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Learning Goals 
•  design simple recursive functions. 
•  recognize algorithms as being iterative or recursive. 
•  describe how a computer runs recursive algorithms. 
•  demonstrate the ability to draw recursion trees. 
•  explain how stack overflow may arise as a result of 

recursion. 
•  explain why a recursively defined method may take more 

space than an equivalent iteratively defined method. 
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Function/Method Calls 

•  A function or method call is an interruption or aside 
in the execution flow of a program: 

… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x>>=1 

  } 
  return y; 
} 
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Function Calls in Daily Life 

•  How do you handle interruptions in daily life? 
–  You’re at home, working on CPSC259 project. 
–  You stop to look up something in the book. 
–  Your roommate/spouse/partner/parent/etc. asks for you 

help moving some stuff. 
–  Your buddy calls. 
–  The doorbell rings. 

•  You stop what you’re doing, you memorize where 
you were in your task, you handle the interruption, 
and then you go back to what you were doing. 

LIFO! 
That’s a stack! 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 26 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 20lbs of steer manure to the garden. 



CPSC 259                                            Recursion                                                                    Page 10 

Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 

I am listening to my buddy tell some inane story about last night. 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 

My buddy is just about to get to the point where he pukes… 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 

My buddy is just about to get to the point where he pukes… 

I am signing for a FedEx package. 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 

My buddy is just about to get to the point where he pukes… 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 

My buddy has finally finished his story… 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 40lbs of steer manure to the garden. 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 60lbs of steer manure to the garden. 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 

I have moved 80lbs of steer manure to the garden. 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 27 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 

I am reading about the delete function in Koffman p. 28 
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Activation Records in Daily Life 

I am working on line X of my stack.cpp file… 
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Activation Records in Daily Life 

I have finished my stack.cpp file! J 
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Activation Records in Daily Life 
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Activation Records on a Computer 

•  A computer handles function/method calls in exactly 
the same way!  (Also, “interrupts”) 
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Activation Records on a Computer 
… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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Activation Records on a Computer 

a=?, b=?, c=?, d=? 

… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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Activation Records on a Computer 

a=3, b=?, c=?, d=? 

… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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Activation Records on a Computer 

a=3, b=6, c=?, d=? 

… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

Activation Records on a Computer 

a=3, b=6, c=?, d=? 

x=3,y=6 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

Activation Records on a Computer 

a=3, b=6, c=?, d=? 

x=1,y=7 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 

Activation Records on a Computer 

a=3, b=6, c=?, d=? 

x=0,y=8 
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… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 

Activation Records on a Computer 

a=3, b=6, c=?, d=? 

x=0,y=8 
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… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 

Activation Records on a Computer 

a=3, b=6, c=?, d=? 

return 8 
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Activation Records on a Computer 

a=3, b=6, c=8, d=? 

… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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Activation Records on a Computer 

a=3, b=6, c=8, d=9 

… 
int a, b, c, d; 
a = 3; 
b = 6; 
c = foo(a,b); 
d = 9; 
… 

int foo(int x, int y) { 
  while (x>0) { 

 y++; 
 x >>= 1; 

  } 
  return y; 
} 
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Recursion is handled the same way! 

n=4 
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Recursion is handled the same way! 

n=4 
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Recursion is handled the same way! 

n=4 
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Recursion is handled the same way! 

n=4 

n=3 
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Recursion is handled the same way! 

n=4 

n=3 
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Recursion is handled the same way! 

n=4 

n=3 
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Recursion is handled the same way! 

n=4 

n=3 

n=2 
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Recursion is handled the same way! 

n=4 

n=3 

n=2 
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Recursion is handled the same way! 

n=4 

n=3 

return 1 
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Recursion is handled the same way! 

n=4 

n=3, result=1+… 
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Recursion is handled the same way! 

n=4 

n=3, result=1+… 

n=1 
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Recursion is handled the same way! 

n=4 

n=3, result=1+… 

return 1 
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Recursion is handled the same way! 

n=4 

n=3, result=1+1 
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Recursion is handled the same way! 

n=4 

return 2 
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Recursion is handled the same way! 

n=4, result=2+… 
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Recursion is handled the same way! 

n=4, result=2+… 
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Recursion is handled the same way! 

n=4, result=2+… 

n=2 
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Recursion is handled the same way! 

n=4, result=2+… 

n=2 
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Recursion is handled the same way! 

n=4, result=2+… 

return 1 
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Recursion is handled the same way! 

n=4, result=2+1 
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Recursion is handled the same way! 

return 3 
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Recursion is handled the same way! 

