
CPSC 304
Introduction to Database Systems

Structured Query Language (SQL)

Textbook Reference
 Database Management Systems: Chapter 5

Hassan Khosravi
Borrowing many slides from Rachel Pottinger

2

Databases: the continuing saga
When last we left databases…

We had decided they were great things
We knew how to conceptually model them
in ER diagrams
We knew how to logically model them in
the relational model
We knew how to normalize our database
relations
We could formally specify queries

Now: how do most people write queries?
SQL!

Learning Goals
Given the schemas of a relation, create SQL queries using: SELECT, FROM,
WHERE, EXISTS, NOT EXISTS, UNIQUE, NOT UNIQUE, ANY, ALL, DISTINCT,
GROUP BY and HAVING.
Show that there are alternative ways of coding SQL queries to yield the same result.
Determine whether or not two SQL queries are equivalent.
Given a SQL query and table schemas and instances, compute the query result.
Translate a query between SQL and RA.
Comment on the relative expressive power of SQL and RA.
Explain the purpose of NULL values and justify their use. Also describe the
difficulties added by having nulls.
Create and modify table schemas and views in SQL.
Explain the role and advantages of embedding SQL in application programs.
Write SQL for a small-to-medium sized programming application that requires
database access.
Identify the pros and cons of using general table constraints (e.g., CONSTRAINT,
CHECK) and triggers in databases.

3

4

Coming up in SQL…
Data Definition Language (reminder)
Basic Structure
Set Operations
Aggregate Functions
Null Values
Nested Subqueries
Modification of the Database
Views
Integrity Constraints
Putting SQL to work in an application

5

The SQL Query Language

Need for a standard since relational
queries are used by many vendors
Consists of several parts:

Data Definition Language (DDL)
(a blast from the past (Chapter 3))
Data Manipulation Language (DML)

Data Query
Data Modification

6

Creating Tables in SQL(DDL) Revisited

A SQL relation is defined using the create table command:
 create table r (A1 D1, A2 D2, ..., An Dn,

 (integrity-constraint1),
 ...,
 (integrity-constraintk))

Integrity constraints can be:
primary and candidate keys
foreign keys

Example:
CREATE TABLE Student

 (sid CHAR(20),
 name CHAR(20),
 address CHAR(20),
 phone CHAR(8),
 major CHAR(4),
 primary key (sid))

7

Domain Types in SQL
Reference Sheet

char(n). Fixed length character string with length n.
varchar(n). Variable length character strings, with maximum length n.
int. Integer (machine-dependent).
smallint. Small integer (machine-dependent).
numeric(p,d). Fixed point number, with user-specified precision of p
digits, with d digits to the right of decimal point.
real, double precision. Floating point and double-precision floating
point numbers, with machine-dependent precision.
float(n). Floating point number, with user-specified precision of at
least n digits.

Null values are allowed in all the domain types.
To prohibit null values declare attribute to be not null
create domain in SQL-92 and 99 creates user-defined domain types

 create domain person-name char(20) not null

8

Date/Time Types in SQL
Reference Sheet

date. Dates, containing a (4 digit) year, month and date
E.g. date ‘2001-7-27’

time. Time of day, in hours, minutes and seconds.
E.g. time ’09:00:30’ time ’09:00:30.75’

timestamp: date plus time of day
E.g. timestamp ‘2001-7-27 09:00:30.75’

Interval: period of time
E.g. Interval ‘1’ day
Subtracting a date/time/timestamp value from another gives an interval
value
Interval values can be added to date/time/timestamp values

Relational DBMS offer a variety of functions to
extract values of individual fields from date/time/timestamp
convert strings to dates and vice versa
For instance in Oracle (date is a timestamp):

TO_CHAR(date, format)
TO_DATE(string, format)
format looks like: ‘DD-Mon-YY HH:MI.SS’

9

Running Example (should look familiar)

Movie(MovieID, Title, Year)
StarsIn(MovieID, StarID, role)
MovieStar(StarID, Name, Gender)

10

Basic SQL Query

SQL is based on set and relational operations
A typical SQL query has the form:

 select A1, A2, ..., An
 from r1, r2, ..., rm
 where P
Ais represent attributes
ris represent relations
P is a predicate.

The result of a SQL query is a table (relation)
By default, duplicates are not eliminated in SQL
relations, which are bags or multisets and not sets
Let’s compare to relational algebra…

SELECT target-list
FROM relation-list
WHERE qualification

π à SELECT clause
σ à WHERE clause
⋈ àFROM and WHERE clause

Basic SQL/RA Comparison example 1
Find the titles of movies

In SQL, π is in the SELECT clause
Select only a subset of the attributes

Note duplication can happen!

11

πTitle(Movie)

SELECT Title
FROM Movie

Clicker Question: SQL projection
Given the table scores:
what is result of
SELECT Score1,
 Score2
FROM Scores
Which of the
following rows is
in the answer?

A.  (1,2)
B.  (5,3)
C.  (8,6)
D.  All are in the answer
E.  None are in the answer 12

Team1 Team2 Score1 Score2
Dragons Tigers 5 3
Carp Swallows 4 6
Bay Stars Giants 2 1
Marines Hawks 5 3
Ham Fighters Buffaloes 1 6
Lions Golden Eagles 8 12

Clicker Question: SQL projection
Given the table scores:
what is result of
SELECT Score1,
 Score2
FROM Scores
Which of the
following rows is
in the answer?

A.  (1,2)
B.  (5,3)
C.  (8,6)
D.  All are in the answer
E.  None are in the answer 13

Team1 Team2 Score1 Score2
Dragons Tigers 5 3
Carp Swallows 4 6
Bay Stars Giants 2 1
Marines Hawks 5 3
Ham Fighters Buffaloes 1 6
Lions Golden Eagles 8 12

Correct

clickerprojection.sql

14

In SQL, σ is in Where clause

SELECT *
FROM Movie
WHERE Year > 1939

You can use:
 attribute names of the relation(s) used in the FROM.
 comparison operators: =, <>, <, >, <=, >=
 apply arithmetic operations: rating*2
 operations on strings (e.g., “||” for concatenation).
 Lexicographic order on strings.
 Pattern matching: s LIKE p
 Special stuff for comparing dates and times.

15

Basic SQL/RA Comparison example 2
Find female movie stars

σGender = ‘female’MovieStar

SELECT *
FROM MovieStar
WHERE Gender = 'female'

Clicker Question: Selection
Consider Scores(Team, Opponent, RunsFor, RunsAgainst) and query
SELECT *
FROM Scores
WHERE
 RunsFor > 5
Which tuple is
in the result?

A.  (Swallows, Carp,
 6, 4)

B.  (Swallows, Carp,
 4)

C.  (12)
D.  (*)

16

Team Opponent RunsFor RunsAgainst

Dragons Tigers 5 3

Carp Swallows 4 6

Bay Stars Giants 2 1

Marines Hawks 5 3

Ham Fighters Buffaloes 1 6

Lions Golden Eagles 8 12

Tigers Dragons 3 5

Swallows Carp 6 4

Giants Bay Stars 1 2

Hawks Marines 3 5

Buffaloes Ham Fighters 6 1

Golden Eagles Lions 12 8

Clicker Question: Selection
Consider Scores(Team, Opponent, RunsFor, RunsAgainst) and query
SELECT *
FROM Scores
WHERE
 RunsFor > 5
Which tuple is
in the result?

A.  (Swallows, Carp,
 6, 4)

B.  (Swallows, Carp,
 4)

C.  (12)
D.  (*)

17

Team Opponent RunsFor RunsAgainst

Dragons Tigers 5 3

Carp Swallows 4 6

Bay Stars Giants 2 1

Marines Hawks 5 3

Ham Fighters Buffaloes 1 6

Lions Golden Eagles 8 12

Tigers Dragons 3 5

Swallows Carp 6 4

Giants Bay Stars 1 2

Hawks Marines 3 5

Buffaloes Ham Fighters 6 1

Golden Eagles Lions 12 8

clickerselection.sql

answer A

18

Selection & Projection – together
forever in SQL
We can put these together:

What are the names of female movie stars?

What are the titles of movies from prior to
1939?

