CPSC 304 Introduction to Database Systems

Formal Relational Languages

Textbook Reference Database Management Systems: 4 - 4.2 (skip the calculii)

Hassan Khosravi Borrowing many slides from Rachel Pottinger

Learning Goals

- Identify the basic operators in Relational Algebra (RA).
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.

Databases: the continuing saga

When last we left databases...

- We learned that they're excellent things
- We learned how to conceptually model them using ER diagrams
- We learned how to logically model them using relational schemas
- We knew how to normalize our database relations
- We're almost ready to use SQL to query it, but first...

Balance, Daniel-san, is key

- The mathematical foundations:
- Relational Algebra
 - Clear way of describing core concepts
 - partially procedural: describe what you want and how you want it Order of operations matter

^{the}KarateKid

Relational Query Languages

- Allow data manipulation and retrieval from a DB
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic
 - Allows for much optimization via query optimizer
- Query Languages != Programming Languages
 - QLs not intended for complex calculations
 - QLs provide easy access to large datasets
 - Users *do not* need to know how to navigate through complicated data structures

Relational Algebra (RA)

- 1970 Ce
- Basic operations Just so all in one place
 - <u>Selection</u> (σ): Selects a subset of rows from relation.
 - <u>**Projection**</u> (π) : Deletes unwanted columns from relation.
 - Cross-product (x): Allows us to combine two relations.
 - Set-difference (-): Tuples in relation 1, but not in relation 2.
 - <u>Union</u> (\cup): Tuples in relation 1 and in relation 2.
 - <u>Rename</u> (ρ): Assigns a (another) name to a relation
- Additional, inessential but useful operations:
 - Intersection (∩), join (⋈), division (/), assignment(←)
- All operators take one or two relations as inputs and give a new relation as a result
- For the purposes of relational algebra, relations are sets
- Operations can be composed. (Algebra is "closed")

Example Movies Database

Movie(MovieID, Title, Year)

StarsIn(MovieID, StarID, Character)

MovieStar(<u>StarID</u>, Name, Gender)

Example Instances

StarsIn:

Movie:

MovieStar:

MovielD	Title		Y	/ear
1	Star Wa	ars	1	977
2	Gone w	rith the Wind	1	939
3	The Wiz	zard of Oz	1	939
4	Indiana Raiders	Jones and the of the Lost Ark	1	981
MovielD		StarlD		Character
1		1		Han Solo
4		1		Indiana Jones
2		2		Scarlett O'Hara
3		3		Dorothy Gale
StarlD		Name		Gender
1		Harrison Ford		Male
2		Vivian Leigh		Female
3		Judy Garland		Female 8

Greek letters

Set of

tuples of r

satisfying p

Selection (σ (sigma))

- Notation: $\sigma_{p}(r)$
- *p* is called the selection predicate
- Defined as:

 $\sigma_p(r) = \{t \mid t \in r \text{ and } p(t)\}$

Where *p* is a formula in propositional calculus consisting of:

connectives : ∧ (and), ∨ (or), ¬ (not) and **predicates:**

<attribute> op <attribute> or
<attribute> op <constant>
where op is one of: =, \neq , >, ≥, <, ≤</pre>

Selection Example

Movie:	MovielD	Title	Year
	1	Star Wars	1977
	2	Gone with the Wind	1939
	3	The Wizard of Oz	1939
	4	Indiana Jones and the Raiders of the Lost Ark	1981

$\sigma_{\text{year} > 1940}$ (Movie)

MovielD	Title	Year
1	Star Wars	1977
4	Indiana Jones and the Raiders of the Lost Ark	1981

Selection Example #2

Find all male stars

$$\sigma_{\text{Gender} = \text{`male'}} MovieStar$$

StarID	Name	Gender
1	Harrison Ford	Male

Projection $(\pi (pi))$

Notation:

 $\pi_{A1, A2, ..., Ak}$ (*r*) where *A1, ..., Ak* are attributes (the projection list) and *r* is a relation.