As I said before, do NOT try to think about recursion this way! 
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Thinking Recursively  (Open a Present ) 
Problem: Your friends have given you a watch as a 
birthday present. To prolong the suspense when opening 
the present, they have wrapped it in several layers of gift-
wrapping. Write an algorithm to open the present. 

Open-Present(P)	
		if		you	can	see	the	actual	gi<		
					Say	''Thank	you''	
		else	
				Open	the	box	
				Open-Present(contents	of	box)	



CPSC 259                                            Recursion                                                                    Page 59 

Designing Recursive Functions (review) 
•  When designing recursive functions: 

–  Don’t start with code. Instead, write the story of the problem, in 
natural language.  

–  As soon as you break the problem down in terms of any simpler 
version, call the function recursively and assume it works.  Do 
not think about how! 

 

When	learning	to	drive	a	car	there	are	two	forms	of	
knowledge:	

(1) knowing	how	to	operate	a	car.	
(2) knowing	how	the	car	operates.	

Naturally	one	can	be	a	very	good	driver	without	having	much	
knowledge	of	how	a	car	itself	operates.	
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Designing Recursive Functions 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller 

versions of itself. Smaller versions must make progress 
towards the base case. 

3.  Without thinking about how the smaller version is 
computed, figure out how you can use it to solve the 
original problem we started off with. 

if		small	enough	to	be	solved	directly:		
								solve	it.	
else	
							(1)	recursively	apply	the	algorithm	to	one	or	more	smaller	instances.	
							(2)	use	the	solu2on(s)	from	smaller	instances	to	solve	the	problem.	
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Factorial example 
•  Consider the following example 

–  n! = n* (n-1) * (n-2)….*1 
–  5! = 5  * 4 * 3 * 2 * 1 
–  4! =       4 * 3 * 2 * 1 
–  5! = 5  * 4! 
–  0! = 1 

•  More generally 
n! = { 

1  																	for	n=0	
n*(n-1)!								for	n>0	
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Designing Recursive Functions 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller 

versions of itself. Smaller versions must make progress 
towards the base case. 

3.  Without thinking about how the smaller version is 
computed, figure out how you can use it to solve the 
original problem we started off with. 

int factorial(int n){ !
  if(n==0) !
    return 1; !
  else!
    return (n * factorial(n - 1)); !
}	
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Factorial example 

int factorial(int n) !
{ !
  if(n==0) !
    return 1; !
  else!
    return (n * factorial(n - 1)); !
}	

--> 

factorial(0)	

--> 
--> 

--> 

factorial(1)	

--> 

--> 

--> 

--> 
--> 

int factorial(int n) !
{ !
  if(n==0) !
    return 1; !
  else!
    return(n * factorial(n-1)); !
}	

int factorial(int n) !
{ !
 if(n==0) !
   return 1; !
  else!
  return(n * factorial(n-1)); !
}	
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Factorial example- Work flow 

factorial(0) 

factorial(1) n=1
Return	1	*	factorial(0)

n=0
Return	1

Return 1 

1 

1 

factorial(2) n=2
Return	2	*	factorial(1)

Call factorial(1) Return 1 

2 

factorial(3) 
n=3

Return	3	*	factorial(2)

Return 2 

6 
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Recursion Tree 
int factorial(int n){ !
  !
  if (n == 0) !
    return 1; !
  !
  else!
    return n * factorial(n-1); !
} !

factorial(4) 

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)
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Palindrome Example 
•  Create a recursive function that determines whether or not 

a word is a palindrome. A palindrome is a word or 
sentence that reads the same forward as it does backward. 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 

int is_palindrome(char * str, int length); !
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Palindrome Example 
int is_palindrome(char * str, int length){ !

if (length <= 1) !
return 1; !

!
  /* to be added */ !
!
!
} 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 
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Palindrome Example 
int is_palindrome(char * str, int length){ !

if (length <= 1) !
return 1; !

!
 /* is_palindrome(str + 1, length - 2) */ 
!
!
} 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 
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Palindrome Example 
int is_palindrome(char * str, int length){ !

if (length <= 1) !
return 1; !

    !
else!

return (str[0] == str[length - 1]) && !
           is_palindrome(str + 1, length - 2); !
} 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 
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Finding max example  
•  Using recursion, find the largest element in an array of 

integer values.  
int maxRecurse(int nums[], int n); !
 

