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ABSTRACT
In the past few years, many competing learning models have
been proposed for improving the accuracy of predicting stu-
dent performance (PSP). A well-studied subclass of algo-
rithms focused on PSP uses temporal models to determine
the knowledge state of users. Bayesian Knowledge Tracing
(BKT), as one of the leading models in this subclass, uses
Hidden Markov Models to capture the student knowledge
states. An emerging new subclass of algorithms focused
on PSP uses collaborative filtering, which is used primar-
ily by recommender systems. Matrix Factorization (MF), a
leading model in this subclass, can be presented as a rating
prediction problem where students, tasks, and performance
information are mapped to users, items and ratings, respec-
tively. BKT and MF complement each other’s strengths
and limitations quite effectively. In particular, BKT relies
on four skill-specific parameters for learning the sequential
behavior of learners on each concept, but it does not cap-
ture the similarities among users and items. In contrast,
MF uses latent factors to exploit the similarities among users
and items from learner-item performance, but disregards any
temporal effect in modeling student learning. In this paper,
we aim to investigate the effect of combining variations of
BKT and MF using a proposed algorithm that exploits the
power of MF in modeling the implicit similarities among
learners and items while using the explicit parametrization
of BKT towards improving PSP. Our results on four bench-
mark educational datasets show that our approach outper-
forms the base classes as well as traditional techniques such
as linear regression, logistic regression and Neural Networks
for combining BKT and MF.

1. INTRODUCTION
Heavily studied in the community of educational data min-
ing (EDM), the problem of predicting student performance
(PSP) uses observations from students’ behavior to find a
model that predicts their future performance on unseen learn-
ing tasks [3].

Temporal models have been used extensively for PSP and
determining the knowledge state of users. They rely on the
sequential behavior of learners to model their learning. In
these models, the students’ performance on the next task is
predicted using their performance on their prior test items
[11] and a Q-matrix [1], which is a binary matrix that shows
the relationship between test items and underlying concepts.
One of the leading temporal models for PSP is Bayesian
Knowledge Tracing (BKT) [3]. BKT uses Hidden Markov

Models for capturing students’ knowledge states as a set of
binary variables. While BKT has received significant atten-
tion and improvement since it was first proposed, it is unable
to capture similarities among learners or items, which has
shown to be an important aspect in improving PSP [14].

Applying collaborative filtering (CF) techniques is another
promising approach for PSP. One of the most successful col-
laborative filtering techniques is the factorization method
based on the matrix or tensor decomposition [2]. As shown
by [8], applying matrix factorization (MF) can lead to im-
proved prediction results in PSP compared to traditional
PSP methods. MF predicts student performance by extract-
ing similarities among learners and items from the learner-
item performance data in form of latent factors. MF creates
two matrices with latent factors for each of learners and
items, so there is no need to explicitly encode Q-matrix or
other parameters such as Slip and Guess [14]. In addition,
MF is very effective in dealing with insufficient data as it
effectively captures and uses the similarities among learn-
ers and items [14]. The main limitation of MF is its lack
of temporal effect as MF discards any temporal information
and learns the typical performance of students at one time.
Tensor Factorization overcomes this limitation; however, the
running time of tensor factorization is significantly longer
than MF [13], so in practice it is not used as frequently.

In this paper, we introduce a new approach called MBKT
that combines BKT and MF for the task of PSP. Traditional
models of combining where the predictions results of indi-
vidual algorithms are stacked, would require MF to learn an
implicit Q-matrix and latent factors incorporating Slip and
Guess from Scratch. To fully exploit the advantages of com-
bining BKT and MF, MBKT first utilizes BKT to capture
the temporal effects of the student model using an explicit
Q-matrix and parameters referring to Slip and Guess. This
information is then passed on to MF, which enables the la-
tent factor of MF to be tuned for capturing the similarities
between students and items.

Our results on four benchmark datasets obtained from the
DataShop platform [9] indicate that using MBKT for com-
bining various variations of BKT and MF for PSP outper-
forms the base models. We also show that MBKT outper-
forms traditional methods of combining the results of BKT
and MF using linear regression, logistic regression and Neu-
ral Networks.



