6808 0.4561 0.6484 0.8096 0.3847
PFA 0.6272 0.6981 0.4517 0.5937 0.6839 0.4615 0.6329 0.8128 0.3826
Elo 0.7252 0.7258 0.4312 0.7324 0.7203 0.4317 0.7467 0.8194 0.3609
M-Elo 0.7277 0.7184 0.4307 0.7301 0.7184 0.4412 0.7536 0.8166 0.3648
MV-Glicko 0.7695 0.7433 0.4176 0.7705 0.7472 0.4158 0.7852 0.8221 0.3607

are ranked as the third-best model. The similarity between IRT and Elo performance is predictable as they both use the
same form of equations for the prediction of a correct response to an item by a student, and their difference lies in the
procedure they follow to estimate the model parameters: IRT generally relies on maximum likelihood estimation, but
Elo follows a heuristic approach for this task [20]. As it was also demonstrated by previous studies [27], PFA and AFM
provide a lower predictive performance compared with IRT, except for BAlg2006 that very slightly PFA outperforms
IRT and Elo. As [27] elaborates, this might be because PFA and AFM only consider the concept-level biases. However,
when the number of items is significant compared with the number of concepts, it is intuitive to imagine that the items
come from various levels of difficulty. So, learner models that take into account the difficulty of items can provide a
higher predictive performance compared with the learner models that ignore item biases.
4.3.2 Predictive Performance on RiPPLE Data Sets. Table 3 compares the predictive performance of each of the afore-
mentioned learner models on RiPPLE data sets. Similar to the public data sets, on all RiPPLE data sets, MV-Glicko
outperforms other conventional models based on the three evaluation criteria. In contrast to the case of public data sets
where M-Elo was the second-best model, for these data sets, Elo, IRT, and M-Elo represent very similar performance.
This can be explained by the fact that in RiPPLE data sets, the domain consists of a limited number of concepts (7 for
InfoSys, 21 for Neuro, and 14 for Pharm), suggesting an almost homogeneous domain. As such, M-Elo that accounts
for students’ concept-level knowledge states does not provide superior predictive performance compared to Elo and
IRT that utilise only one global parameter for estimating each student’s knowledge state. However, the value of any
learner model that accounts for students’ concept-level knowledge states goes beyond providing superior predictive
performance, and there are other advantages associated with them. For example, the additional concept-level parameters
of these models provide insight into the characteristics of the domain and learning processes, which in turn can be
utilised to lead the adaptive behaviour of the AES [2, 21]. Also, if the learner model is opened based on the principles of
OLMs, it may deliver further insights into the course-level and student-level proficiency and gaps, which can be used
by instructors to provide personalised feedback to students or to rectify the design of items, while also it may yield
meta-cognitive advantages for students including increased motivation and trust in the adaptive behaviour of the AES.

4.4 Sensitivity Analysis

4.4.1 Impact of 𝜈 on the predictive performance of MV-Glicko. As it is explained in Section 3.2, the parameter 𝜈 controls
the reliability of MV-Glicko estimates about students’ ratings with the passage of time. Larger values of 𝜈 indicate
a more significant change in the reliability of MV-Glicko estimates with the passage of time and 𝜈 = 0 makes the
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Fig. 1. Impact of different values of 𝜈 Fig. 2. Impact of different values of 𝜂