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 
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Finding max example  

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 

int maxRecurse(int nums[], int n){ !
    if (n== 1) !
        return nums[0]; !
!
    /* to be added */ !
}	
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Finding max example  

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 

int maxRecurse(int nums[], int n){ !
    if (n== 1) !
        return nums[0]; !
!
    /* maxRecurse(nums, n-1) */ !
}	
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Finding max example  

1.  Recognize the base case(s) and provide solution(s). 
2.  Devise a strategy to split the problem into smaller versions of 

itself. Smaller versions must make progress towards the base 
case. 

3.  Without thinking about how the smaller version is computed, 
figure out how you can use it to solve the original problem we 
started off with. 

int maxRecurse(int nums[], int n){ !
    if (n== 1) !
        return nums[0]; !
!
    return  max(maxRecurse(nums, n-1), nums[n-1]); !
}	
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Cargo-Bot 
Cool Free Game that Uses Recursion on iPad 

•  Gameplay centers on a crane 
that moves and stacks a set of 
colored crates.  

•  Players write small visual 
programs to move the crates 
from an initial configuration to 
a goal configuration.  

•  The set of available 
instructions is quite small. 

•  recursion is the only 
mechanism for repetition. 
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•  We need to be very careful when writing recursive 
algorithms. What would happen in the following 
programs?  

•  Recursive calls to sub-problems must converge towards the 
base case(s). 
–  Each call must bring the values in use closer to the halting 

conditions. 

Infinite Recursion 

int factorial(int n){ !
  !
  if (n == 0) !
    return 1; !
  !
  else!
    return n * factorial(n-1); !
} !

n < 0 
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Stack Overflow 
factorial(1000000) 

factorial(1000000)

factorial(999999)

factorial(999998)

factorial(999997)

factorial(999996)

int factorial(int n){ !
  !
  if (n == 0) !
    return 1; !
  !
  else!
    return n * factorial(n-1); !
} !
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Thinking Recursively (Eat a Chocolate Bar) 
Problem: You have a chocolate bar with nuts. Eat just 
the squares that have nuts in them. Write a recursive 
algorithm to solve the problem. 

	Eat	Chocolate	Bar(B)	
				if		B	is	a	single	square	then	
										if		B	has	a	nut	then	
																Eat	it	
				else	
								Break	the	bar	into	two	pieces	
								Eat	Chocolate	Bar(Piece	1)	
								Eat	Chocolate	Bar(Piece	2)	
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Thinking Recursively (Eat a Chocolate Bar) 

	Eat	Chocolate	Bar(B)	
				if		B	is	a	single	square	then	
										if		B	has	a	nut	then	
																Eat	it	
				else	
								Break	the	bar	into	two	pieces	
								Eat	Chocolate	Bar(Piece	1)	
								Eat	Chocolate	Bar(Piece	2)	
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The Fibonacci Numbers 
•  The Fibonacci numbers are the numbers in the sequence: 
•  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 
•  The first two numbers are 1, and then each succeeding 

number can be generated by adding together the previous 
two numbers in the sequence.  This leads to the following 
recursive definition: 

int fib(int n){ !
    if (n==1) !
        return 1; !
    else if(n==2) !
        return 1; !
    else!
        return fib(n-1) + fib(n-2); !
} !
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fib(4)

fib(3) fib(2)

fib(2) fib(1)

1 1

2 1

int fib(int n){ 
 if (n==1)  
   return 1; 
 else if (n==2)              
   return 1; 
 else 
   return fib(n-1)    
   + fib(n-2); 
} 

à

à

à

à

n=4 
int fib(int n){ 
 if (n==1)  
   return 1; 
 else if (n==2)              
   return 1; 
 else 
   return fib(n-1)    
   + fib(n-2); 
} 

à

à

à

à

n=3 
int fib(int n){ 
 if (n==1)  
   return 1; 
 else if (n==2)              
   return 1; 
 else 
   return fib(n-1)    
   + fib(n-2); 
} 

à

à

à

n=2 

int fib(int n){ 
 if (n==1)  
   return 1; 
 else if (n==2)              
   return 1; 
 else 
   return fib(n-1)    
   + fib(n-2); 
} 

à
à

n=1 
int fib(int n){ 
 if (n==1)  
   return 1; 
 else if (n==2)              
   return 1; 
 else 
   return fib(n-1)    
   + fib(n-2); 
} 

à

à
à

n=2 
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Fractals worksheet 
fancyTri (0, 0, 100); fancySquare (0, 0, 100); 