SELECT name
FROM MovieStar
WHERE Gender = 'female'

 SELECT title
 FROM Movie
 WHERE year < 1939

Selection example (dates)

name

date

A 1941-05-25
B 1942-11-15
C 1943-12-26
D 1944-10-25

19

Select *
From events
Where date < 19430000

events

name

date

A 1941-05-25
B 1942-11-15

20

Basic SQL/RA comparison example 3
Find the person names and character
names of those who have been in movies

In order to do this we need to use joins.
How can we do joins in SQL?
π à SELECT clause
σ à WHERE clause
⋈à FROM and WHERE clause

21

Joins in SQL
SELECT Role, Name
FROM StarsIn s, MovieStar m
WHERE s.StarID = m.StarID

Cross product specified by From clause
Can alias relations (e.g., “StarsIn s”)
Conditions specified in where clause

22

Join Example
Find the names of all movie stars who
have been in a movie

SELECT Name
FROM StarsIn S, MovieStar M
WHERE S.StarID = M.StarID

Is this totally correct?

MovieID StarID Character
1 1 Han Solo
4 1 Indiana Jones
2 2 Scarlett O’Hara
3 3 Dorothy Gale

StarID Name Gender
1 Harrison Ford Male
2 Vivian Leigh Female
3 Judy Garland Female

Harrison Ford will appear twice

23

Join Example
Find the names of all movie stars who
have been in a movie

What if I run the following query?

SELECT Name
FROM StarsIn S, MovieStar M
WHERE S.StarID = M.StarID

Is this totally correct?

SELECT DISTINCT StarID, Name
FROM StarsIn S, MovieStar M
WHERE S.StarID = M.StarID

SELECT DISTINCT Name
FROM StarsIn S, MovieStar M
WHERE S.StarID = M.StarID

What if two movie stars
had the same name?

Error: Column StarID
is ambiguous

Clicker Question: Joins
Consider R : S: T:

SELECT R.a, R.b, S.b, T.b

 FROM R, S, T
 WHERE R.b = S.a AND S.b <> T.b (note: <> == ‘not equals’)

Compute the results
Which of the following are true:
A.  (0,1,1,0) appears twice.
B.  (1,1,0,1) does not appear.
C.  (1,1,1,0) appears once.
D.  All are true
E.  None are true

24

a b
0 0
0 1
1 0
1 1

a b
0 0
0 1
1 0
1 1

a b
0 0
0 1
1 0
1 1

Clicker Question: Joins
Consider R : S: T:

SELECT R.a, R.b, S.b, T.b

 FROM R, S, T
 WHERE R.b = S.a AND S.b <> T.b (note: <> == ‘not equals’)

Compute the results
Which of the following are true:
A.  (0,1,1,0) appears twice.
B.  (1,1,0,1) does not appear.
C.  (1,1,1,0) appears once.
D.  All are true
E.  None are true

25

a b
0 0
0 1
1 0
1 1

a b
0 0
0 1
1 0
1 1

a b
0 0
0 1
1 0
1 1

True R(0,1) S(1,1), T(0,0)&
R(0,1), S(1,1), T(1,0),
False: R(1,1), S(1,0), T(0,1)

False: like A but use R(1, 1)

clickerjoin.sql

26

So how does a typical SQL query relate
to relational algebra then?
SQL:

 select A1, A2, ..., An
 from r1, r2, ..., rm
 where P

Is approximately equal to
Relational algebra

 πA1, A2, ..., An(σP (r1 x r2 x ... x rm))

Difference? Duplicates.
Remove them? Distinct

27

Using DISTINCT

Would removing DISTINCT from this query make
a difference?

SELECT DISTINCT Name
FROM StarsIn S, MovieStar M
WHERE S.StarID = M.StarID

v  Find the names of actors who’ve been in at least one
movie

28

Distinction distinction
Why is it good; why is it bad?
•  How many movies has Brad Pitt played?

•  You can’t do this query in RA with what you
know

•  Tricky to work with at times.

Clicker question:
 distinction

Team Opponent Runs
For

Runs
Against

Dragons Tigers 5 3
Carp Swallows 4 6
Bay Stars Giants 2 1
Marines Hawks 5 3
Ham
Fighters

Buffaloes 1 6

Lions Golden
Eagles

8 12

Tigers Dragons 3 5
Swallows Carp 6 4
Giants Bay Stars 1 2
Hawks Marines 3 5
Buffaloes Ham Fighters 6 1
Golden
Eagles

Lions 12 8

29

Consider the relation:
Scores(Team, Opponent,
RunsFor, RunsAgainst) and
the query:
SELECT DISTINCT Team,
 RunsFor
FROM Scores
Which is true:
A.  1 appears once
B.  5 appears twice
C.  6 appears 4 times
D.  All are true
E.  None are true

Clicker question:
 distinction

Team Opponent Runs
For

Runs
Against

Dragons Tigers 5 3
Carp Swallows 4 6
Bay Stars Giants 2 1
Marines Hawks 5 3
Ham
Fighters

Buffaloes 1 6

Lions Golden
Eagles

8 12

Tigers Dragons 3 5
Swallows Carp 6 4
Giants Bay Stars 1 2
Hawks Marines 3 5
Buffaloes Ham Fighters 6 1
Golden
Eagles

Lions 12 8

30

Consider the relation:
Scores(Team, Opponent,
RunsFor, RunsAgainst) and
the query:
SELECT DISTINCT Team,
 RunsFor
FROM Scores
Which is true:
A.  1 appears once
B.  5 appears twice
C.  6 appears 4 times
D.  All are true
E.  None are true

clickerdistinction.sql

Correct

31

Renaming Attributes in Result
SQL allows renaming relations and attributes
using the as clause:

 old-name as new-name
Example: Find the title of movies and all the
characters in them, and rename “Role” to
“Role1”
SELECT Title, Role AS Role1
FROM StarsIn S, Movie M
WHERE M.MovieID = S.MovieID

Try select *; does not remove duplicate columns

32

Congratulations:
You know select-project-join queries

Very common subset to talk about
Can do many (but not all) useful things

SQL is declarative, not procedural
how do we know? Lets see what

procedural would look like…

33

Conceptual Procedural Evaluation
Strategy

1.  Compute the cross-product of relation-list.
2.  Discard resulting tuples if they fail

qualifications.
3.  Delete attributes that are not in target-list.
4.  If DISTINCT is specified, eliminate duplicate

rows.

Example of Conceptual Procedural
Evaluation
SELECT Name
FROM MovieStar M, StarsIn S
WHERE S.StarID = M.StarID AND MovieID = 276

MovieStar X StarsIn

34

(StarID) Name Gender MovieID (StarID) Character
1273 Nathalie

Portman
Female 272 1269 Leigh Anne

Touhy
1273 Nathalie

Portman
Female 273 1270 Mary

1273 Nathalie
Portman

Female 274 1271 King
George VI

1273 Nathalie
Portman

Female 276 1273 Nina
Sayers

… … … … … …

join selection

35

New Students Example
Class(name,meets_at,room,fid)
Student(snum,sname,major,standing,age)
Enrolled(snum,cname)
Faculty(fid,fname,deptid)

36

Class Table
Name Meets_at Room FID

Data Structures MWF 10 R128 489456522
Database Systems MWF 12:30-1:45 1320 DCL 142519864
Operating System Design TuTh 12-1:20 20 AVW 489456522
Archaeology of the Incas MWF 3-4:15 R128 248965255
Aviation Accident Investigation TuTh 1-2:50 Q3 011564812
Air Quality Engineering TuTh 10:30-11:45 R15 011564812
Introductory Latin MWF 3-4:15 R12 248965255
American Political Parties TuTh 2-3:15 20 AVW 619023588
Social Cognition Tu 6:30-8:40 R15 159542516
Perception MTuWTh 3 Q3 489221823
Multivariate Analysis TuTh 2-3:15 R15 090873519
Patent Law F 1-2:50 R128 090873519
Urban Economics MWF 11 20 AVW 489221823
Organic Chemistry TuTh 12:30-1:45 R12 489221823
Marketing Research MW 10-11:15 1320 DCL 489221823
Seminar in American Art M 4 R15 489221823
Orbital Mechanics MWF 8 1320 DCL 011564812
Dairy Herd Management TuTh 12:30-1:45 R128 356187925
Communication Networks MW 9:30-10:45 20 AVW 141582651
Optical Electronics TuTh 12:30-1:45 R15 254099823
Intoduction to Math TuTh 8-9:30 R128 489221823