2. RELATED WORK
The problem of combining different algorithms for improve-
ment in PSP has been well studied, with contradicting re-
sults. To evaluate the effect of ensemble techniques in Intel-
ligent Tutoring System (ITS), Baker et al. [4] selected nine
different PSP individual algorithms and combined them us-
ing logistic and linear regression on a genetic dataset. Their
experimental results showed that the accuracy of ensem-
bling is mixed and slightly different from the individual algo-
rithms. They argued that there may be three explanations
for this lack of improvement: (1) use of only simple models
of ensembling like linear and logistic regression, (2) use of
small datasets with a limited number of learner interactions,
and use of similar ensemble techniques on learning models
with slight differences. Pardos et al. [10] reported that en-
sembling on large enough datasets will lead to promising
improvements even with similar base models. However, in
practice, student models rely on small datasets for training,
so the results of ensemble techniques on large datasets can-
not be applied directly to ITS. More recently, [12] used a
knowledge graph representation to identify feasible activity
scopes, which were combined to predict student performance
on a learning objective in an ensemble.

Despite development of various ensembling algorithms on
PSP, to the best of our knowledge, collaborative filtering al-
gorithms have not been used in conjunction with knowledge
tracing algorithms in the previous studies. Given that these
two complement each other on many fronts, we attempt to
extend the work of previous studies by primarily investigat-
ing the impact of combining MF as a leading collaborative
filtering algorithms with knowledge tracing for PSP.

3. COMBINING KNOWLEDGE TRACING
AND MATRIX FACTORIZATION

As mentioned in the previous sections, the characteristics of
BKT and MF complement each other quite well. BKT uti-
lizes the temporal behavior of learners to model their learn-
ing, while MF does so by capturing the similarities among
learners and items. In addition, BKT uses an explicit Q-
matrix to find the parameters related to learners including
their initial knowledge of skills, the mastery probability of
skills and Slip and Guess parameters. In contrast, MF uses
latent factors to implicitly learn a Q-matrix and the men-
tioned learner-related parameters. In this paper, we propose
a new model called MBKT for combining BKT [3] and MF
[14] for PSP that takes advantage of how these models com-
plement each other. We also considered two other variations
of BKT as described in [6]. The first variation, BKT-CGS
(Contextual Guess and Slip) model, is a variation in which
Guess and Slip properties are no longer learned per skill
but rather averaged across all skills and actions. The sec-
ond variation, BKT-PPS (Prior Per Student) assumes a per-
sonalized prior knowledge per student. In our experiments,
we used a simplified version of this model that divides stu-
dents to high-performance and low-performance groups as
proposed by [6]. Using MBKT, the predicted performance
of leaner u on item i is predicted as follows:

In the first step, the BKT model is utilized to predict student
performance using the following formula

OBKT
N×M = BKT (train set),

where oBKT
ui presents the computed probability of the BKT

model on user u answering item i correctly based on the last
opportunity of u on the topic related to i.

In the second step, the error of BKT predictions for the
learner-item performance is computed as follows

EBKT
N×M = Otrain

N×M −OBKT
N×M ,

where otrainui is 1 if user u has answered question i correctly
in their final attempt, 0 if user u has answered question i
incorrectly and Null otherwise. eBKT

ui is the computed error
of the BKT model for user u on question i.

In the third step, the error of BKT predictions for the learner-
item performance is passed on to MF as input to predict the
BKT prediction error using the following formula

OMF
N×M = MF (EBKT

N×M ),

where oMF
ui presents the approximated error of the BKT

model on the final opportunity of user u on answering ques-
tion i.

Finally, the outcome of MBKT is computed by summing the
BKT predictions and predicted error of MF for BKT using

OMBKT
N×M = OBKT

N×M + OMF
N×M ,

where oMBKT
ui represents the predicted performance of user

u on question i, which is computed by MBKT.

Discussion. Using the traditional models of combining
where the prediction results of individual algorithms are
stacked, MF needs to learn the Q-matrix and latent fac-
tors from scratch using a random initialization. This makes
the combination unlikely to fully exploit the advantage of
combining BKT as a temporal model and MF as a model
to draw out the similarities among learners and items. In
MBKT, instead of directly stacking the prediction results of
BKT and MF, BKT is utilized as the underlying algorithm
to predict student performance. Then the prediction error
of BKT is passed to MF as input to learn the BKT error.
Insinuating the outcome of the BKT model in the input of
MF enables MBKT to benefit from BKT’s explicit param-
eterization of the learners and items including the initial
knowledge, the mastery probability of skills and Slip and
Guess concepts. This, in turn, would enable the latent fac-
tors of MF to further focus on modeling similarities among
learners instead of trying to incorporate those parameters.