Where the size of the biggest triangle or square is smaller than 10 
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Triangle function 
/* !
 *    Purpose:  draws a right-angled, isosceles triangle on the 
screen. !
 *           The top left corner of the screen is mapped to (0,0). !
 *    Param:    int x – x-coordinate of the upper vertex !
 *    Param:    int y – y-coordinate of the upper vertex !
 *    Param:    int size – length of the equal/ shorter sides !
 */!
void triangle(int x, int y, int size); !

triangle(2, 5, 5); 

 

5 

10 

2 7 
triangle(1, 1, 2); 

 
1 

3 

1 3 
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simpleTri(x1, y1, n) 
/* !
 *    Purpose: draws a simple picture using triangles as !
 *             illustrated. !
 *    Param:   int x – x-coordinate of the upper vertex !
 *    Param:   int y – y-coordinate of the upper vertex !
 *    Param:   int size – size of the bigger triangle !
 */!
void simpleTri(int x, int y, int size){ !
    triangle (x, y, size/2); !
    triangle(x, y+size/2, size/2); !
    triangle(x+size/2, y+size/2, size/2); !
}	

y1 

y1+n/2 

y1 +n 

x1 x1+n/2 x1+n 
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How is fancyTri constructed? 
/* !
 *    Purpose: draws a fancy picture using triangles !
 *             as illustrated in the Fractals worksheet !
 *    Param:   int x – x-coordinate of the upper vertex !
 *    Param:   int y – y-coordinate of the upper vertex !
 *    Param:   int size – size of the bigger triangle !
 */!
void fancyTri(int x, int y, int size){ !
    if(size<10) !
        triangle (x, y, size); !
    else{ !
        fancyTri(x, y, size/2); !
        fancyTri(x, y+size/2, size/2); !
        fancyTri(x+size/2, y+size/2, size/2); !
    } !
}	
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Clicker question 
•  How many nodes does the recursion tree of 
fancyTri(0,0,20)have? 

 A: 4 

 B: 5 

 C: 12 

 D: 13 

 E: 21 

 

 

 

 

/* !
 *    Purpose: draws a fancy picture using triangles !
 *             as illustrated in the Fractals worksheet !
 *    Param:   int x – x-coordinate of the upper vertex !
 *    Param:   int y – y-coordinate of the upper vertex !
 *    Param:   int size – size of the bigger triangle !
 */!
void fancyTri(int x, int y, int size){ !
    if(size<10) !
        triangle (x, y, size); !
    else{ !
        fancyTri(x, y, size/2); !
        fancyTri(x, y+size/2, size/2); !
        fancyTri(x+size/2, y+size/2, size/2); !
    } !
}	
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Clicker question (answer) 
void fancyTri(int x, int y, int size){ !
    if(size<10) !
        triangle (x, y, size); !
    else{ !
        fancyTri(x, y, size/2); !
        fancyTri(x, y+size/2, size/2); !
        fancyTri(x+size/2, y+size/2, size/2); !
    } !
}	

fT(0,0,20) 

fT(0,0,10) 

fT(0,0,5) 

fT(0,5,5) 

fT(5,5,5) 

fT(0,10,10) 

fT(0,10,5) 

fT(0,15,5) 

fT(5,15,5) 

fT(10,10,10) 

fT(10,10,5) 

fT(10,15,5) 

fT(15,15,5) 
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Clicker question (answer) 
void fancyTri(int x, int y, int size){ !
    if(size<10) !
        triangle (x, y, size); !
    else{ !
        fancyTri(x, y, size/2); !
        fancyTri(x, y+size/2, size/2); !
        fancyTri(x+size/2, y+size/2, size/2); !
    } !
}	

fT(0,0,20) 

fT(0,0,10) 

fT(0,0,5) 

fT(0,5,5) 

fT(5,5,5) 

fT(0,10,10) 

fT(0,10,5) 

fT(0,15,5) 

fT(5,15,5) 

fT(10,10,10) 

fT(10,10,5) 

fT(10,15,5) 

fT(15,15,5) 

 D: 13 
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Can We Write Factorial Iteratively?   
Recursive Iterative 

int factorial_iterative(int n){ !
  int factorial=1; !
!
  for (int i = 1; i <= n; i++) !
    factorial = factorial * i; !
!
  return factorial; !
} 

int factorial(int n){ !
  !
  if (n == 0) !
    return 1; !
  !
  else!
    return n * !
    factorial(n-1); !
}	
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Can We Write Fibonacci Iteratively?   
Recursive Iterative 

int fib_iterative(int n) { !
  int answer=1; !
  int answerminus1 = 1; !
  int answerminus2 = 1; !
  for (int i = 3; i <= n; i++) { !
    answer = answerminus1 + !
             answerminus2; !
    answerminus2 = answerminus1; !
    answerminus1 = answer; !
  } !
  return answer; !
} 

int fib(int n){ !
  if (n==1) !
    return 1; !
!
  else if(n==2) !
    return 1; !
!
  else!
    return fib(n-1) !
     + fib(n-2); !
}	