37

Student Table
 SNUM SNAME MAJOR ST AGE
---------- --- ---
 51135593 Maria White English SR 21
 60839453 Charles Harris Architecture SR 22
 99354543 Susan Martin Law JR 20
 112348546 Joseph Thompson Computer Science SO 19
 115987938 Christopher Garcia Computer Science JR 20
 132977562 Angela Martinez History SR 20
 269734834 Thomas Robinson Psychology SO 18
 280158572 Margaret Clark Animal Science FR 18
 301221823 Juan Rodriguez Psychology JR 20
 318548912 Dorthy Lewis Finance FR 18
 320874981 Daniel Lee Electrical Engineering FR 17
 322654189 Lisa Walker Computer Science SO 17
 348121549 Paul Hall Computer Science JR 18
 351565322 Nancy Allen Accounting JR 19
 451519864 Mark Young Finance FR 18
 455798411 Luis Hernandez Electrical Engineering FR 17
 462156489 Donald King Mechanical Engineering SO 19
 550156548 George Wright Education SR 21
 552455318 Ana Lopez Computer Engineering SR 19
 556784565 Kenneth Hill Civil Engineering SR 21
 567354612 Karen Scott Computer Engineering FR 18
 573284895 Steven Green Kinesiology SO 19
 574489456 Betty Adams Economics JR 20
 578875478 Edward Baker Veterinary Medicine SR 21

38

Enrolled Table
 SNUM CNAME
---------- --
 112348546 Database Systems
 115987938 Database Systems
 348121549 Database Systems
 322654189 Database Systems
 552455318 Database Systems
 455798411 Operating System Design
 552455318 Operating System Design
 567354612 Operating System Design
 112348546 Operating System Design
 115987938 Operating System Design
 322654189 Operating System Design
 567354612 Data Structures
 552455318 Communication Networks
 455798411 Optical Electronics
 455798411 Organic Chemistry
 301221823 Perception
 301221823 Social Cognition
 301221823 American Political Parties
 556784565 Air Quality Engineering
 99354543 Patent Law
 574489456 Urban Economics

39

Faculty Table
 FID FNAME DEPTID
---------- ----------------------
 142519864 I. Teach 20
 242518965 James Smith 68
 141582651 Mary Johnson 20
 011564812 John Williams 68
 254099823 Patricia Jones 68
 356187925 Robert Brown 12
 489456522 Linda Davis 20
 287321212 Michael Miller 12
 248965255 Barbara Wilson 12
 159542516 William Moore 33
 090873519 Elizabeth Taylor 11
 486512566 David Anderson 20
 619023588 Jennifer Thomas 11
 489221823 Richard Jackson 33
 548977562 Ulysses Teach 20

Running Examples

40

Movie(MovieID, Title, Year)
StarsIn(MovieID, StarID, role)
MovieStar(StarID, Name, Gender)

Student(snum,sname,major,standing,age)
Class(name,meets_at,room,fid)
Enrolled(snum,cname)
Faculty(fid,fname,deptid)

41

What kinds of queries can you answer
so far?

Find the names of all classes taught by
Elizabeth Taylor

Find the student ids of those who have taken a
course named “Database Systems”

SELECT name
FROM Faculty f, class c
WHERE f.fid = c.fid and fname = 'Elizabeth Taylor'

SELECT snum
FROM enrolled e
WHERE cname = 'Database Systems'

Do we need DISTINCT?

Do we need f.fname?

What kinds of queries can you
answer so far?

Find the departments that have more than
one faculty member (not equal <>)

42

SELECT DISTINCT f1.deptid
FROM faculty f1, faculty f2
WHERE f1.fid <>f2.fid AND
F1.deptid = f2.deptid

A good example for using the same table twice in a query

fid fname Deptid

90873519 Elizabeth Taylor 11

619023588 Jennifer Thomas 11

… … …

f1
fid fname Deptid

90873519 Elizabeth Taylor 11

619023588 Jennifer Thomas 11

… … …

f2

Do I need Distinct?

That is why
renaming is
important

What kinds of queries can you
answer so far?

Find the departments that have at least
one faculty member

43

SELECT DISTINCT deptid
FROM faculty

44

String comparisons
What are the student ids of those who
have taken a course with “Database” in
the name?

45

A string walks into a bar…

LIKE is used for string matching:
‘_’ stands for any one character and
‘%’ stands for 0 or more arbitrary characters.

SQL supports string operations such as
concatenation (using “||”)
 converting from upper to lower case (and vice versa)
 finding string length, extracting substrings, etc.

SELECT DISTINCT snum
FROM enrolled
Where cname LIKE '%Database%'

46

Ordering of Tuples
List in alphabetic order the names of actors who
were in a movie in 1939

SELECT distinct Name
FROM Movie, StarsIn, MovieStar
WHERE Movie.MovieID = StarsIn.MovieID and

StarsIn.StarID = MovieStar.StarID and year = 1939
ORDER BY Name
Order is specified by:

 desc for descending order
 asc for ascending order (default)
E.g. order by Name desc

Clicker question: sorting
Relation R has schema R(a,b,c). In the result of the
query
SELECT a, b, c
FROM R
ORDER BY c DESC, b ASC;
What condition must a tuple t satisfy so that t
necessarily precedes the tuple (5,5,5)? Identify one
such tuple from the list below.

A.  (3,6,3)
B.  (1,5,5)
C.  (5,5,6)
D.  All of the above
E.  None of the above 47

Clicker question: sorting
Relation R has schema R(a,b,c). In the result of the
query
SELECT a, b, c
FROM R
ORDER BY c DESC, b ASC;
What condition must a tuple t satisfy so that t
necessarily precedes the tuple (5,5,5)? Identify one
such tuple from the list below.

A.  (3,6,3)
B.  (1,5,5)
C.  (5,5,6)
D.  All of the above
E.  None of the above 48

Right

3 < 5
Not specified

clickerorder.sql and clickerorder2.sql produce different ordering for
 7,5,5 vs. 1,5,5

49

Set Operations
union, intersect, and except correspond to the
relational algebra operations ∪, ∩, -.
Each automatically eliminates duplicates;
To retain all duplicates use the corresponding
multiset versions:
 union all, intersect all and except all.
Suppose a tuple occurs m times in r and n times
in s, then, it occurs:

m + n times in r union all s
min(m,n) times in r intersect all s
max(0, m – n) times in r except all s

50

Find IDs of MovieStars who’ve been in a
movie in 1944 or 1974
UNION: Can union any
two union-compatible
sets of tuples (i.e., the
result of SQL queries).

The two queries though
quite similar return
different results, why?

Use UNION ALL to get the
same answer

SELECT StarID
FROM Movie M, StarsIn S
WHERE M.MovieID=S.MovieID AND
(year = 1944 OR year = 1974)

SELECT StarID
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND
year = 1944
UNION
SELECT StarID
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND
year = 1974

51

Set Operations: Intersect

Example: Find IDs of
stars who have been in a
movie in 1944 and 1974.

INTERSECT: Can be used
to compute the
intersection of any two
union-compatible sets of
tuples.
In SQL/92, but some
systems don’t support it.

SELECT StarID
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND
year = 1944
INTERSECT
SELECT StarID
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND
year = 1974

Oracle does
MYSQL doesn’t

52

Rewriting INTERSECT with Joins

Example: Find IDs of stars who have been in a movie in
1944 and 1974 without using INTERSECT.

SELECT distinct S1.StarID
FROM Movie M1, StarsIn S1,
 Movie M2, StarsIn S2
WHERE
 M1.MovieID = S1.MovieID AND M1.year = 1944 AND
 M2.MovieID = S2.MovieID AND M2.year = 1974 AND

 S2.StarID = S1.StarID

53

Set Operations: EXCEPT
Find the sids of all students who took
Operating System Design but did not take
Database Systems

Select snum
From enrolled e
Where cname = 'Operating System Design'
EXCEPT
Select snum
From enrolled e
Where cname = 'Database Systems'

Can we do it in a different way?
(We’ll come back to this)

54

But what about…
Select the IDs of all students who have
not taken “Operating System Design”

One way to do is to find all students that
taken “Operating System Design”.
Do all students MINUS those who have taken
“Operating System Design”

Motivating Example for Nested Queries
Find ids and names of stars who have
been in movie with ID 28:

Find ids and names of stars who have not
been in movie with ID 28:

Would the following be correct?

SELECT M.StarID, name
FROM MovieStar M, StarsIn S
WHERE M.StarID = S.starID AND S.MovieID = 28;

SELECT M.StarID, name
FROM MovieStar M, StarsIn S
WHERE M.StarID = S.starID AND S.MovieID <> 28;

Nested Queries
A very powerful feature of SQL:

A nested query is a query that has
another query embedded with it.

