
CPSC 259 Recursion Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Recursion

Textbook References:

(a) Etter (Third Edition): Chapter 4, pages 193-197

(b) Thareja: Chapter 2, pages 83-93
 (c) Thareja (second edition): 7.7.4

Hassan Khosravi
Borrowing some examples from Alan Hu and Steve Wolfman

CPSC 259 Recursion Page 2

Learning Goals
•  design simple recursive functions.
•  recognize algorithms as being iterative or recursive.
•  describe how a computer runs recursive algorithms.
•  demonstrate the ability to draw recursion trees.
•  explain how stack overflow may arise as a result of

recursion.
•  explain why a recursively defined method may take more

space than an equivalent iteratively defined method.

CPSC 259 Recursion Page 3

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic Analysis

CPSC 259 Journey

Recursion

Algorithms

Pointers	

Dynamic	Memory	Alloca2on	
	

CPSC 259 Recursion Page 4

Function/Method Calls

•  A function or method call is an interruption or aside
in the execution flow of a program:

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x>>=1

 }
 return y;
}

CPSC 259 Recursion Page 5

Function Calls in Daily Life

•  How do you handle interruptions in daily life?
–  You’re at home, working on CPSC259 project.
–  You stop to look up something in the book.
–  Your roommate/spouse/partner/parent/etc. asks for you

help moving some stuff.
–  Your buddy calls.
–  The doorbell rings.

•  You stop what you’re doing, you memorize where
you were in your task, you handle the interruption,
and then you go back to what you were doing.

LIFO!
That’s a stack!

CPSC 259 Recursion Page 6

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

CPSC 259 Recursion Page 7

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 26

CPSC 259 Recursion Page 8

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

CPSC 259 Recursion Page 9

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 20lbs of steer manure to the garden.

CPSC 259 Recursion Page 10

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

CPSC 259 Recursion Page 11

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

I am listening to my buddy tell some inane story about last night.

CPSC 259 Recursion Page 12

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

CPSC 259 Recursion Page 13

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

I am signing for a FedEx package.

CPSC 259 Recursion Page 14

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

CPSC 259 Recursion Page 15

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy has finally finished his story…

CPSC 259 Recursion Page 16

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

CPSC 259 Recursion Page 17

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 60lbs of steer manure to the garden.

CPSC 259 Recursion Page 18

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 80lbs of steer manure to the garden.

CPSC 259 Recursion Page 19

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

CPSC 259 Recursion Page 20

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 28

CPSC 259 Recursion Page 21

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

CPSC 259 Recursion Page 22

Activation Records in Daily Life

I have finished my stack.cpp file! J

CPSC 259 Recursion Page 23

Activation Records in Daily Life

CPSC 259 Recursion Page 24

Activation Records on a Computer

•  A computer handles function/method calls in exactly
the same way! (Also, “interrupts”)

CPSC 259 Recursion Page 25

Activation Records on a Computer
…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 26

Activation Records on a Computer

a=?, b=?, c=?, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 27

Activation Records on a Computer

a=3, b=?, c=?, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 28

Activation Records on a Computer

a=3, b=6, c=?, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 29

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=3,y=6

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 30

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=1,y=7

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 31

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=0,y=8

CPSC 259 Recursion Page 32

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=0,y=8

CPSC 259 Recursion Page 33

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

Activation Records on a Computer

a=3, b=6, c=?, d=?

return 8

CPSC 259 Recursion Page 34

Activation Records on a Computer

a=3, b=6, c=8, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 35

Activation Records on a Computer

a=3, b=6, c=8, d=9

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 259 Recursion Page 36

Recursion is handled the same way!

n=4

CPSC 259 Recursion Page 37

Recursion is handled the same way!

n=4

CPSC 259 Recursion Page 38

Recursion is handled the same way!

n=4

CPSC 259 Recursion Page 39

Recursion is handled the same way!

n=4

n=3

CPSC 259 Recursion Page 40

Recursion is handled the same way!

n=4

n=3

CPSC 259 Recursion Page 41

Recursion is handled the same way!

n=4

n=3

CPSC 259 Recursion Page 42

Recursion is handled the same way!

n=4

n=3

n=2

CPSC 259 Recursion Page 43

Recursion is handled the same way!

n=4

n=3

n=2

CPSC 259 Recursion Page 44

Recursion is handled the same way!

n=4

n=3

return 1

CPSC 259 Recursion Page 45

Recursion is handled the same way!