CPSC 259                                            Recursion                                                                    Page 90 

Which One is Better? 
Recursive Iterative 

int factorial_iterative(int n){ !
  int factorial=1; !
!
  for (int i = 1; i <= n; i++) !
    factorial = factorial * i; !
!
  return factorial; !
} 

int factorial(int n){ !
  !
  if (n == 0) !
    return 1; !
  !
  else!
    return n * !
    factorial(n-1); !
}	

A:	The	recursive	version	
B:	The	itera2ve	version	
C:	The	two	are	as	good	as	each	other	
D:	None	of	the	above	



CPSC 259                                            Recursion                                                                    Page 91 

Appreciating Recursion 
•  Random String Permutations 

– Problem: Permute a string so that every reordering of 
the string is equally likely.  You may use a function 
randrange(n), which selects a number [0,n) uniformly 
at random. 
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Random String Permutations 
Understanding the Problem 

•  A string is: 
–  an empty string or a letter plus the rest of the string. 

 

•  We want every letter to have an equal chance to 
end up first.  We want all permutations of the rest 
of the string to be equally likely to go after. 

•   And.. there’s only one empty string. 
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Random String Permutations 
Algorithm 

PERMUTE(s):  
  if s is empty, just return s 
 
  else: 
    use randRange to choose a random first letter 
    permute the rest of the string  (minus that random letter) 
    return a string that starts with the random letter  
       and continues with the permuted rest of the string 
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Conver2ng	Algorithm	to	Psudocode	

PERMUTE(s):  
 
  if s is empty, just return s 
 
  else: 
 
    choose random letter 
 
    permute the rest 
 
    return random letter + rest 
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Appreciating Recursion Even More 
•  Let’s study a more complex example that would be 

challenging to solve without recursion. 

•  Problem: Design a method that prints out all 
permutations of a string that does not contain 
repeated characters. 
–  A permutation is simply a rearrangement of the letters in the 

string. 
–  For example, the string "abc" has six permutations.  

abc 	bac 	cab 			
acb 	bca	 	cba	
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Find the Base Case(s) 
•  What would be the simplest string(s)? 

–  The empty string has a single permutation: itself 

permutations(s):  
   if s is empty:  
            just return s 
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Simplify the Problem  
•  Suppose the input is "abc" 

– How can we generate all permutations that start with the 
letter 'a'?  

– Would assuming that I have all permutations of "bc" 
help? 

 
– How can we generate all permutations that start with the 

letter 'b'?  
– Would assuming that I have all permutations of "ac" 

help? 

bc	
cb	

abc	
acb	

ac	
ca	

bac	
bca	
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Write Algorithm (in English) 
permutations(s):  
 if s is empty:  
        just return s 
 else: 

– loop through all character positions 
•  form a shorter word by removing the ith char 
• generate all permutations of the simpler word 
• add the removed character to the front of each 

permutation of the simpler word  
– return all permutations 
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Test Your Algorithm 
s = "abc" 
loop through all character positions: a  

 
loop through all character positions: b 
 
 
loop through all character positions: c 
 
 
 
 
 
 
 

bc	
bc	
cb	

abc	
acb	

ac	
ac	
ca	

bac	
bca	

ab	
ab	
ba	

cab	
cba	

abc	
acb	
bac	
bca	
cab	
cba	



CPSC 259                                            Recursion                                                                    Page 100 

Classic Problems that can be Solved 
Recursively (Fractals) 

Sierpinski	triangle	 Koch	Curve	
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Classic Problems that can be Solved 
Recursively (Sorting) 

 3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

-4 3 5 7 1 2 6 9 

-4 1 2 3 5 6 7 9 

mergesort(array) 
 if size == 1 
   return 
else 
   mergesort(leftHalf) 
   mergesort(rightHalf) 
   merge(leftHalf, rightHalf) 
    

  

…	
…	
…	
…	
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Classic Problems that can be Solved 
Recursively (Sorting) 

 
3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

-4 3 5 7 6 9 1 2 

-4 3 5 7 1 2 6 9 

-4 1 2 3 5 6 7 9 

mergesort(array) 
 if size == 1 
   return 
else 
   mergesort(leftHalf) 
   mergesort(rightHalf) 
   merge(leftHalf, rightHalf) 
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Classic Problems that can be Solved 
Recursively (Backtracking) 

Maze Sudoku 

Source:	Wikipedia	
hYp://en.wikipedia.org/wiki/Backtracking	

Source:	Wikipedia	
hYp://en.wikipedia.org/wiki/Maze	
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Classic Problems that can be Solved 
Recursively (operations on data structures) 

 

Source:	Flickr,	labeled	for	noncommercial	reuse		
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Challenging Activity 
•  Problem: Try to write code that prints out all permutations 

of a string using iteration.  
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Which One is More Powerful? 