A SELECT, FROM, WHERE, or HAVING clause
can itself contain an SQL query!
Being part of the WHERE clause is the most
common 56

Select A1,A2,…,An
From R1,R2, …,Rm
Where condition

57

Nested Queries (IN/Not IN)

To find stars who have not been in movie 28, use NOT IN.

To understand nested query semantics, think of a nested
loops evaluation:

For each MovieStar tuple, check the qualification by computing the
subquery.

SELECT M.StarID, M.Name
FROM MovieStar M
WHERE M.StarID IN (SELECT S.StarID
 FROM StarsIn S
 WHERE MovieID=28)

Find ids and names of stars who have been in movie
with ID 28:

NOT IN

58

Nested Queries (IN/Not IN)

SELECT S.StarID
FROM StarsIn S
WHERE MovieID=28

Find ids and names of stars who have been in movie
with ID 28:

StarID
1026
1027

SELECT M.StarID, M.Name
FROM MovieStar M
WHERE M.StarID IN
(1026,1027)

SELECT M.StarID, M.Name
FROM MovieStar M
WHERE M.StarID IN (SELECT S.StarID
 FROM StarsIn S
 WHERE MovieID=28)

•  In this example in inner query does not depend on
the outer query so it could be computed just once.

•  Think of this as a function that has no parameters.

59

Rewriting EXCEPT Queries Using In

Using nested queries, find the sids of all
students who took Operating System
Design but did not take Database Systems

SELECT snum
FROM enrolled
WHERE cname = 'Operating System Design' and snum not in

 (SELECT snum
 FROM enrolled
 WHERE cname = 'Database Systems')

60

Rewriting INTERSECT Queries Using IN

The subquery finds stars who have been in movies in 1974

We can also use alias M and S for the inner query and it would

still work! (Locality)

Find IDs of stars who have been in movies in 1944 and 1974

SELECT S.StarID
FROM Movie M, StarsIn S
WHERE M.MovieID = S.MovieID AND M.year = 1944 AND
 S.StarID IN (SELECT S2.StarID

 FROM Movie M2, StarsIn S2
 WHERE M2.MovieID = S2.MovieID AND M2.year = 1974)

Let’s introduce one more schema
We have high school students applying for
college

taken from Jennifer Widom’s Stanford database course

61

College(cName,state,enrollment)

Student(sID,sName,GPA,sizeHS)

Apply(sID,cName,major,decision)

Student table

insert into Student values (123, 'Amy', 3.9, 1000);
insert into Student values (234, 'Bob', 3.6, 1500);
insert into Student values (345, 'Craig', 3.5, 500);
insert into Student values (456, 'Doris', 3.9, 1000);
insert into Student values (567, 'Edward', 2.9, 2000);
insert into Student values (678, 'Fay', 3.8, 200);
insert into Student values (789, 'Gary', 3.4, 800);
insert into Student values (987, 'Helen', 3.7, 800);
insert into Student values (876, 'Irene', 3.9, 400);
insert into Student values (765, 'Jay', 2.9, 1500);
insert into Student values (654, 'Amy', 3.9, 1000);
insert into Student values (543, 'Craig', 3.4, 2000);

62

Student(sID,sName,GPA,sizeHS)

College Table

insert into College values ('Stanford', 'CA', 15000);
insert into College values ('Berkeley', 'CA', 36000);
insert into College values ('MIT', 'MA', 10000);
insert into College values ('Cornell', 'NY', 21000);

63

College(cName,state,enrollment)

Apply Table

insert into Apply values (123, 'Stanford', 'CS', 'Y');
insert into Apply values (123, 'Stanford', 'EE', 'N');
insert into Apply values (123, 'Berkeley', 'CS', 'Y');
insert into Apply values (123, 'Cornell', 'EE', 'Y');
insert into Apply values (234, 'Berkeley', 'biology', 'N');
insert into Apply values (345, 'MIT', 'bioengineering', 'Y');
insert into Apply values (345, 'Cornell', 'bioengineering', 'N');
insert into Apply values (345, 'Cornell', 'CS', 'Y');
insert into Apply values (345, 'Cornell', 'EE', 'N');
insert into Apply values (678, 'Stanford', 'history', 'Y');
insert into Apply values (987, 'Stanford', 'CS', 'Y');
insert into Apply values (987, 'Berkeley', 'CS', 'Y');
insert into Apply values (876, 'Stanford', 'CS', 'N');
insert into Apply values (876, 'MIT', 'biology', 'Y');
insert into Apply values (876, 'MIT', 'marine biology', 'N');
insert into Apply values (765, 'Stanford', 'history', 'Y');
insert into Apply values (765, 'Cornell', 'history', 'N');
insert into Apply values (765, 'Cornell', 'psychology', 'Y');
insert into Apply values (543, 'MIT', 'CS', 'N');

64

Apply(sID,cName,major,decision)

Our Three Running Examples
Movie(MovieID, Title, Year)
StarsIn(MovieID, StarID, role)
MovieStar(StarID, Name, Gender)

65

Student(snum,sname,major,standing,age)
Class(name,meets_at,room,fid)
Enrolled(snum,cname)
Faculty(fid,fname,deptid)

College(cName,state,enrollment)

Student(sID,sName,GPA,sizeHS)
Apply(sID,cName,major,decision)

Nested Queries Example
Find IDs and names of students applying
to CS (using both join and nested queries)

66

SELECT sID, sName
FROM Student
WHERE sID in (SELECT sID
 FROM Apply

 WHERE major = 'CS');

SELECT DISTINCT Student.sID, sName
FROM Student, Apply
WHERE Student.sID = Apply.sID and major = 'CS';

Do we need distinct?

Nested Query Example (tricky)
Find names of students applying to CS
(using both join and nested queries)

67

SELECT sName
FROM Student
WHERE sID in (SELECT sID
 FROM Apply

 WHERE major = 'CS');

SELECT sName
FROM Student, Apply
WHERE Student.sID = Apply.sID and major = 'CS';

Do we need distinct?

Both with and without distinct is incorrect

Why are duplicates important?
Find GPA of CS applicants (using both
join and nested queries)

68

SELECT GPA
FROM Student
WHERE sID in (SELECT sID
 FROM Apply
 WHERE major = 'CS');

SELECT GPA
FROM Student, Apply
WHERE Student.sID = Apply.sID and major = 'CS';

Both with and without distinct is incorrect

SQL EXISTS Condition
The SQL EXISTS condition is used in
combination with a subquery and is
considered to be met, if the subquery returns
at least one row. It can be used in a SELECT,
INSERT, UPDATE, or DELETE statement.
We can also use NOT EXISTS

69

Correlating Queries – Coming Up!
Find the name of Colleges such that
some other college is in the same state
without nested queries.

70

SELECT C1.cName, C1.state
FROM College C1, College C2
WHERE C2.state = C1.state AND C2.cName <> C1.cName

In the examples seen so far, the inner subquery was always
independent of the outer query

71

Nested Queries with Correlation

EXISTS: returns true if the set is not empty.
Illustrates why, in general, subquery must be re-computed
for each college tuple.

(For each college, check if there is another college in the same state

Find the name of Colleges such that some other college
is in the same state

Exists Does work in MYSQL
Exists Does not work in oracle

Think of this as
passing parameters

SELECT cName, state
FROM College C1
WHERE exists (SELECT *
 FROM College C2
 WHERE C2.state = C1.state AND
 C2.cName <> C1.cName);

SQL EXISTS Condition
Using the EXISTS/ NOT EXISTS operations
and correlated queries, find the name and
age of the oldest student(s)

72

SELECT sname, age
FROM student s2
WHERE NOT EXISTS(SELECT *

 FROM student s1
 WHERE s1.age >s2.age)

73

More on Set-Comparison Operators

We’ve already seen IN and EXISTS. Can also use NOT
IN, NOT EXISTS.
Also available: op ANY, op ALL,
where op is one of: >, <, =, <=, >=, <>
Find movies made after “Fargo”

SELECT *
FROM Movie
WHERE year > ANY (SELECT year
 FROM Movie
 WHERE Title ='Fargo')

If we have multiple movies names
Fargo then we can use ALL instead of ANY

Just returning one column

Clicker nested
question
Determine the result of:
SELECT Team, Day
FROM Scores S1
WHERE Runs <= ALL

(SELECT Runs
FROM Scores S2
WHERE S1.Day = S2.Day)