n=4

n=3, result=1+…

CPSC 259 Recursion Page 46

Recursion is handled the same way!

n=4

n=3, result=1+…

n=1

CPSC 259 Recursion Page 47

Recursion is handled the same way!

n=4

n=3, result=1+…

return 1

CPSC 259 Recursion Page 48

Recursion is handled the same way!

n=4

n=3, result=1+1

CPSC 259 Recursion Page 49

Recursion is handled the same way!

n=4

return 2

CPSC 259 Recursion Page 50

Recursion is handled the same way!

n=4, result=2+…

CPSC 259 Recursion Page 51

Recursion is handled the same way!

n=4, result=2+…

CPSC 259 Recursion Page 52

Recursion is handled the same way!

n=4, result=2+…

n=2

CPSC 259 Recursion Page 53

Recursion is handled the same way!

n=4, result=2+…

n=2

CPSC 259 Recursion Page 54

Recursion is handled the same way!

n=4, result=2+…

return 1

CPSC 259 Recursion Page 55

Recursion is handled the same way!

n=4, result=2+1

CPSC 259 Recursion Page 56

Recursion is handled the same way!

return 3

CPSC 259 Recursion Page 57

Recursion is handled the same way!

As I said before, do NOT try to think about recursion this way!

CPSC 259 Recursion Page 58

Thinking Recursively (Open a Present)
Problem: Your friends have given you a watch as a
birthday present. To prolong the suspense when opening
the present, they have wrapped it in several layers of gift-
wrapping. Write an algorithm to open the present.

Open-Present(P)	
		if		you	can	see	the	actual	gi<		
					Say	''Thank	you''	
		else	
				Open	the	box	
				Open-Present(contents	of	box)	

CPSC 259 Recursion Page 59

Designing Recursive Functions (review)
•  When designing recursive functions:

–  Don’t start with code. Instead, write the story of the problem, in
natural language.

–  As soon as you break the problem down in terms of any simpler
version, call the function recursively and assume it works. Do
not think about how!

When	learning	to	drive	a	car	there	are	two	forms	of	
knowledge:	

(1) knowing	how	to	operate	a	car.	
(2) knowing	how	the	car	operates.	

Naturally	one	can	be	a	very	good	driver	without	having	much	
knowledge	of	how	a	car	itself	operates.	

CPSC 259 Recursion Page 60

Designing Recursive Functions

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller

versions of itself. Smaller versions must make progress
towards the base case.

3.  Without thinking about how the smaller version is
computed, figure out how you can use it to solve the
original problem we started off with.

if		small	enough	to	be	solved	directly:		
								solve	it.	
else	
							(1)	recursively	apply	the	algorithm	to	one	or	more	smaller	instances.	
							(2)	use	the	solu2on(s)	from	smaller	instances	to	solve	the	problem.	

CPSC 259 Recursion Page 61

Factorial example
•  Consider the following example

–  n! = n* (n-1) * (n-2)….*1
–  5! = 5 * 4 * 3 * 2 * 1
–  4! = 4 * 3 * 2 * 1
–  5! = 5 * 4!
–  0! = 1

•  More generally
n! = {

1  																	for	n=0	
n*(n-1)!								for	n>0	

CPSC 259 Recursion Page 62

Designing Recursive Functions

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller

versions of itself. Smaller versions must make progress
towards the base case.

3.  Without thinking about how the smaller version is
computed, figure out how you can use it to solve the
original problem we started off with.

int factorial(int n){ !
 if(n==0) !
 return 1; !
 else!
 return (n * factorial(n - 1)); !
}	

CPSC 259 Recursion Page 63

Factorial example

int factorial(int n) !
{ !
 if(n==0) !
 return 1; !
 else!
 return (n * factorial(n - 1)); !
}	

-->

factorial(0)	

-->
-->

-->

factorial(1)	

-->

-->

-->

-->
-->

int factorial(int n) !
{ !
 if(n==0) !
 return 1; !
 else!
 return(n * factorial(n-1)); !
}	

int factorial(int n) !
{ !
 if(n==0) !
 return 1; !
 else!
 return(n * factorial(n-1)); !
}	

CPSC 259 Recursion Page 64

Factorial example- Work flow

factorial(0)

factorial(1) n=1
Return	1	*	factorial(0)

n=0
Return	1

Return 1

1

1

factorial(2) n=2
Return	2	*	factorial(1)

Call factorial(1) Return 1

2

factorial(3)
n=3

Return	3	*	factorial(2)

Return 2

6

CPSC 259 Recursion Page 65

Recursion Tree
int factorial(int n){ !
 !
 if (n == 0) !
 return 1; !
 !
 else!
 return n * factorial(n-1); !
} !

factorial(4)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

CPSC 259 Recursion Page 66

Palindrome Example
•  Create a recursive function that determines whether or not

a word is a palindrome. A palindrome is a word or
sentence that reads the same forward as it does backward.