•  Iteration and recursion are equally powerful and 
can solve the same problems. 
•  Simulating iteration with recursion is easy. 

int i = 0; !
while (i < n){ !
  doFoo(i); !
  i++; !
}	

void recDoFoo(int i, int n){ !
  if (i >= n) !
    return; !
  !
  else{ !
    doFoo(i); !
    recDoFoo(i + 1, n); !
  } !
} !

 recDoFoo(0, n); 
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Which One is More Powerful? 

•  Iteration and recursion are equally powerful and 
can solve the same problems. 
•  Simulating recursion with iteration is harder and 

beyond the scope of this course 

•  But here is the general idea 
– Simulate the call stack by creating a stack 

yourself. 
– This can be tricky, so it is better to let the 

computer do this for you. 
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Iterative vs. Recursive Approaches 

– Use iteration when 
•  runtime is extremely important (even small differences) 
•  your algorithm doesn’t use a lot of extra space and 

you’re happy with the runtime. 

– Use recursion since 
•  recursive programs can be relatively simpler to write, 

analyze, and understand than iterative versions. 
•  recursive programs can benefit from the call stack in 

more complex problems that run slower and/or require 
more space. 
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Be Very Careful When You Use Recursion 
•  Poorly designed recursive procedures can use a lot 

of memory and be very slow. 
•  It is is much easier to shoot yourself in the foot without 

noticing when you use recursion. 
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Can We Write Fibonacci Iteratively?   
Recursive 

int fib(int n){ !
  if (n==1) !
    return 1; !
  else if(n==2) !
    return 1; !
  else!
    return fib(n-1) +    !
    fib(n-2); !
} 

 

Iterative 
int fib_iterative(int n) { !
  int answer=1; !
  int answerminus1 = 1; !
  int answerminus2 = 1; !
  for (int i = 3; i <= n; i++) { !
    answer = answerminus1 + !
             answerminus2; !
    answerminus2 = answerminus1; !
    answerminus1 = answer; !
  } !
  return answer; !
} 

Let’s	run	them	
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Runtime Comparison of Different Fibonacci 
Implementations (in seconds) 

  30 32 34 36 38 40 42 44 
Plain, 

recursive 0.19 0.5 1.37 3.6 9 25 64 166 

Iterative  0.0004 0.00048 0.00051 0.00052 0.00055 0.00059 0.00062 0.00065 

0	

50	

100	

150	

200	

30	 32	 34	 36	 38	 40	 42	 44	

Ti
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ds
)	

input	

Plain,	recursive	

Itera2ve		
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Recursion and efficiency  
•  Each function invocation generates an activation record that holds 

the values of arguments and local variables for that invocation.  
These activation records are stored in an area of memory called the 
run-time stack.  The diagram below shows the state of the run-time 
stack when a call to fib(4) is made from main. 

•  The height of fib’s recursion tree plus 1 is the maximum number of 
fib activation records on the run-time stack at any given time—in 
this case 3.  Memory for the runtime stack is limited.  If we attempt 
to generate more activation records than can be stored on the run-
time stack, a stack overflow occurs and the program will crash. 

 

main	
fib(4)	
main	

fib(3)	
fib(4)	
main	

fib(2)	
fib(3)	
fib(4)	
main	

		
fib(3)	
fib(4)	
main	

fib(1)	
fib(3)	
fib(4)	
main	

fib(3)	
fib(4)	
main	

fib(4)	
main	

fib(2)	
fib(4)	
main	

fib(4)	
main	 main	
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Plain Recursive Fibonacci  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Sp
ac

e 
Stack space used in computing  fib(10) 
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Plain Recursive Fibonacci  
Stack space used in computing  fib(15) 

0 

2 

4 

6 

8 

10 

12 

14 

16 

Sp
ac

e 
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CPSC 259 Administrative Notes 
•  Starting Lab 4 – Week 1 on Monday 

•  Midterm Friday, Nov 13 

•  Unfortunately, we’ve had a few plagiarism cases that I’m 
following up on. 
–  Course policy on plagiarism is stated on the course website 
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Thank you for your feedback 
•  Great to know that most people like how the course is 

progressing.  
– Average response to “Overall, the instructor was an effective 

teacher” was ~4.8 

•  Some common dislikes 
–  8 am lectures! 
– Textbook  

• Any recommendations? 
•  Stanford's tutorial notes for C programming. 