- The result: a relation of the k attributes
 A1, A2, ..., AK obtained from r by erasing the columns that are not listed
- Duplicate rows removed from result (relations are sets)

Projection Examples

π_{Title} , Year	(Movie)
----------------------	---------

MovielD	Title	Year	Title	Year
1	Star Wars	1977	Star Wars	1977
2	Gone with the Wind	1939	Gone with the Wind	1939
3	The Wizard of Oz	1939	The Wizard of Oz	1939
4	Indiana Jones and the Raiders of the Lost Ark	1981	Indiana Jones and the Raiders of the Lost Ark	1981

 $\pi_{\text{Year}}(\text{Movie})$

Movie:

What is $\pi_{\text{Title, Year}}(\sigma_{\text{year} > 1940}(\text{Movie}))?$

Year	
1977	
1939	
1981	

Title	Year
Star Wars	1977
Indiana Jones and the Raiders of the Lost Ark	1981

Projection Example #2

Find the IDs of actors who have starred in movies

StarID	
1	
2	
3	

Clicker Projection Example

Suppose relation R(A,B,C) has the tuples:

Α	В	С
1	2	3
4	2	3
4	5	6
2	5	3

1 2 6 Compute the projection $\pi_{C,B}(R)$, and identify one of its tuples from the list below.

- A. (2,3)
- в. (4,2,3)
- C. (6,4)
- D. (6,5)
- E. None of the above

Clicker Projection Example

Suppose relation R(A,B,C) has the tuples:

Α	В	С
1	2	3
4	2	3
4	5	6
2	5	3

1 2 6 Compute the projection $\pi_{C,B}(R)$, and identify one of its tuples from the list below.

A.	(2,3)	Wrong order	С	В
В.	(4,2,3)	Not projected	3	2
0	$(C \Lambda)$	Wrong attributes	6	5
C.	(0,4)		3	5
D.	(6,5)	right	6	2

E. None of the above

Selection and Projection Example

Find the ids of movies made prior to 1950

Movie:

MovielD Title Year Star Wars 1977 1 2 Gone with the Wind 1939 3 The Wizard of Oz 1939 4 Indiana Jones and the 1981 Raiders of the Lost Ark

 $\pi_{\text{MovieID}} \left(\sigma_{\text{year} < 1950} \text{ Movie} \right)$ $\boxed{\text{MovieID}}{2}$ 3

Union, Intersection, Set-Difference

- Notation: $r \cup s$ $r \cap s$ r s
- Defined as:

 $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$ $r \cap s = \{t \mid t \in r \text{ and } t \in s\}$ $r - s = \{t \mid t \in r \text{ and } t \notin s\}$

- For these operations to be well-defined:
 - 1. *r, s* must have the *same arity* (same number of attributes)
 - 2. The attribute domains must be *compatible* (e.g., 2nd column of *r* has same domain of values as the 2nd column of *s*)
- What is the schema of the result?

Union, Intersection, and Set Difference Examples

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

$\textbf{MovieStar} \cup \textbf{Singer}$

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female
4	Christine Lavin	Female

attributes compatible!

Singer

StarID	SName	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

MovieStar ∩ Singer

StarID	Name	Gender
3	Judy Garland	Female

MovieStar - Singer

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female

Set Operator Example

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

Singer

StarlD	Name	Gender
3	Judy Garland	Female
4	Christine Lavin	Female

Find the names of stars that are Singers but not MovieStars

π_{Name}(Singers – MovieStars)
Name
Christine Lavin

Cartesian (or Cross)-Product

- Notation: r x s
- Defined as:

 $r \ge s = \{ t \ q \mid t \in r \text{ and } q \in s \}$

- It is possible for r and s to have attributes with the same name, which creates a naming conflict.
 - In this case, the attributes are referred to solely by position.

Cartesian Product Example

MovieStar			StarsIn			
StarID	Name	Gender		MovielD	StarID	Character
1	Harrison Ford	Male		1	1	Han Solo
2	Vivian Leigh	Female		4	1	Indiana Jones
3	Judy Garland	Female		2	2	Scarlett O'Hara
				3	3	Dorothy Gale

MovieStar x StarsIn

1	Name	Gender	MovielD	5	Character
1	Harrison Ford	Male	1	1	Han Solo
2	Vivian Leigh	Female	1	1	Han Solo
3	Judy Garland	Female	1	1	Han Solo
1	Harrison Ford	Male	4	1	Indiana Jones
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	4	1	Indiana Jones
					22