4. EXPERIMENTS
In this paper, we have discussed the benefits of combining
knowledge tracing and collaborative filtering algorithms for
PSP using MBKT. In this section, we aim to investigate
whether use of MBKT leads to improved PSP. Our evalua-
tion has been guided by the following two research questions.

• RQ1: Does MBKT improve the performance of PSP
compared to the base models?

• RQ2: Does MBKT improve the performance of PSP
compared to traditional techniques of stacking the re-
sults of BKT and MF?



For the experiments, we utilize LearnSphere [9] to find the
parameters of each BKT variation using 10 fold cross-validation
with Baum-Welch solver. To find the latent factors related
to each MF variation, we use MyMediaLite library [5] with
again 10 fold cross-validation.

4.1 Dataset
We use four data sets that are commonly used for PSP from
DataShop [9] in our evaluation. The total number of inter-
actions and students of each dataset is described in table 1.

Table 1: DataSets
Data Set #transactions #students

Geometry Area 6,778 59
Intelligent Writing Tutor 6,625 120

Writing 1 12,568 31
Writing 2 11,347 54

These are the results of learners’ interactions with the tutor-
ing system. As learners engage in the system, all interactions
such as their success or failure, time spent on each step, etc
are recorded. In these experiments, the unique interaction
between learners and system is the step, which belongs to
the hierarchy of unit, section and problem. KC defines dif-
ferent knowledge components for each step in the hierarchy
and Opportunity determines the total number of times that
a leaner has had on the KC related to the step. In these
datasets FirstAttempt is considered as the outcome of the
interaction: correct means success and incorrect and hint
show failure in that interaction.

4.2 Methods and Evaluation Metric
In our experiments, standard BKT (BKT) [3], Contextual-
ized Guess and Slip BKT (BKT-CGS) [10], Prior Per Stu-
dent BKT (BKT-PPS) [10], Standard Matrix Factorization
(MF) and Biased Matrix Factorization (BMF) as described
in [14] are used as the base methods.

The BKT and MF variations are combined using logistic re-
gression (LogReg), linear regression (LinReg), Neural Net-
works (NN) and MBKT.

Evaluation Metric. As commonly used in evaluating the
PSP algorithms, Root Mean Squared Error (RMSE) is uti-
lized to measure the error as follows:

RMSE =

√
1

|D|test
∑

(u,i)∈Dtest

(otestui − opredicedui )2,

where opredicedui is the predicted probability, otestui is the real
output of the instance and Dtest is the total number of in-
stances.

4.3 Results
Table 2 compares the RMSE of the model fit statistics re-
lated to each model for the task of PSP. In this table, Geo,
IntW, HW1, and HW2 refer to Geometry Area, Intelligent
Writing, Hand Writing 1, and Hand Writing 2 datasets re-
spectively. Based on the experimental results for all datasets,
there is no superiority among different BKT variations. Among
the two MF variations, BMF significantly outperforms MF
both as an individual algorithm and in combination with the

Table 2: RMSE of different learning models

Methods Geo IntW HW1 HW2
BKT 0.422 0.438 0.431 0.408
BKTPPS 0.421 0.422 0.412 0.392
BKTCGS 0.419 0.438 0.431 0.407
MF 0.427 0.453 0.433 0.396
BMF 0.418 0.433 0.407 0.390

BKT
-MF

LogReg 0.419 0.447 0.440 0.397
LinReg 0.424 0.447 0.450 0.397
NN 0.420 0.449 0.451 0.4
MBKT 0.428 0.44 0.432 0.395

BKT
-BMF

LogReg 0.417 0.421 0.406 0.391
LinReg 0.415 0.422 0.406 0.390
NN 0.420 0.421 0.406 0.391
MBKT 0.411 0.418 0.404 0.387

BKTPPS
-MF

LogReg 0.419 0.431 0.428 0.395
LinReg 0.424 0.427 0.433 0.395
NN 0.420 0.435 0.438 0.396
MBKT 0.424 0.423 0.417 0.391

BKTPPS
-BMF

LogReg 0.417 0.412 0.406 0.388
LinReg 0.416 0.411 0.407 0.390
NN 0.420 0.412 0.407 0.387
MBKT 0.415 0.411 0.406 0.386

BKTCGS
-MF

LogReg 0.420 0.447 0.44 0.397
LinReg 0.430 0.447 0.405 0.397
NN 0.421 0.449 0.452 0.4
MBKT 0.422 0.435 0.431 0.394

BKTCGS
-BMF

LogReg 0.416 0.421 0.406 0.391
LinReg 0.415 0.422 0.406 0.399
NN 0.421 0.421 0.406 0.391
MBKT 0.408 0.418 0.405 0.387

BKT variations. For instance, the average RMSE for BMF
and MF as an individual algorithm on all datasets is 0.412
and 0.427 respectively. A similar difference is observed in
the combinational models. So, for the rest of discussions,
we only concentrate on BMF as the collaborative filtering
algorithm.