Which of the following is in
the result:

A.  (Carp, Sun)
B.  (Bay Stars, Sun)
C.  (Swallows, Mon)
D.  All of the above
E.  None of the above
 74

Team Day Opponent Runs
Dragons Sun Swallows 4
Tigers Sun Bay Stars 9
Carp Sun Giants 2
Swallows Sun Dragons 7
Bay Stars Sun Tigers 2
Giants Sun Carp 4
Dragons Mon Carp 6
Tigers Mon Bay Stars 5
Carp Mon Dragons 3
Swallows Mon Giants 0
Bay Stars Mon Tigers 7
Giants Mon Swallows 5

Scores:

Clicker nested
question
Determine the result of:
SELECT Team, Day
FROM Scores S1
WHERE Runs <= ALL

(SELECT Runs
FROM Scores S2
WHERE S1.Day = S2.Day)

Which of the following is in
the result:

A.  (Carp, Sun)
B.  (Bay Stars, Sun)
C.  (Swallows, Mon)
D.  All of the above
E.  None of the above
 75

Team Day Opponent Runs
Dragons Sun Swallows 4
Tigers Sun Bay Stars 9
Carp Sun Giants 2
Swallows Sun Dragons 7
Bay Stars Sun Tigers 2
Giants Sun Carp 4
Dragons Mon Carp 6
Tigers Mon Bay Stars 5
Carp Mon Dragons 3
Swallows Mon Giants 0
Bay Stars Mon Tigers 7
Giants Mon Swallows 5

Scores:

Team/Day pairs such that the team scored the minimum
 number of runs for that day.

Clickernested.sql

Correct

76

Example
Using the any or all operations, find the
name and age of the oldest student(s)

SELECT sname, age
FROM student s2
WHERE s2.age >= all (SELECT age

 FROM student s1)

SELECT sname, age
FROM student s2
WHERE not s2.age < any (SELECT age

 FROM student s1)

You can rewrite
queries that use any
or all with queries
that use exist or not
exist

Clicker Question
Consider the following SQL query

This query returns
A: The name and age of one of the oldest student(s)
B: The name and age of all of the oldest student(s)
C: The name and age of all of the youngest student(s)
D: The name and age of all students that are older than
the youngest student(s)
E: None of the above

77

SELECT DISTINCT s1.sname, s1.age
FROM student s1, student s2
WHERE s1.age > s2.age

Clicker Question
Consider the following SQL query

This query returns
A: The name and age of one of the oldest student(s)
B: The name and age of all of the oldest student(s)
C: The name and age of all of the youngest student(s)
D: The name and age of all students that are older than
the youngest student(s)
E: None of the above

78

SELECT DISTINCT s1.sname, s1.age
FROM student s1, student s2
WHERE s1.age > s2.age

79

Division in SQL

The hard way (without EXCEPT:

select Student S such that ...
there is no Class C…

which is not taken by S

Find students who’ve
taken all classes.

(method 1) SELECT sname
FROM Student S
WHERE NOT EXISTS
 ((SELECT C.name
 FROM Class C)
 EXCEPT
 (SELECT E.cname
 FROM Enrolled E
 WHERE e.snum=S.snum))

SELECT sname
FROM Student S
WHERE NOT EXISTS (SELECT C.name
 FROM Class C
 WHERE NOT EXISTS (SELECT E.snum
 FROM Enrolled E
 WHERE C.name=E.cname
 AND E.snum=S.snum))

(method 2)

Method 2
Not tested on exams

All classes

Classes
taken by S

Subqueries in From

A subquery in the from clause returns a
temporary table in database server's
memory, which is used by the outer query
for further processing.

A subquery in the FROM clause can't be
correlated subquery as it can't be evaluated
per row of the outer query.

80

Select A1,A2,…,An
From R1,R2, …,Rm
Where condition

Example
Add scaled GPA based on sizeHS

 Find students whose scaled GPA
changes GPA by more than 1

81

SELECT sID, sName, GPA, sizeHS,
 GPA*(sizeHS/1000.0) as scaledGPA
FROM Student;

SELECT sID, sName, GPA, GPA*(sizeHS/1000.0) as scaledGPA
FROM Student
WHERE abs(GPA*(sizeHS/1000.0) - GPA) > 1.0;

SELECT *
FROM (SELECT sID, sName, GPA, GPA*(sizeHS/1000.0) as scaledGPA
 FROM Student) G
WHERE abs(scaledGPA - GPA) > 1.0; GPA*(sizeHS/1000.0) is

computed once

82

You’re Now Leaving the World of
Relational Algebra

You now have many ways of asking
relational algebra queries

For this class, you should be able write
queries using all of the different concepts that
we’ve discussed & know the terms used
In general, use whatever seems easiest,
unless the question specifically asks you to
use a specific method.
Sometimes the query optimizer may do
poorly, and you’ll need to try a different
version, but we’ll ignore that for this class.

83

Mind the gap
But there’s more you might want to know!
E.g., “find the average age of students”
There are extensions of Relational
Algebra that cover these topics

We won’t cover them
We will cover them in SQL

84

Aggregate Operators
These functions operate on the multiset of values of a
column of a relation, and return a value
 AVG: average value

 MIN: minimum value
 MAX: maximum value
 SUM: sum of values
 COUNT: number of values

The following versions eliminate duplicates before
applying the operation to attribute A:
 COUNT (DISTINCT A)
 SUM (DISTINCT A)
 AVG (DISTINCT A)

SELECT count(distinct s.snum)
FROM enrolled e, Student S
WHERE e.snum = s.snum

SELECT count(s.snum)
FROM enrolled e, Student S
WHERE e.snum = s.snum

85

Aggregate Operators: Examples

SELECT AVG (age)
FROM Student
WHERE standing='SR'

SELECT COUNT(*)
FROM Student

SELECT Sname
FROM Student S
WHERE S.age= (SELECT MAX(S2.age)
 FROM Student S2)

students

Find name and age of
the oldest student(s)

Finding average age
of SR students

Can use table
name S for both

86

Aggregation examples
Find the minimum student age

How many students have taken a class
with “Database” in the title

Note: want distinct for when
Students take 2 db classes

SELECT min(age)
FROM student;

SELECT count(distinct snum)
FROM enrolled
where cname like '%Database%'

87

GROUP BY and HAVING

Divide tuples into groups and apply aggregate
operations to each group.
Example: Find the age of the youngest student
for each major.

SELECT MIN (age)
FROM Student
WHERE major = i

For i = ‘Computer Science’,
 ‘Civil Engineering’…

n  Problem:
We don’t know how many majors exist, not to mention this is not good
practice

88

Grouping Examples

SELECT major, MIN(age)
FROM Student
WHERE age >= 19
GROUP BY major

Find the age of the youngest student
who is at least 19, for each major

Snum Major Age
115987938 Computer Science 20
112348546 Computer Science 19
280158572 Animal Science 18
351565322 Accounting 19
556784565 Civil Engineering 21
… … …

Major Age
Computer
Science

19

Accounting 19
Civil
Engineering

21

… …

No Animal Science

89

Grouping Examples with Having

SELECT major, MIN(age)
FROM Student
WHERE age >= 19
GROUP BY major
HAVING COUNT(*) > 1

Find the age of the youngest student
who is at least 19, for each major
with at least 2 such students

Snum Major Age
115987938 Computer Science 20
112348546 Computer Science 19
280158572 Animal Science 18
351565322 Accounting 19
556784565 Civil Engineering 21
… … …

Major
Computer
Science

19

Major Age
Computer Science 19
Accounting 19
Civil Engineering 21
… …

90

And there are rules

SELECT major, MIN(age)
FROM Student
WHERE age >= 19
GROUP BY major
HAVING COUNT(*) > 1

Find the age of the youngest student
who is at least 19, for each major
with at least 2 such students

Would it make sense if I select age instead of MIN(age)?
Would it make sense if I select snum to be returned?
Would it make sense if I select major to be returned?

Major Age
Computer Science 19
Accounting 19
Civil Engineering 21
… …

91

GROUP BY and HAVING (cont)

The target-list contains
(i) attribute names
(ii) terms with aggregate operations (e.g., MIN (S.age)).
Attributes in (i) must also be in grouping-list.

each answer tuple corresponds to a group,
group = a set of tuples with same value for all attributes in grouping-list
selected attributes must have a single value per group.

Attributes in group-qualification are either in grouping-list or
are arguments to an aggregate operator.