Rename (p (rho))

- Allows us to name results of relational-algebra expressions.
 Notation
 - ρ **(Χ, Ε)**

returns the expression E under the name X

- We can rename part of an expression, e.g., $\rho((StarlD \rightarrow ID), \pi_{StarID,Name}(MovieStar))$
- We can also refer to positions of attributes, e.g., $\rho((1 \rightarrow ID))$, $\pi_{StarID,Name}(MovieStar)$ Is the same as above

Cartesian Product Example

MovieStar			StarsIn		
StarID	Name	Gender	MovielD	StarID	Character
1	Harrison Ford	Male	1	1	Han Solo
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	2	2	Scarlett O'Hara
			3	3	Dorothy Gale

MovieStar x StarsIn

1	Name	Gender	MovielD	5	Character
1	Harrison Ford	Male	1	1	Han Solo
2	Vivian Leigh	Female	1	1	Han Solo
3	Judy Garland	Female	1	1	Han Solo
1	Harrison Ford	Male	4	1	Indiana Jones
2	Vivian Leigh	Female	4	1	Indiana Jones
3	Judy Garland	Female	4	1	Indiana Jones

$\rho((1 \rightarrow StarID1, 5 \rightarrow StarID2), MovieStar x StarsIn)$

Additional Operations

- They can be defined in terms of the primitive operations
- They are added for convenience
- They are:
 - Join (Condition, Equi-, Natural) (▷)
 - Division (/)
 - ♦ Assignment (←)

Condition Join:

$$R \bowtie_{c} S = \sigma_{c}(R \times S)$$

Result schema same as cross-product.

- Fewer tuples than cross-product
 - might be able to compute more efficiently
- Sometimes called a *theta-join*.
 - The reference to an attribute of a relation R can be by position (R.i) or by name (R.name)

Condition Join Example

MovieStar

Name	Gender
Harrison Ford	Male
Vivian Leigh	Female
Judy Garland	Female
	NameHarrison FordVivian LeighJudy Garland

StarsIn

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

MovieStar MovieStar.StarID < StarsIn.StarID StarsIn

1	Name	Gender	MovielD	5	Character
1	Harrison Ford	Male	2	2	Scarlett O'Hara
1	Harrison Ford	Male	3	3	Dorothy Gale
2	Vivian Leigh	Female	3	3	Dorothy Gale

Condition Join Clicker Example

• Compute $R \bowtie_{R.A < S.C \text{ and } R.B < S.D}S$ where:

R(A.B)	• -	<u>S(B.C.E</u>)):	
Α	В	В	С	D
1	2	2	4	6
3	4	4	6	8
5	6	4	7	9

- Assume the schema of the result is (A, R.B, S.B, C, D). Which tuple is in the result?
- A. (1,2,2,6,8)
- в. (1,2,4,4,6)
- C. (5,6,2,4,6)
- D. All are valid
- E. None are valid

Condition Join Clicker Example

• Compute $R \bowtie_{R.A < S.C \land R.B < S.D} S$ where:

<u>R(A.B)</u>	-	<u>S(B.C.C</u>	<u>)):</u>	
Α	В	В	С	D
1	2	2	4	6
3	4	4	6	8
5	6	4	7	9

Assume the schema of the result is (A, R.B, S.B, C, D). Which tuple is in the result?

A. (1,2,2,6,8) (2,6,8) would have to be in S
B. (1,2,4,4,6) (4,4,6) would have to be in S
C. (5,6,2,4,6) Violates R.A < SC & R.B < S.D
D. All are valid (5 > 2, and 6 = 6)
E. None are valid Correct

Equi-Join & Natural Join

- <u>Equi-Join</u>: A special case of condition join where condition contains only equalities
 - Result schema: similar to cross-product, but contains only one copy of fields for which equality is specified
- <u>Natural Join</u>: Equijoin on all common attributes
 - Result schema: similar to cross-product, but has only one copy of each common attribute
 - No need to show the condition
 - If the two attributes have no common attributes, this would be the same as cross product.