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

int is_palindrome(char * str, int length); !

CPSC 259 Recursion Page 67

Palindrome Example
int is_palindrome(char * str, int length){ !

if (length <= 1) !
return 1; !

!
 /* to be added */ !
!
!
}

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

CPSC 259 Recursion Page 68

Palindrome Example
int is_palindrome(char * str, int length){ !

if (length <= 1) !
return 1; !

!
 /* is_palindrome(str + 1, length - 2) */
!
!
}

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

CPSC 259 Recursion Page 69

Palindrome Example
int is_palindrome(char * str, int length){ !

if (length <= 1) !
return 1; !

 !
else!

return (str[0] == str[length - 1]) && !
 is_palindrome(str + 1, length - 2); !
}

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

CPSC 259 Recursion Page 70

Finding max example
•  Using recursion, find the largest element in an array of

integer values.
int maxRecurse(int nums[], int n); !

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

CPSC 259 Recursion Page 71

Finding max example

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

int maxRecurse(int nums[], int n){ !
 if (n== 1) !
 return nums[0]; !
!
 /* to be added */ !
}	

CPSC 259 Recursion Page 72

Finding max example

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

int maxRecurse(int nums[], int n){ !
 if (n== 1) !
 return nums[0]; !
!
 /* maxRecurse(nums, n-1) */ !
}	

CPSC 259 Recursion Page 73

Finding max example

1.  Recognize the base case(s) and provide solution(s).
2.  Devise a strategy to split the problem into smaller versions of

itself. Smaller versions must make progress towards the base
case.

3.  Without thinking about how the smaller version is computed,
figure out how you can use it to solve the original problem we
started off with.

int maxRecurse(int nums[], int n){ !
 if (n== 1) !
 return nums[0]; !
!
 return max(maxRecurse(nums, n-1), nums[n-1]); !
}	

CPSC 259 Recursion Page 74

Cargo-Bot
Cool Free Game that Uses Recursion on iPad

•  Gameplay centers on a crane
that moves and stacks a set of
colored crates.

•  Players write small visual
programs to move the crates
from an initial configuration to
a goal configuration.

•  The set of available
instructions is quite small.

•  recursion is the only
mechanism for repetition.

CPSC 259 Recursion Page 75

•  We need to be very careful when writing recursive
algorithms. What would happen in the following
programs?

•  Recursive calls to sub-problems must converge towards the
base case(s).
–  Each call must bring the values in use closer to the halting

conditions.

Infinite Recursion

int factorial(int n){ !
 !
 if (n == 0) !
 return 1; !
 !
 else!
 return n * factorial(n-1); !
} !

n < 0

CPSC 259 Recursion Page 76

Stack Overflow
factorial(1000000)

factorial(1000000)

factorial(999999)

factorial(999998)

factorial(999997)

factorial(999996)

int factorial(int n){ !
 !
 if (n == 0) !
 return 1; !
 !
 else!
 return n * factorial(n-1); !
} !

CPSC 259 Recursion Page 77

Thinking Recursively (Eat a Chocolate Bar)
Problem: You have a chocolate bar with nuts. Eat just
the squares that have nuts in them. Write a recursive
algorithm to solve the problem.

	Eat	Chocolate	Bar(B)	
				if		B	is	a	single	square	then	
										if		B	has	a	nut	then	
																Eat	it	
				else	
								Break	the	bar	into	two	pieces	
								Eat	Chocolate	Bar(Piece	1)	
								Eat	Chocolate	Bar(Piece	2)	

CPSC 259 Recursion Page 78

Thinking Recursively (Eat a Chocolate Bar)

	Eat	Chocolate	Bar(B)	
				if		B	is	a	single	square	then	
										if		B	has	a	nut	then	
																Eat	it	
				else	
								Break	the	bar	into	two	pieces	
								Eat	Chocolate	Bar(Piece	1)	
								Eat	Chocolate	Bar(Piece	2)	

CPSC 259 Recursion Page 79

The Fibonacci Numbers
•  The Fibonacci numbers are the numbers in the sequence:
•  1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
•  The first two numbers are 1, and then each succeeding

number can be generated by adding together the previous
two numbers in the sequence. This leads to the following
recursive definition:

int fib(int n){ !
 if (n==1) !
 return 1; !
 else if(n==2) !
 return 1; !
 else!
 return fib(n-1) + fib(n-2); !
} !