– Quizzes  
– Midterm was a bit long 
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Redundant Computation 
 •  Do we really need to compute fib(3) multiple times? 

  

 

 
  

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

(1) Redundant computation 
(2) Requires a lot of memory 

Can we do better? 
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Be Very Careful When You Use Recursion 
•  Poorly designed recursive procedures can use a lot of memory and 

be very slow. 
•  It is is much easier to shoot yourself in the foot without noticing when you use 

recursion. 

•  Well designed recursive procedures are almost (constant 
factor difference) as fast as iterative procedures 

•  Memoization can make recursive functions run faster. 
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Recursion -- Memoization  
•  Memoization  

–  After computing a solution, store it in a table before returning. 
(Leave a “memo” to yourself.) 

–  At start of the function, check if you’ve solved this case before. 
If so, return the already calculated solution. 

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(6)

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(4)

n	 Fn	
6	

5	

4	

3	

2	

1	
1	

1	

2	

3	

5	

8	
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Recursion -- Memoization  
•  Memoization  

–  After computing a solution, store it in a table before returning. 
(Leave a “memo” to yourself.) 

–  At start of the function, check if you’ve solved this case before. 
If so, return the already calculated solution. 

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(6)

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(4)

n	 Fn	
6	

5	

4	

3	

2	

1	
1	

1	

2	

3	

5	

8	
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Memoizing Fib 
int fibMem(int n) !
{ !
    int* fibTable = (int*) calloc(sizeof(int) , MAX); !
    return fibMemoHelper(n, fibTable); !
    !
}	

int fibMemoHelper(int n, int fibTable[]) !
{ !
    if (n==1) !
        fibTable[1] = 1; !
    else if (n==2) !
        fibTable[2] = 1; !
    else if (fibTable[n]==0) !
     fibTable[n] = fibMemoHelper(n-1, fibTable)+ !
                   fibMemoHelper(n-2, fibTable); !
   !
    return fibTable[n]; !
}	
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Runtime Comparison of Different Fibonacci 
Implementations (in seconds) 

  30 32 34 36 38 40 42 44 
Plain, recursive 0.19 0.5 1.37 3.6 9 25 64 166 

Memoized 0.0005 0.0005 0.00051 0.00053 0.00055 0.0006 0.0006 0.0006 
Iterative  0.0004 0.00048 0.00051 0.00052 0.00055 0.00059 0.00059 0.00059 
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Runtime Comparison -- a Closer Look (1)  
(in seconds) 

  10 100 1,000 10,000 
Memoized 0.00041 0.0009 0.001 0.013 
Iterative  0.0003 0.0004 0.0009 0.0082 

0	
0.002	
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Clicker Question 
•  factorial_memoized(100)is expected to run _____ 

than factorial_plain_recursive(100)? 
 
•  A: significantly faster 
   B: slightly faster 
   C: slightly slower 
   D: significantly slower  
   E: none of the above 
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Clicker Question (answer) 
•  factorial_memoized(100)is expected to run _____ 

than factorial_plain_recursive(100)? 
 
•  A: significantly faster 
   B: slightly faster 
   C: slightly slower 
   D: significantly slower  
   E: none of the above 
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Runtime Comparison -- a Closer Look (2)  
(in seconds) 

  10 100 1,000 10,000 100,000 
Memoized 0.00041 0.0009 0.001 0.013  Crashed 
Iterative  0.0003 0.0004 0.0009 0.0082 0.048 
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Memoized Fibonacci  

Stack	space	used	in	compu2ng	fib_memoized(10) 
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Memoized Fibonacci  
Stack	space	used	in	compu2ng	fib_memoized(40) 
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Time 
(1) Redundant computation 
(2) Requires a lot of memory 
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Be Very Careful When You Use Recursion 
•  Poorly designed recursive procedures can use a lot of memory and 

be very slow. 
•  It is is much easier to shoot yourself in the foot without noticing when you use 

recursion. 

•  Well designed recursive procedures can use almost 
(constant factor difference) the same amount of memory as 
iterative procedures:  

•  Tail recursion can make recursive functions use 
less space. 
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Clicker Question 

 

•  What do you think would happen if you execute this 
function? 