Equi and Natural Join Examples

MovieStar

StarID	Name	Gender
1	Harrison Ford	Male
2	Vivian Leigh	Female
3	Judy Garland	Female

MovielD	StarID	Character
1	1	Han Solo
4	1	Indiana Jones
2	2	Scarlett O'Hara
3	3	Dorothy Gale

31

MovieStar MovieStar.StarID = StarsIn.StarID StarsIn Or

StarsIn

MovieStar ⋈ StarsIn

StarID	Name	Gender	MovielD	Character
1	Harrison Ford	Male	1	Han Solo
1	Harrison Ford	Male	4	Indiana Jones
3	Judy Garland	Female	3	Dorothy Gale
2	Vivian Leigh	Female	2	Scarlett O'Hara

Join Example

Find the names of all Movie Stars who were in any Movie

π_{name} (MovieStar \bowtie StarsIn)

Name

Harrison Ford

Vivian Leigh

Judy Garland

 What if you wanted to find Movie Stars who were in all movies?

Assignment Operation

Notation: t ← E assigns the result of expression E to a temporary relation t.

- Used to break complex queries to small steps.
- Assignment is always made to a temporary relation variable.
- Example: Write $r \cap s$ in terms of \cup and –

$$temp1 \leftarrow r - s$$
$$result \leftarrow r - temp$$

Find names of actors who have been in "Indiana Jones"

	(σ _{Title = "Indiana Jones"} Movie)				
Мс	ovielD	Title	Yea	ar	
4		Indiana Jones and the Raiders of the Lost Ark	198	31	

	$((\sigma_{\text{Title}} = "Indiana Jones" Movie) \bowtie \text{StarsIn})$					
NovielD	Title	Year	StarID	Character		
ŀ	Indiana Jones and the Raiders of the Lost Ark	1981	1	Indiana Jones		

 $(\pi_{\text{Name}}((\sigma_{\text{Title}} = "Indiana Jones" Movie)) \bowtie \text{StarsIn} \bowtie \text{MovieStar}))$

Name

Harrison Ford

Find names of actors who have been in "Indiana Jones" or "Star Wars"

$(\sigma_{\text{Title}} = "Indiana Jones" v$	title = "Star Wars"	Movie)
--	---------------------	--------

MovielD	Title	Year
1	Star Wars	1977
4	Indiana Jones and the Raiders of the Lost Ark	1981

 $(\pi_{\text{Name}}((\sigma_{\text{Title}} = \text{``Indiana Jones'' v title} = \text{``Star Wars'' Movie}) \\ \bowtie \text{ StarsIn} \bowtie \text{ MovieStar})$

Name

Harrison Ford

Find the name of actors who have been in "Indiana Jones" <u>and</u> "Star Wars"

Indy
$$\leftarrow \pi_{\text{starID}}((\sigma_{\text{Title}} = "Indiana Jones" Movie) \bowtie \text{StarsIn})$$

StarWars $\leftarrow \pi_{\text{starID}}((\sigma_{\text{Title} = "Star Wars"} \text{Movie}) \bowtie \text{StarsIn})$

CoolPeople←Indy ∩ StarWars

 π name(CoolPeople \bowtie MovieStar)

In-class Exercise

Find the names of actors who have been in a movie with the same title as the actor's name

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name

Which of the following does *not* do that correctly:

- A. $\pi_{\text{Name}}((\text{Movie} \bowtie \text{StarsIn}) \bowtie_{\text{title}} = \text{name} \land \text{StarID} = MovieStar.StarID} \text{MovieStar})$
- B. π_{Name} (MovieStar \bowtie_{Name} = title ^ MovieStar.StarID = StarID (StarsIn \bowtie Movie))
- C. $\pi_{\text{Name}}((\text{StarsIn} \bowtie (\pi_{\text{StarID,Name}} \text{MovieStar})))$ $\bowtie_{\text{MovieID} = \text{Movie.MovieID} \land \text{title} = \text{name}} \text{Movie})$
- D. All are correct
- E. None are correct

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name

Which of the following does *not* do that correctly:

- A. $\pi_{\text{Name}}((\text{Movie} \bowtie \text{StarsIn}) \bowtie_{\text{title}} = \text{name} \land \text{StarID} = MovieStar.StarID} \text{MovieStar})$
- B. π_{Name} (MovieStar \bowtie_{Name} = title ^ MovieStar.StarID = StarID (StarsIn \bowtie Movie))
- C. $\pi_{\text{Name}}((\text{StarsIn} \bowtie (\pi_{\text{StarID,Name}} \text{MovieStar})))$ $\bowtie_{\text{MovieID} = \text{Movie.MovieID} \land \text{title} = \text{name}} \text{Movie})$
- D. All are correct