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
HAVING group-qualification
ORDER BY target-list

92

Conceptual Evaluation of a Query

1.  compute the cross-product of relation-list
2.  keep only tuples that satisfy qualification
3.  partition the remaining tuples into groups by the

value of attributes in grouping-list
4.  keep only the groups that satisfy group-qualification

(expressions in group-qualification must have a
single value per group!)

5.  delete fields that are not in target-list
6.  generate one answer tuple per qualifying group.

where

93

GROUP BY and HAVING (cont)
Example1: For each class, find the age of the
youngest student who has enrolled in this class:
 SELECT cname, MIN(age)
 FROM Student S, Enrolled E
 WHERE S.snum= E.snum
 GROUP BY cname
Example2: For each course with more than 1
enrollment, find the age of the youngest student
who has taken this class:
 SELECT cname, MIN(age)
 FROM Student S, Enrolled E
 WHERE S.snum = E.snum
 GROUP BY cname

 HAVING COUNT(*) > 1 ß per group qualification!

Clicker question: grouping
Compute the result of the query:
SELECT a1.x, a2.y, COUNT(*)
FROM Arc a1, Arc a2
WHERE a1.y = a2.x
GROUP BY a1.x, a2.y
(think of Arc as being a flight, and the
query as asking for how many ways
you can take each 2 hop plane trip)
Which of the following is in the result?

A.  (1,3,2)
B.  (4,2,6)
C.  (4,3,1)
D.  All of the above
E.  None of the above

94

x y
1 2
1 2
2 3
3 4
3 4
4 1
4 1
4 1
4 2

Clicker question: grouping
Compute the result of the query:
SELECT a1.x, a2.y, COUNT(*)
FROM Arc a1, Arc a2
WHERE a1.y = a2.x
GROUP BY a1.x, a2.y

A.  (1,3,2)
B.  (4,2,6)
C.  (4,3,1)
D.  All of the above
E.  None of the above

95

x y
1 2
1 2
2 3
3 4
3 4
4 1
4 1
4 1
4 2

clickergrouping.sql

Correct

(1,2)(2,3), (1,2)(2,3)

(4,2)(2,3)
3 ways to do (4,1) and two ways to do (1,2)

Clicker question: grouping
Compute the result of the query:
SELECT a1.x, a2.y, COUNT(*)
FROM Arc a1, Arc a2
WHERE a1.y = a2.x
GROUP BY a1.x, a2.y
(The query asks for how many ways
you can take each 2 hop plane trip.
Which of the following is in the result?

A.  (SFO,SEA,2)
B.  (PIT,YVR,6)
C.  (PIT,SEA,1)
D.  All of the above
E.  None of the above

96

origin dest
SFO YVR
SFO YVR
YVR SEA
SEA PIT
SEA PIT
PIT SFO
PIT SFO
PIT SFO
PIT YVR

clickergrouping2.sql

FLIGHT:

correct

97

Groupies of your very own
Find the average age for each class standing (e.g., Freshman)

Find the deptID and # of faculty members for each department
having an id > 20

 SELECT standing, avg(age)
 FROM student
 GROUP BY standing

SELECT count(*), deptid
FROM faculty
WHERE deptid > 20
GROUP BY deptid

SELECT count(*), deptid
FROM faculty
GROUP BY deptid
HAVING deptid > 20

A

(1) (2)

Which one is correct?
A: just 1
B: just 2
C: both
D: neither

Correct

98

Groupies of your very own

Find the deptID and # of faculty members for each department
with > 2 faculty (revisited!)

 SELECT count(*), deptid
 FROM faculty
 GROUP BY deptid
 HAVING count(*) > 2

99

Grouping Examples (cont’)

What if we do the following:
(a) remove E.cname like ‘%System%’ from the
WHERE clause, and then
(b) add a HAVING clause with the dropped condition?

SELECT s.standing, COUNT(DISTINCT s.snum) AS scount
FROM Student S, enrolled E
WHERE S.snum = E.snum and E.cname like '%System%'
GROUP BY s.standing

For each standing, find the number of students who took
a class with “System” in the title

Not in groupby
Error!

SELECT s.standing, COUNT(DISTINCT s.snum) AS
scount
FROM Student S, enrolled E
WHERE S.snum = E.snum
GROUP BY s.standing
HAVING E.cname like '%System%'

Clicker question: having
Suppose we have a relation with schema R(A, B, C, D, E). If we issue

a query of the form:
 SELECT ...

FROM R
WHERE ...
GROUP BY B, E
HAVING ???

What terms can appear in the HAVING condition (represented by ???
in the above query)? Identify, in the list below, the term that
CANNOT appear.

A.  A
B.  B
C.  Count(B)
D.  All can appear
E.  None can appear

 100

Clicker question: having
Suppose we have a relation with schema R(A, B, C, D, E). If we issue

a query of the form:
 SELECT ...

FROM R
WHERE ...
GROUP BY B, E
HAVING ???

What terms can appear in the HAVING condition (represented by ???
in the above query)? Identify, in the list below, the term that
CANNOT appear.

A.  A
B.  B
C.  Count(B)
D.  All can appear
E.  None can appear

 101

A cannot appear unaggregated

Any aggregated term can appear in HAVING
clause. An attribute not in the GROUP-BY list
cannot be unaggregated in the HAVING clause.
Thus, B or E may appear unaggregated, and
all five attributes can appear in an aggregation.
However, A, C, or D cannot appear alone.

102

Grouping Examples (cont’)

SELECT S.major, MIN(S.age)
FROM Student S
WHERE S.age > 18
GROUP BY S.major
HAVING count(*) >1

Find the age of the youngest student with age > 18, for each
major with at least 2 students(of age > 18)

103

Grouping Examples (cont’)

SELECT S.major, MIN(S.age), avg(age)
FROM Student S
WHERE S.age > 18
GROUP BY S.major
HAVING avg(age) > (SELECT avg(age)
 FROM Student)

Find the age of the youngest student with age > 18, for each
major for which their average age is higher than the average
age of all students across all majors.

104

Grouping Examples (cont’)

Subqueries in the HAVING clause can be correlated
with fields from the outer query.

SELECT S.major, MIN(S.age)
FROM Student S
WHERE S.age > 18
GROUP BY S.major
HAVING 1 < (SELECT COUNT(*)
 FROM Student S2
 WHERE S.major=S2.major)

Find the age of the youngest student with age > 18, for each
major with at least 2 students(of any age)

105

Grouping Examples (cont’)

WRONG, cannot use nested aggregation
One solution would be to use subquery in the From Clause

SELECT major, avg(age)
FROM student S
GROUP BY major
HAVING min(avg(age))

Find those majors for which their average age is the minimum
over all majors

SELECT Temp.major, Temp.average
FROM(SELECT S.major, AVG(S.age) as average

 FROM Student S
 GROUP BY S.major) AS Temp

WHERE Temp.average in (SELECT MIN(Temp.average) FROM Temp)

Hideously ugly
Not supported
in all systems

106

Grouping Examples (cont’)

WRONG, cannot use nested aggregation
Another would be to use subquery with ALL in HAVING

SELECT major, avg(age)
FROM student S
GROUP BY major
HAVING min(avg(age))

Find those majors for which their average age is the minimum
over all majors

SELECT major, avg(age)
FROM student S
GROUP BY major
HAVING avg(age) <= all (SELECT AVG(S.age)

 FROM Student S
 GROUP BY S.major)

Easiest method
would be to use
Views

What are views
Relations that are defined with a create
table statement exist in the physical layer

do not change unless explicitly told so
Virtual views do not physically exist, they
are defined by expression over the tables.

Can be queries (most of the time) as if they were tables.

107

Why use views?
Hide some data from users
Make some queries easier
Modularity of database

When not specified exactly based on tables.

108

Defining and using Views
Create View <view name> As <view definition>

View definition is defined in SQL
From now on we can use the view almost as if it is
just a normal table

View V (R1,…Rn)

query Q involving V
Conceptually

 V (R1,…Rn) is used to evaluate Q

 In reality
 The evaluation is performed over R1,…Rn

 109

110

Defining and using Views
Example: Suppose tables
 Course(Course#,title,dept)
 Enrolled(Course#,sid,mark)

 CREATE VIEW CourseWithFails(dept, course#, mark) AS
 SELECT C.dept, C.course#, mark
 FROM Course C, Enrolled E
 WHERE C.course# = E.course# AND mark<50

This view gives the dept, course#, and marks for
those courses where someone failed

111

Views and Security

Views can be used to present
necessary information (or a summary),
while hiding details in underlying
relation(s).