 

A: This will result in a stack overflow 
B: This will magically not result in a stack overflow 
C: It depends 
D: None of the above 

void endlesslyGreet(){ !
  printf("Hello World! \n"); !
  endlesslyGreet(); !
}	
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Tail Recursion 
•  A function is “tail recursive” if for every recursive call in 

the function, that call is the absolute last thing the function 
needs to do before returning. 

•  In that case, why bother pushing a new stack frame?  
There’s nothing to remember.  Just re-use the old frame. 

•  That’s what most compilers will do. 
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Compare and Contrast 

void countinglyGreet(int n){ !
  !
  if (n <=1) !
    return; !
  !
  printf("Hello! \n"); !
  countinglyGreet(n-1); !
}	

int factorial(int n){ !
 !
 if (n <=1) !
    return 1; !
!
  else!
  return n * factorial(n-1); !
}	

•  How are these two functions 
–  Similar? 
–  Different? 

 countinglyGreet(4); factorial(4); 
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Compare and Contrast 
 countinglyGreet(4); factorial(4); 

factorial(4)

factorial(3)

factorial(2)

factorial(1)

countinglyGreet(4)

countinglyGreet(3)

countinglyGreet(2)

countinglyGreet(1)

Needs	to	wait	
	for	factorial(3)	

Does	not	need	to	wait	
	for	coun2nglyGreet(3)		
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Managing the Call Stack: Tail Recursion 
•  This is clearly infinite recursion.  The call stack will get 

as deep as it can get and then stack overflow, right? 
 
 void endlesslyGreet(){ !

  cout << "Hello, world!" << endl; !
  endlesslyGreet(); !
} !
	

Since	a	tail	call	doesn’t	need	to	generate	a	new	ac2va2on	
record	on	the	stack,	a	good	compiler	won’t	make	the	
computer	do	that.	Therefore,	tail	call	doesn’t	increase	depth	
of	call	stack.	
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Tail Recursive? 

Is this function tail recursive? 
 
a. Yes. 
b. No. 
c. Not enough information. 

int factorial (int n) { !
  if (n == 0) return 1; !
  else        return n * factorial(n – 1); !
} !
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Tail Recursive? 

Is this function tail recursive? 
 
a. Yes. 
b. No. 
c. Not enough information. 

int factorial (int n) { !
  if (n == 0) return 1; !
  else        return n * factorial(n – 1); !
} !
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Tail Recursive Factorial 
int factorial_tailrecursive(int n) !
{ !
  int result = factorial_tailrecursive_helper(n, 1); !
  return result; !
}	

int factorial_tailrecursive_helper(int n, int acc) !
{ !
  if (n ==0) !
    return acc; !
  !
  return factorial_tailrecursive_helper(n-1, acc*n); !
}	
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Factorial 

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

6	

1	

2	

1	

24	

factorial_tail(4,1)

factorial_tail(3,4)

factorial_tail(2,12)

factorial_tail(1,24)

factorial_tail(0 ,24)

24	
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Tail Recursive Fibonacci 

int fib_tailRecursive(int n, int next, int result) { !
  if (n==1) !
    return result; !
  !
  else{ !
    return fib_tailRecursive(n-1, result+next, next); !
    !
  }	

!
return fib_tailRecursive(n, 1, 1); !
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Runtime Comparison (in seconds) 
fib_tailRecursive vs. fib_iterative 

0	
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0.04	
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0.08	

0.1	

10	 100	 1,000	 10,000	 100,000	

Ti
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e	
(s
ec
on
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)	

Input	

Tail_recursive	

Itera2ve		

  10 100 1,000 10,000 100,000 
Tail_recursive 0.00038 0.0005 0.0012 0.0093 0.078 

Iterative  0.0003 0.0004 0.0009 0.0082 0.048 
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Recursion vs. Iteration 
–  Iteration and recursion are equally powerful 

problem solving techniques. 
•  recursive programs can be relatively simpler to write, 

analyze, and understand than iterative versions. 
•  recursive programs can benefit from the call stack in 

more complex problems that run slower and/or 
require more space. 

– Recursion may carry around a bit more (a 
constant factor more) memory than iteration but if 
well designed, neither is more efficient. 
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Learning Goals revisited 
•  design simple recursive functions. 
•  recognize algorithms as being iterative or recursive. 
•  describe how a computer runs recursive algorithms. 
•  demonstrate the ability to draw recursion trees. 
•  explain how stack overflow may arise as a result of 

recursion. 
•  explain why a recursively defined method may take more 

space than an equivalent iteratively defined method. 