reliability of the MV-Glicko estimates independent of the passage of time. In order to gain more insight on the impact
of 𝜈 on the performance of MV-Glicko, we select “Alg2005” as a sample of public data sets and “InfoSys” as a sample of
RiPPLE data sets and compare the AUC of MV-Glicko for different values of 𝜈 in both data sets. Fig. 1-a, and Fig. 1-b
compares the AUC of MV-Glicko for “Alg2005” and “InfoSys” data sets, respectively. As shown in Fig. 1-a for “Alg2005”,
as 𝜈 is increased from 0, the performance of MV-Glicko shows improvement and provides its best performance at
𝜈 = 50. Beyond 𝜈 = 50, the performance of MV-Glicko shows slight degradation from its maximum value. For “InfoSys”
data set, by increasing the the value of 𝜈 from 0, the performance of MV-Glicko shows improvement and gets to its
best performance at 𝜈 = 20. However, the improvement in AUC for “Alg2005” is more considerable than “InfoSys”
(+0.0675 for “Alg2005” vs. +0064 for “InfoSys”). This might be explained by the fact that with almost a similar average
of the study period for students in both courses (109.9 days for “Alg2005” and 91 days for “InfoSys”), the number of
knowledge components associated with learning items of “Alg2005” were huge compared with “InfoSys” (112 knowledge
components for VS. “7” for “InfoSys”). As such the average of the time interval between two interactions associated
with the same knowledge component for students in “InfoSys” was significantly smaller compared with “Alg2005”
(3.36 days for “Alg2005” VS. 1.4 for “InfoSys”), which intrinsically reduces the impact of 𝜈 on the updates of students’
knowledge states. The findings of this experiment suggest that the choice of 𝜈 is very much data-set dependent, and it
is required to be carefully selected.
4.4.2 Impact of 𝜂 on the predictive performance of MV-Glicko. As explained in Section 3.2, the parameter 𝜂 controls the
amount of penalty applied to the MV-Glicko estimates of students’ ratings if they submit a wrong answer for an item.
In MV-Glicko formulation, 𝜂 = 0 means that no penalty is applied to students’ ratings and 𝜂 = 1 means that a wrong
answer is penalised as much as submitting a correct answer is rewarded. There are two important justifications for
considering different constants for penalising and rewarding students’ knowledge states: (1) regardless of the outcome,
acquisition of knowledge happens when practising a learning item [21], (2) penalising a wrong submission as much
as rewarding a correct submission might discourage students’ engagement with the AES [2]. Here, to gain insight on
the impact of 𝜂 on the performance of MV-Glicko, we again select “Alg2005” and “InfoSys” as a sample data sets and
compare the AUC of MV-Glicko for different values of 𝜂 ranging from 0 to 1 with the step value of 0.2. As it is shown
in Fig. 2, for both data sets, setting the value of 𝜂 in the range of 0 − 0.5 provides a considerably lower performance
compared with bigger values of 𝜂. On the other hand, MV-Glicko provides its best performance for the values of 𝜂 in
the range of 0.6 − 0.8. For 𝜂 = 1, the predictive performance of MV-Glicko is slightly degraded compared with 𝜂 = 0.8.

5 CONCLUSIONS AND FUTUREWORKS

In this paper, we presented a new learner model called Multi-Concept Glicko rating system (MV-Glicko) for tracking
students’ knowledge state and estimating the difficulty of learning items within adaptive educational systems. Unlike
state-of-the-art Elo-based learner models that are not generally sensitive to lag time between consecutive interactions of
a system, MV-Glicko is sensitive to the lag time and models it as a parameter that captures the confidence of the model
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about the estimated mastery for the student. The results of our experiments on three public data sets and three data
sets obtained from an authentic adaptive learning platform called RiPPLE provide empirical evidence that MV-Glicko
outperforms other conventional models in predicting students’ performance. There are several interesting directions to
be followed in the future. Given that MV-Glicko can be easily adjusted for different situations, one interesting direction
would be to follow the recent works of [1] and [29] to extend the proposed model for the learning systems where
students may engage with a diverse set of graded or non-graded learning activities in the system such as attempting
multiple choice questions or open-ended questions, watching video lectures, participating in discussions, or engaging
with other activities in the system such as creating learning items or moderating learning items. In additions, discussions
are underway with the development team of RiPPLE for integrating the proposed learner model into their platform so
that we can practically evaluate its fit in a real-time setting and conduct live user studies.
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