Given CourseWithFails, but not Course or
Enrolled, we can find the course in which
some students failed, but we can’t find the
students who failed.

 Course(Course#,title,dept)
Enrolled(Course#,sid,mark)
VIEW CourseWithFails(dept, course#, mark)

112

View Updates
View updates must occur at the base tables.

Ambiguous
Difficult

DBMS’s restrict view updates only to some simple views
on single tables (called updatable views)

 Course(Course#,title,dept)
Enrolled(Course#,sid,mark)

CourseWithFails(dept, course#, mark)

Example: UBC has one table for students. Should the CS
Department be able to update CS students info? Yes, Biology
students? NO
Create a view for CS to only be able to update CS students

113

View Deletes
Drop View <view name>

Dropping a view does not affect any tuples of
the in the underlying relation.

How to handle DROP TABLE if there’s a view on the
table?
DROP TABLE command has options to prevent a table
from being dropped if views are defined on it:

DROP TABLE Student RESTRICT
drops the table, unless there is a view on it

DROP TABLE Student CASCADE
drops the table, and recursively drops any view referencing it

114

The Beauty of Views
Find those majors for which their average age is the minimum over all majors
With views:
Create View Temp(major, average) as
 SELECT S.major, AVG(S.age) AS average
 FROM Student S
 GROUP BY S.major;

Select major, average
From Temp
WHERE average = (SELECT MIN(average) from Temp)
Without views:
 SELECT Temp.major, Temp.average
FROM(SELECT S.major, AVG(S.age) as average

 FROM Student S
 GROUP BY S.major) AS Temp

WHERE Temp.average in (SELECT MIN(Temp.average) FROM Temp)

Hideously ugly

Clicker question: views
Suppose relation R(a,b,c):

Define the view V by:
CREATE VIEW V AS
SELECT a+b AS d, c
FROM R;

What is the result of the query:
 SELECT d, SUM(c)

FROM V
GROUP BY d
HAVING COUNT(*) <> 1;

Identify, from the list below, a tuple in the result of the query:
A.  (2,3)
B.  (3,12)
C.  (5,9)
D.  All are correct
E.  None are correct 115

a b c
1 1 3
1 2 3
2 1 4
2 3 5
2 4 1
3 2 4
3 3 6

Clicker question: views
Suppose relation R(a,b,c):

Define the view V by:
CREATE VIEW V AS
SELECT a+b AS d, c
FROM R;

What is the result of the query:
 SELECT d, SUM(c)
 FROM V
 GROUP BY d
 HAVING COUNT(*) <> 1;
Identify, from the list below, a tuple in the result of the query:
A.  (2,3)
B.  (3,12)
C.  (5,9)
D.  All are correct
E.  None are correct

116

a b c
1 1 3
1 2 3
2 1 4
2 3 5
2 4 1
3 2 4
3 3 6

Right

Wrong. In view

Clickerview.sql

d c

2	 3	

3	 3	

3	 4	

5	 5	

6	 1	

5	 4	

6	 6	

V
d Sum(C)

3 7

5 9

6 7

117

Null Values

Tuples may have a null value, denoted by null, for
some of their attributes
Value null signifies an unknown value or that a
value does not exist.
The predicate IS NULL (IS NOT NULL) can be
used to check for null values.

E.g. Find all student names whose age is not known.
 SELECT name

 FROM Student
 WHERE age IS NULL

The result of any arithmetic expression involving null
is null

E.g. 5 + null returns null.

118

Null Values and Three Valued Logic
null requires a 3-valued logic using the truth value unknown:

OR: (unknown or true) = true, (unknown or false) = unknown
 (unknown or unknown) = unknown
AND: (true and unknown) = unknown, (false and unknown) = false,
 (unknown and unknown) = unknown
NOT: (not unknown) = unknown
“P is unknown” evaluates to true if predicate P evaluates to unknown

Any comparison with null returns unknown
E.g. 5 < null or null <> null or null = null

Result of where clause predicate is treated as false if it
evaluates to unknown
All aggregate operations except count(*) ignore tuples with
null values on the aggregated attributes.

Round up

Round down

select count(fid)
from class

select count(*)
from class

Clicker null query

Determine the result of:
 SELECT COUNT(*),

 COUNT(Runs)
FROM Scores
WHERE Team = 'Carp'
Which of the following is in
the result:

A.  (1,0)
B.  (2,0)
C.  (1,NULL)
D.  All of the above
E.  None of the above

119

Team Day Opponent Runs
Dragons Sun Swallows 4
Tigers Sun Bay Stars 9
Carp Sun NULL NULL
Swallows Sun Dragons 7
Bay Stars Sun Tigers 2
Giants Sun NULL NULL
Dragons Mon Carp NULL
Tigers Mon NULL NULL
Carp Mon Dragons NULL
Swallows Mon Giants 0
Bay Stars Mon NULL NULL
Giants Mon Swallows 5

Scores:

Clicker null query

Determine the result of:
 SELECT COUNT(*),

 COUNT(Runs)
FROM Scores
WHERE Team = 'Carp'
Which of the following is in
the result:

A.  (1,0)
B.  (2,0)
C.  (1,NULL)
D.  All of the above
E.  None of the above

120

Team Day Opponent Runs
Dragons Sun Swallows 4
Tigers Sun Bay Stars 9
Carp Sun NULL NULL
Swallows Sun Dragons 7
Bay Stars Sun Tigers 2
Giants Sun NULL NULL
Dragons Mon Carp NULL
Tigers Mon NULL NULL
Carp Mon Dragons NULL
Swallows Mon Giants 0
Bay Stars Mon NULL NULL
Giants Mon Swallows 5

Scores:

Right

Start clickernull.sql

Natural Join
The SQL NATURAL JOIN is a type of EQUI JOIN and is structured
in such a way that, columns with same name of associate tables will
appear once only.
Natural Join : Guidelines

The associated tables have one or more pairs of identically
named columns.
The columns must be the same data type.
Don’t use ON clause in a natural join.

Natural join of tables with no pairs of identically named columns will
return the cross product of the two tables.

121

Select *
From student s natural join enrolled e

Select *
From student s natural join class c

122

More fun with joins
What happens if I execute query:

 Select *
 From student s, enrolled e
 Where s.snum = e.snum

To get all students, you need an outer join
There are several special joins declared in the from clause:

Inner join – default: only include matches
Left outer join – include all tuples from left hand relation
Right outer join – include all tuples from right hand relation
Full outer join – include all tuples from both relations

Orthogonal: can have natural join (as in relational algebra)
Example: SELECT *

 FROM Student S NATURAL LEFT OUTER JOIN Enrolled E

123

More fun with joins examples

Natural
Inner Join

A B

1 2

3 3

B C

2 4

4 6

R S

A B C

1 2 4

Natural
Left outer Join

A B C

1 2 4

3 3 Null

Natural
Right outer Join

A B C

1 2 4

Null 4 6

Natural
outer Join

A B C

1 2 4

3 3 Null

Null 4 6

Outer join not implemented in MYSQL
Outer join is implemented in Oracle

Outer join (without the Natural) will
use the key word on for specifying
The condition of the join.

Clicker outer join question
Given:
Compute:
SELECT R.A, R.B, S.B, S.C, S.D
FROM R FULL OUTER JOIN S
 ON (R.A > S.B AND R.B = S.C)
Which of the following tuples of R or S
is dangling (and therefore needs to be
padded in the outer join)?

A.  (1,2) of R
B.  (3,4) of R
C.  (2,4,6) of S
D.  All of the above
E.  None of the above 124

A B

1 2

3 4

5 6

B C D

2 4 6

4 6 8

4 7 9

R(A,B) S(B,C,D)

Clicker outer join question
Given:
Compute:
SELECT R.A, R.B, S.B, S.C, S.D
FROM R FULL OUTER JOIN S
 ON (R.A > S.B AND R.B = S.C)
Which of the following tuples of R or S
is dangling (and therefore needs to be
padded in the outer join)?

