# Some CPSC 259 Sample Exam Questions on Graph Theory (Part 6) <br> Sample Solutions 

## DON'T LOOK AT THESE SOLUTIONS UNTIL YOU’VE MADE AN HONEST ATTEMPT <br> AT ANSWERING THE QUESTIONS YOURSELF.

1. \{3 marks\} Can a simple graph have 5 vertices and 12 edges? If so, draw it; if not, explain why it is not possible to have such a graph.

## ANSWER:

In a simple graph, no pair of vertices can have more than one edge between them. In other words, there are no parallel edges.

For a simple graph, the "densest" graph we can get is one in which every vertex is connected to every other vertex. This is called a complete graph. The maximum number of edges in the complete graph containing 5 vertices is given by $\mathbf{K}_{5}$ : which is $C(5,2)$ edges $=$ " 5 choose 2 " edges $=10$ edges. Since $12>10$, it is not possible to have a simple graph with more than 10 edges.
2. \{6 marks\} Suppose that in a group of 5 people: A, B, C, D, and E, the following pairs of people are acquainted with each other.

- A and C
- A and D
- B and C
- C and D
- C and E
a) Draw a graph $G$ to represent this situation.
b) List the vertex set, and the edge set, using set notation. In other words, show sets V and $E$ for the vertices and edges, respectively, in $G=\{V, E\}$.
c) Draw an adjacency matrix for G.

ANSWER:
a) One such graph for $G$ is:

b) For sets V and E , any order to the elements is fine. Furthermore, in edge set E , you can specify ( $\mathrm{A}, \mathrm{C}$ ) or ( $\mathrm{C}, \mathrm{A}$ ); they mean the same thing.

$$
\begin{aligned}
& \mathrm{V}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\} \\
& \mathrm{E}=\{(\mathrm{A}, \mathrm{C}),(\mathrm{A}, \mathrm{D}),(\mathrm{B}, \mathrm{C}),(\mathrm{C}, \mathrm{D}),(\mathrm{C}, \mathrm{E})\}
\end{aligned}
$$

c) Adjacency matrix ( $0=$ no edge; $1=$ edge $)$ :

|  | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | 0 | 0 | 1 | 1 | 0 |
| B | 0 | 0 | 1 | 0 | 0 |
| C | 1 | 1 | 0 | 1 | 1 |
| D | 1 | 0 | 1 | 0 | 0 |
| E | 0 | 0 | 1 | 0 | 0 |

3. $\left\{3\right.$ marks \} How many more edges are there in the complete graph $\mathbf{K}_{7}$ than in the complete graph $\mathbf{K}_{5}$ ?

## ANSWER:

$C(7,2)-C(5,2)=21-10=11$
4. \{4 marks\} Given a graph for a tree (with no designated root), briefly describe how a root can be chosen so that the tree has maximum height. Similarly, describe how a root can be chosen so that the tree has minimum height. (Note that path length is described as the number of edges that need to be traversed between two vertices.)

## ANSWER:

For the maximum height, choose either end of the longest path as the root. For the minimum height, choose the vertex at the half-way point of the path.
5. \{6 marks\} Perform a breadth-first search of the following graph, where E is the starting node. In other words, show the output if we issue the call BFS(E). Provide two cases: (a) Use a counterclockwise ordering from the top (12 o'clock position); and (b) Use a clockwise ordering from the top.
A
$\underbrace{F}$
B
D


## ANSWER:

(a) When we visit adjacent nodes in a counterclockwise order from the top, the order in which we visit the nodes is:
E, D, F, C, G, B, A
(b) When we visit adjacent nodes in a clockwise order from the top, the order in which we visit the nodes is:

> E, F, D, G, C, B, A
6. \{6 marks\} Perform a depth-first search of the same graph as in Question 5, but use D as the starting node. In other words, show the output if we issue the call DFS(D). Provide two cases: (a) Use a counterclockwise ordering from the top (12 o'clock position); and (b) Use a clockwise ordering from the top.

## ANSWER:

(a) When we visit adjacent nodes in a counterclockwise order from the top, the order in which we visit the nodes is:
D, E, F, C, B, A, G
(b) When we visit adjacent nodes in a clockwise order from the top, the order in which we visit the nodes is:

> D, G, C, B, A, E, F