RQ1. The results of cross-validated RMSE on all datasets
indicates that for all combinations of BKT variations and
BMF, MBKT achieves the best RMSE. As presented in Ta-
ble 2, MBKT outperforms its base models by ≈ 10%. To
evaluate the statistical significance of the improvements in
predictions, Ttest is used. For each dataset, we applied
Ttest on the RMSE of the best individual model and the
best combination of BKT and MF using MBKT. For all four
datasets, the difference between the results of the individual
algorithms and MBKT was statistically significant with the
computed p values smaller than 0.01.

RQ2. To answer this research question, we used the tra-
ditional stacking techniques including linear regression, lo-
gistic regression, and Neural Network to combine each of
the BKT variations with BMF. Our experimental results
on all datasets indicate that for each combination of BKT
variations and BMF using MBKT and other stacking tech-
niques, MBKT always outperforms the traditional stacking
techniques, except for IntW where linear regression achieves
the same RMSE as MBKT when combining BKTPPS and
BMF. To evaluate the statistical significance of the mod-



els, we limited our comparisons to the combinations with
the same base models. Our results on the four datasets in-
dicate that with BKTPPS and BMF as the base models,
MBKT and linear regression were not significantly different
from one another for both Geometry Area and Intelligent
Writing Tutor datasets. For the renaming 10 combinations,
MBKT improve PSP with statistical significance (p < 0.01)
compared to traditional stacking techniques.

In addition, MBKT always outperforms its base models and
achieves ≈ 10% improvement in the predictive power com-
pared to its underlying BKT model. This is a significant
improvement for a predicting model. In contrast, applying
the traditional combining models do not always improve the
predictions over those of the base models. For example, for
Hand Writing 2, using logistic regression or Neural Network
for combining BKT or BKT-CGS with BMF leads to poorer
RMSE than BMF itself. This lack of success for traditional
combining models reflects the same result is presented by
[4].

5. CONCLUSION AND FUTURE WORK
In this paper, we investigated the effect of combing time-
aware knowledge tracing algorithms with matrix factoriza-
tion as a time-invariant collaborative filtering algorithm for
PSP. Variations of Bayesian Knowledge Tracing (BKT) and
Matrix Factorization (MF) were used for this task. These
models complement each other’s strengths and limitations
quite effectively. BKT captures temporal changes in learn-
ers’ behavior using an explicit Q-matrix and BKT parame-
ters such as Slip and Guess. In contrast, MF captures sim-
ilarities among learners using latent variables that implic-
itly encode a Q-matrix as well as learners’ initial knowledge,
skill mastery probability, Slip and Guess Parameters. We in-
troduced an algorithm for combining MF and BKT, where
instead of directly combining the prediction result of each
individual algorithm, it first utilizes BKT as the underlying
algorithm to predict student performance. It then passes
the error, true values - predicted values, from BKT predic-
tions as input to MF. Incorporating the outcome of the BKT
model in the input of MF enables it to benefit from BKT’s
explicit parameterization including Slip and Guess concepts.
This, in turn, would enable the latent factors of MF to fur-
ther focus on modeling similarities among learners instead
of trying to incorporate Slip and Guess parameters.

Our results on four benchmark datasets from the Datashop
platform indicates that using MBKT for combining varia-
tions of BKT and MF leads to as much as 10% improve-
ment over the base models for PSP on unseen datasets. In
addition, MBKT generally provides statistically significant
improvements over traditional techniques such as linear re-
gression, logistic regression and Neural Networks for com-
bining BKT and MF again, for PSP on unseen dataset.

There are several interesting directions to pursue in future
work. Primarily, we are working on integrating our ap-
proach into an open-source, student facing adaptive learning
environment called Recommendation in Personalized Peer
Learning Environments (RiPPLE) [7]. Our goal is to use
the proposed algorithm for predicting student performance,
which in turn, is used for recommending personalized ques-
tions based on learners’ current knowledge gaps.
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