CPSC 259 Recursion Page 80

fib(4)

fib(3) fib(2)

fib(2) fib(1)

1 1

2 1

int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à

à

à

n=4
int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à

à

à

n=3
int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à

à

n=2

int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à
à

n=1
int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à
à

n=2

CPSC 259 Recursion Page 81

Fractals worksheet
fancyTri (0, 0, 100); fancySquare (0, 0, 100);

Where the size of the biggest triangle or square is smaller than 10

CPSC 259 Recursion Page 82

Triangle function
/* !
 * Purpose: draws a right-angled, isosceles triangle on the
screen. !
 * The top left corner of the screen is mapped to (0,0). !
 * Param: int x – x-coordinate of the upper vertex !
 * Param: int y – y-coordinate of the upper vertex !
 * Param: int size – length of the equal/ shorter sides !
 */!
void triangle(int x, int y, int size); !

triangle(2, 5, 5);

5

10

2 7
triangle(1, 1, 2);

1

3

1 3

CPSC 259 Recursion Page 83

simpleTri(x1, y1, n)
/* !
 * Purpose: draws a simple picture using triangles as !
 * illustrated. !
 * Param: int x – x-coordinate of the upper vertex !
 * Param: int y – y-coordinate of the upper vertex !
 * Param: int size – size of the bigger triangle !
 */!
void simpleTri(int x, int y, int size){ !
 triangle (x, y, size/2); !
 triangle(x, y+size/2, size/2); !
 triangle(x+size/2, y+size/2, size/2); !
}	

y1

y1+n/2

y1 +n

x1 x1+n/2 x1+n

CPSC 259 Recursion Page 84

How is fancyTri constructed?
/* !
 * Purpose: draws a fancy picture using triangles !
 * as illustrated in the Fractals worksheet !
 * Param: int x – x-coordinate of the upper vertex !
 * Param: int y – y-coordinate of the upper vertex !
 * Param: int size – size of the bigger triangle !
 */!
void fancyTri(int x, int y, int size){ !
 if(size<10) !
 triangle (x, y, size); !
 else{ !
 fancyTri(x, y, size/2); !
 fancyTri(x, y+size/2, size/2); !
 fancyTri(x+size/2, y+size/2, size/2); !
 } !
}	

CPSC 259 Recursion Page 85

Clicker question
•  How many nodes does the recursion tree of
fancyTri(0,0,20)have?

 A: 4

 B: 5

 C: 12

 D: 13

 E: 21

/* !
 * Purpose: draws a fancy picture using triangles !
 * as illustrated in the Fractals worksheet !
 * Param: int x – x-coordinate of the upper vertex !
 * Param: int y – y-coordinate of the upper vertex !
 * Param: int size – size of the bigger triangle !
 */!
void fancyTri(int x, int y, int size){ !
 if(size<10) !
 triangle (x, y, size); !
 else{ !
 fancyTri(x, y, size/2); !
 fancyTri(x, y+size/2, size/2); !
 fancyTri(x+size/2, y+size/2, size/2); !
 } !
}	

CPSC 259 Recursion Page 86

Clicker question (answer)
void fancyTri(int x, int y, int size){ !
 if(size<10) !
 triangle (x, y, size); !
 else{ !
 fancyTri(x, y, size/2); !
 fancyTri(x, y+size/2, size/2); !
 fancyTri(x+size/2, y+size/2, size/2); !
 } !
}	

fT(0,0,20)

fT(0,0,10)

fT(0,0,5)

fT(0,5,5)

fT(5,5,5)

fT(0,10,10)

fT(0,10,5)

fT(0,15,5)

fT(5,15,5)

fT(10,10,10)

fT(10,10,5)

fT(10,15,5)

fT(15,15,5)

