Question 1 (9 points)
The donations relation was defined based on the following SQL statement:

```sql
CREATE TABLE donations
    (recipientName CHAR(20) NOT NULL,
     donorOrganization CHAR(20) NOT NULL,
     organizationType CHAR(20),
     amount REAL,
     PRIMARY KEY (recipientName, donorOrganization)
    )
```

For each of the following relational calculus queries, determine if there exists an equivalent relational algebra statement. If you answer is positive, give such a statement; otherwise, just state that no such statement exists. (You may get part marks if you write down in English the correct meaning of each query.)

a) \{ <N> | \exists x, y (<N, x, tobacco, z> \in donations and <N, y, tobacco, r> \in donations and x \neq y) \}
 (2 points) Recipients who received donations from at least 2 distinct tobacco organizations.

\[\pi_{A.recipientName} (\sigma A.recipientName = B.recipientName \land A.organizationType = tobacco \land B.organizationType = tobacco \land A.donorOrganization \neq B.donorOrganization) [\rho A (donations) \times \rho B (donations)] \]

b) \{ <N> | \forall x (<r, x, tobacco, s> \in donations \Rightarrow <N, x, tobacco, t> \in donations) \}
 (3 points) Recipients who received donations from every tobacco donor organization.

\[\pi_{recipientName, donorOrganization} (donations) / \pi_{donorOrganization} (\sigma organizationType = tobacco (donations)) \]

c) \{ <N> | \exists x (<N, r, tobacco, x> \in donations and \forall y (<s, t, tobacco, y> \in donations \Rightarrow x \geq y) \}
 (4 points) Short version: Recipients who received the highest donation amount from a tobacco company. [note: this English version isn’t entirely precise, because it could be interpreted “for each company”, which isn’t what we mean. See the Relational Algebra for an exact comparison]

\[\pi_{recipientName} (\sigma A.organizationType = tobacco (donations)) - \]
\[\pi A.recipientName (\sigma A.organizationType = tobacco and B.organizationType = tobacco and A.amount < B.amount) [\rho A (donations) \times \rho B (donations)]) \]
Based on the donations relation defined above, determine whether each of the following four pairs of SQL statements is equivalent. If the pair is equivalent, just say yes and no explanation is needed. If you do not think the pair is equivalent, construct an instance of the donations relation to illustrate the difference between the pair of statements.

a)
select distinct recipientName from donations A
where not exists
(select B.donorOrganization from donations B
where recipientName = "Campbell"
and A.donorOrganization ≠ B.donorOrganization)

vs
select distinct recipientName from donations A
where not exists
((select donorOrganization from donations
where recipientName = "Campbell")
except
(select donorOrganization from donations B
where BrecipientName = ArecipientName))

(3 points) No. Consider the instance:

<table>
<thead>
<tr>
<th>recipientName</th>
<th>donorOrganization</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>A</td>
</tr>
<tr>
<td>John</td>
<td>B</td>
</tr>
<tr>
<td>Campbell</td>
<td>A</td>
</tr>
<tr>
<td>Campbell</td>
<td>B</td>
</tr>
</tbody>
</table>

Top query returns empty, while the bottom query returns John and Campbell.

b)
(select distinct recipientName from donations
 where amount ≥ 500)
union
(select distinct recipientName from donations
 where amount < 500)

vs

select distinct recipientName from donations

No. Consider the instance:

<table>
<thead>
<tr>
<th>recipientName</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>100</td>
</tr>
<tr>
<td>Campbell</td>
<td>2000</td>
</tr>
<tr>
<td>Mary</td>
<td>null</td>
</tr>
</tbody>
</table>

Top query returns John and Campbell, whereas bottom query returns all 3 names.

c)

select distinct recipientName from donations A, donations B
 where A.amount ≥ 1000
 and A.recipientName = B.recipientName
 and A.donorOrganization ≠ B.donorOrganization

vs

select distinct recipientName from donations
 where amount ≥ 1000
 group by recipientName
 having count(donorOrganization) ≥ 2

(2 points) No. Consider the instance:

<table>
<thead>
<tr>
<th>recipientName</th>
<th>donorOrganization</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campell</td>
<td>CUPE</td>
<td>100</td>
</tr>
<tr>
<td>Campbell</td>
<td>Canucks</td>
<td>2000</td>
</tr>
</tbody>
</table>

Top query returns Campbell, whereas bottom query returns nothing.
d)

```sql
select distinct recipientName from donations 
where recipientName not in 
  (select recipientName from donations 
   where organizationType = tobacco)
```

vs

```sql
select distinct recipientName from donations A 
where exists 
  (select * from donations B 
   where B.recipientName = A.recipientName 
   and organizationType ≠ tobacco)
```

(2 points) No. Top query finds recipients who did not receive donations from any tobacco company, whereas the bottom query finds recipients who received at least one donation from a non-tobacco company.

<table>
<thead>
<tr>
<th>recipientName</th>
<th>OrganizationType</th>
</tr>
</thead>
<tbody>
<tr>
<td>John</td>
<td>tobacco</td>
</tr>
<tr>
<td>John</td>
<td>entertainment</td>
</tr>
<tr>
<td>Mary</td>
<td>sports</td>
</tr>
</tbody>
</table>

Top query returns Mary, while bottom query returns John and Mary.

--- The End ---