A.  (1,2) of R
B.  (3,4) of R
C.  (2,4,6) of S
D.  All of the above
E.  None of the above 125

A B

1 2

3 4

5 6

B C D

2 4 6

4 6 8

4 7 9

R(A,B) S(B,C,D)

A is correct

Start clickerouter.sql

A B B C D
3	 4	 2	 4	 6	
5	 6	 4	 6	 8	
1	 2	 NULL	NULL	NULL	

NULL	NULL	 4	 7	 9	

126

Database Manipulation
Insertion redux
Can insert a single tuple using:
 INSERT INTO Student
 VALUES (53688, ‘Smith’, ‘222 W.15th ave’, 333-4444, MATH)
or
 INSERT INTO Student (sid, name, address, phone, major)
 VALUES (53688, ‘Smith’, ‘222 W.15th ave’, 333-4444, MATH)

Add a tuple to student with null address and phone:
 INSERT INTO Student (sid, name, address, phone, major)
 VALUES (33388, ‘Chan’, null, null, CPSC)

127

Database Manipulation
Insertion redux (cont)

Can add values selected from another table
Enroll student 51135593 into every class taught by
faculty 90873519

INSERT INTO Enrolled
 SELECT 51135593, name
 FROM Class
 WHERE fid = 90873519

The select-from-where statement is fully evaluated before

any of its results are inserted or deleted.

128

Database Manipulation
Deletion

Note that only whole tuples are deleted.
Can delete all tuples satisfying some condition
(e.g., name = Smith):

 DELETE FROM Student
 WHERE name = ‘Smith’

129

Database Manipulation
Updates

Increase the age of all students by 2 (should not
be more than 100)
Need to write two
updates:

 UPDATE Student
SET age = 100
WHERE age >= 98

UPDATE Student
SET age = age + 2
WHERE age < 98

Is the order important?

130

Integrity Constraints (Review)
An IC describes conditions that every legal
instance of a relation must satisfy.

Inserts/deletes/updates that violate IC’s are
disallowed.
Can ensure application semantics (e.g., sid is a key),
or prevent inconsistencies (e.g., sname has to be a
string, age must be < 200)

Types of IC’s:
domain constraints,
primary key constraints,
foreign key constraints,
general constraints

131

General Constraints: Check

CREATE TABLE Student
 (snum INTEGER,
 sname CHAR(32),
 major CHAR(32),
 standing CHAR(2)
 age REAL,
 PRIMARY KEY (snum),
 CHECK (age >= 10

 AND age < 100);

We can specify constraints over a single
table using table constraints, which have
the form

Check conditional-expression

Check constraints are checked when
 tuples are inserted or modified

132

General Constraints: Check
Constraints can be named
Can use subqueries to express constraint
Table constraints are associated with a single table,
although the conditional expression in the check clause
can refer to other tables

CREATE TABLE Enrolled
 (snum INTEGER,
 cname CHAR(32),
 PRIMARY KEY (snum, cname),
 CONSTRAINT noR15
 CHECK (`R15’ <>

 (SELECT c.room
 FROM class c
 WHERE c.name=cname)));

No one can be
 enrolled in a class,
 which is held in R15

133

Constraints over Multiple Relations:
Remember this one?

We couldn’t express
“every employee works in a department and
every department has some employee in it”?
Neither foreign-key nor not-null constraints in
Works_In can do that.
Assertions to the rescue!

dname

budget did
since

lot

name

sin

Departments

(many) (many)
WorksIn Employees

134

Constraints Over Multiple Relations
Cannot be defined in one table.
Are defined as ASSERTIONs which are not
associated with any table
Example: Every MovieStar needs to star in at least
one Movie

CREATE ASSERTION totalEmployment
CHECK
(NOT EXISTS ((SELECT StarID FROM MovieStar)
 EXCEPT
 (StarID FROM StarsIn)));

Constraints Over Multiple Relations
Example: Write an assertion to enforce
every student to be registered in at least
one course.

135

CREATE ASSERTION Checkregistry
CHECK
(NOT EXISTS ((SELECT snum FROM student)
 EXCEPT
 (SELECT snum FROM enrolled)));

136

Triggers
Trigger : a procedure that starts automatically if
specified changes occur to the DBMS
Active Database: a database with triggers
A trigger has three parts:
1.  Event (activates the trigger)
2.  Condition (tests whether the trigger should run)
3.  Action (procedure executed when trigger runs)

Database vendors did not wait for trigger
standards! So trigger format depends on the
DBMS
NOTE: triggers may cause cascading effects.
Good way to shoot yourself in the foot

Useful for project
Not tested on exams

137

Triggers: Example (SQL:1999)
CREATE TRIGGER youngStudentUpdate

 AFTER INSERT ON Student
REFERENCING NEW TABLE NewStudent
FOR EACH STATEMENT

 INSERT INTO
 YoungStudent(snum, sname, major, standing, age)
 SELECT snum, sname, major, standing, age
 FROM NewStudent N
 WHERE N.age <= 18;

event

newly inserted
tuples

apply once per
statement

action

Can be either before or after

138

That’s nice. But how do we code
with SQL?

Direct SQL is rarely used: usually, SQL
is embedded in some application code.
We need some method to reference
SQL statements.
But: there is an impedance mismatch
problem.

Structures in databases <> structures in
programming languages

Many things can be explained with the
impedance mismatch.

139

The Impedance Mismatch Problem
The host language manipulates variables, values,
pointers SQL manipulates relations.

There is no construct in the host language for
manipulating relations. See
https://en.wikipedia.org/wiki/Object-
relational_impedance_mismatch

Why not use only one language?

•  Forgetting SQL: “we can quickly dispense with this idea”
 [Ullman & Widom, pg. 363].
•  SQL cannot do everything that the host language can do.

140

Database APIs

Rather than modify compiler, add library with
database calls (API)
Special standardized interface: procedures/
objects
Passes SQL strings from language, presents
result sets in a language-friendly way –
solves that impedance mismatch
Microsoft’s ODBC is a C/C++ standard on
Windows
Sun’s JDBC a Java equivalent
API’s are DBMS-neutral

a “driver” traps the calls and translates them into
DBMS-specific code

141

A glimpse into your possible future:
JDBC

JDBC supports a variety of features for querying
and updating data, and for retrieving query
results
JDBC also supports metadata retrieval, such as
querying about relations present in the database
and the names and types of relation attributes
Model for communicating with the database:

Open a connection
Create a “statement” object
Execute queries using the Statement object to send
queries and fetch results
Exception mechanism to handle errors

142

SQL API in Java (JDBC)

Connection con = // connect
 DriverManager.getConnection(url, ”login", ”pass");
Statement stmt = con.createStatement(); // set up stmt
String query = "SELECT sname, age FROM Student";
ResultSet rs = stmt.executeQuery(query);
try { // handle exceptions
 // loop through result tuples
 while (rs.next()) {
 String s = rs.getString(“sname");
 Int n = rs.getFloat(“age");
 System.out.println(s + " " + n);
 }
} catch(SQLException ex) {
 System.out.println(ex.getMessage ()
 + ex.getSQLState () + ex.getErrorCode ());
}

And now a brief digression
Have you ever wondered why some
websites don’t allow special characters?

143

144

Summary

SQL was an important factor in the early acceptance
of the relational model; more natural than earlier,
procedural query languages.
Relationally complete; in fact, significantly more
expressive power than relational algebra.
Consists of a data definition, data manipulation and
query language.
Many alternative ways to write a query; optimizer
should look for most efficient evaluation plan.

In practice, users need to be aware of how queries are
optimized and evaluated for best results.

145

Summary (Cont’)

NULL for unknown field values brings many
complications
SQL allows specification of rich integrity
constraints (and triggers)
Embedded SQL allows execution within a
host language; cursor mechanism allows
retrieval of one record at a time
APIs such as ODBC and JDBC introduce a
layer of abstraction between application
and DBMS

Learning Goals Revisited
Given the schemas of a relation, create SQL queries using: SELECT, FROM,
WHERE, EXISTS, NOT EXISTS, UNIQUE, NOT UNIQUE, ANY, ALL, DISTINCT,
GROUP BY and HAVING.
Show that there are alternative ways of coding SQL queries to yield the same result.
Determine whether or not two SQL queries are equivalent.
Given a SQL query and table schemas and instances, compute the query result.
Translate a query between SQL and RA.
Comment on the relative expressive power of SQL and RA.
Explain the purpose of NULL values and justify their use. Also describe the
difficulties added by having nulls.
Create and modify table schemas and views in SQL.
Explain the role and advantages of embedding SQL in application programs.
Write SQL for a small-to-medium sized programming application that requires
database access.
Identify the pros and cons of using general table constraints (e.g., CONSTRAINT,
CHECK) and triggers in databases.

146