All are correct (D)

E. None are correct

Division

- Notation: r/s or r + s
- Useful for expressing queries that include a "for all" or "for every" phrase, e.g., *Find movie stars* who were in <u>all</u> movies.
- Let r and s be relations on schemas R and S respectively where

•
$$r = (A_1, ..., A_m, B_1, ..., B_n)$$

• $s = (B_1, ..., B_n)$

Then r / s is a relation on schema

 $r / s = (A_1, ..., A_m)$ defined as

 $r/s = \{ t \mid t \in \prod_{r-s}(r) \land \forall u \in s (tu \in r) \}$

 i.e., A/B contains all x tuples (MovieStars) such that for <u>every</u> y tuple (movies) in B, there is an x,y tuple in A.

Examples of Division A/B

Division Clicker Question Consider the relations

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. Z(C) ← π_A S R(E,C)/Z
- D. All of the above
- E. None of the above

Division Clicker Question Answer A exposed

E

1

С

1

2

3

S

Α

1

2

3

D

2

2

2

Β

2

2

2

A. $X(D) \leftarrow \pi_A S$ R(C,D)/X

С

1

2

3

R

D

2

2

2

- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- C. Z(C) ← π_A S R(E,C)/Z
- D. All of the above
- E. None of the above

???

2

Т

D

1

2

3

Division Clicker Question Answer B exposed

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. Y(A) ←π_CR S(B,A)/Y
- C. $Z(C) \leftarrow \pi_A S$ R(E,C)/Z
- D. All of the above
- E. None of the above

Division Clicker Question Answer C exposed

E

1

Which of the following is a possible expression for creating T?

E

1

1

S

A

1

2

3

С

1

2

3

Β

2

2

2

1

С

1

2

3

A. $X(D) \leftarrow \pi_A S$ R(C,D)/X

С

1

2

3

R

D

2

2

2

- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- C. Z(C) ← π_A S R(E,C)/Z
- D. All of the above
- E. None of the above

???

2

Division Clicker Question Consider the relations

Which of the following is a possible expression for creating T?

- A. $X(D) \leftarrow \pi_A S$ R(C,D)/X
- B. $Y(A) \leftarrow \pi_C R$ S(B,A)/Y
- c. Z(C) ← π_A S R(E,C)/Z
- D. All of the above
- E. None of the above

Find the name of actors who have been in all movies

Uses division; schemas of the input relations *must be carefully chosen*: InAll ← π_{StarID, MovieID} StarsIn/ π_{MovieID}(Movie)

 $\pi_{\text{Name}}(\text{InAll} \bowtie \text{MovieStar})$

Find the names of actors who have been in all movies after 1950

LateMovieIds $\leftarrow \pi_{MovieID}(\sigma_{year > 1950}(Movie))$ InAll $\leftarrow (\pi_{StarID, MovieID} (StarsIn) / LateMovieIds)$ $\pi_{Name}(InAll \bowtie MovieStar)$

Clicker Exercise

Find the names of actors who have been in a movie with the same title as the actor's name

Which of the following does *not* do that correctly:

- A. $\pi_{\text{Name}}((\text{Movie} \bowtie \text{StarsIn}) \bowtie_{\text{title}} = \text{name} \land \text{StarID} = MovieStar.StarID} \text{MovieStar})$
- B. π_{Name} (MovieStar \bowtie_{Name} = title ^ MovieStar.StarID = StarID (StarsIn \bowtie Movie))
- C. $\pi_{\text{Name}}((\text{StarsIn} \bowtie (\pi_{\text{StarID,Name}} \text{MovieStar})))$ $\bowtie_{\text{MovieID} = \text{Movie.MovieID} \land \text{title} = \text{name}} \text{Movie})$
- D. All are correct

All are correct (D)

E. None are correct

Learning Goals Revisited

- Identify the basic operators in RA.
- Use RA to create queries that include combining RA operators.
- Given an RA query and table schemas and instances, compute the result of the query.