CPSC 259 Recursion Page 87

Clicker question (answer)
void fancyTri(int x, int y, int size){ !
 if(size<10) !
 triangle (x, y, size); !
 else{ !
 fancyTri(x, y, size/2); !
 fancyTri(x, y+size/2, size/2); !
 fancyTri(x+size/2, y+size/2, size/2); !
 } !
}	

fT(0,0,20)

fT(0,0,10)

fT(0,0,5)

fT(0,5,5)

fT(5,5,5)

fT(0,10,10)

fT(0,10,5)

fT(0,15,5)

fT(5,15,5)

fT(10,10,10)

fT(10,10,5)

fT(10,15,5)

fT(15,15,5)

 D: 13

CPSC 259 Recursion Page 88

Can We Write Factorial Iteratively?
Recursive Iterative

int factorial_iterative(int n){ !
 int factorial=1; !
!
 for (int i = 1; i <= n; i++) !
 factorial = factorial * i; !
!
 return factorial; !
}

int factorial(int n){ !
 !
 if (n == 0) !
 return 1; !
 !
 else!
 return n * !
 factorial(n-1); !
}	

CPSC 259 Recursion Page 89

Can We Write Fibonacci Iteratively?
Recursive Iterative

int fib_iterative(int n) { !
 int answer=1; !
 int answerminus1 = 1; !
 int answerminus2 = 1; !
 for (int i = 3; i <= n; i++) { !
 answer = answerminus1 + !
 answerminus2; !
 answerminus2 = answerminus1; !
 answerminus1 = answer; !
 } !
 return answer; !
}

int fib(int n){ !
 if (n==1) !
 return 1; !
!
 else if(n==2) !
 return 1; !
!
 else!
 return fib(n-1) !
 + fib(n-2); !
}	

CPSC 259 Recursion Page 90

Which One is Better?
Recursive Iterative

int factorial_iterative(int n){ !
 int factorial=1; !
!
 for (int i = 1; i <= n; i++) !
 factorial = factorial * i; !
!
 return factorial; !
}

int factorial(int n){ !
 !
 if (n == 0) !
 return 1; !
 !
 else!
 return n * !
 factorial(n-1); !
}	

A:	The	recursive	version	
B:	The	itera2ve	version	
C:	The	two	are	as	good	as	each	other	
D:	None	of	the	above	

CPSC 259 Recursion Page 91

Appreciating Recursion
•  Random String Permutations

– Problem: Permute a string so that every reordering of
the string is equally likely. You may use a function
randrange(n), which selects a number [0,n) uniformly
at random.

CPSC 259 Recursion Page 92

Random String Permutations
Understanding the Problem

•  A string is:
–  an empty string or a letter plus the rest of the string.

•  We want every letter to have an equal chance to
end up first. We want all permutations of the rest
of the string to be equally likely to go after.

•  And.. there’s only one empty string.

CPSC 259 Recursion Page 93

Random String Permutations
Algorithm

PERMUTE(s):
 if s is empty, just return s

 else:
 use randRange to choose a random first letter
 permute the rest of the string (minus that random letter)
 return a string that starts with the random letter
 and continues with the permuted rest of the string

CPSC 259 Recursion Page 94

Conver2ng	Algorithm	to	Psudocode	

PERMUTE(s):

 if s is empty, just return s

 else:

 choose random letter

 permute the rest

 return random letter + rest

CPSC 259 Recursion Page 95

Appreciating Recursion Even More
•  Let’s study a more complex example that would be

challenging to solve without recursion.

•  Problem: Design a method that prints out all
permutations of a string that does not contain
repeated characters.
–  A permutation is simply a rearrangement of the letters in the

string.
–  For example, the string "abc" has six permutations.

abc 	bac 	cab 			
acb 	bca	 	cba	

CPSC 259 Recursion Page 96

Find the Base Case(s)
•  What would be the simplest string(s)?

–  The empty string has a single permutation: itself

permutations(s):
 if s is empty:
 just return s
 	

CPSC 259 Recursion Page 97

Simplify the Problem
•  Suppose the input is "abc"

– How can we generate all permutations that start with the
letter 'a'?

– Would assuming that I have all permutations of "bc"
help?

– How can we generate all permutations that start with the

letter 'b'?
– Would assuming that I have all permutations of "ac"

help?

bc	
cb	

abc	
acb	

ac	
ca	

bac	
bca	

CPSC 259 Recursion Page 98

Write Algorithm (in English)
permutations(s):
 if s is empty:
 just return s
 else:

– loop through all character positions
•  form a shorter word by removing the ith char
• generate all permutations of the simpler word
• add the removed character to the front of each

permutation of the simpler word
– return all permutations

CPSC 259 Recursion Page 99

Test Your Algorithm
s = "abc"
loop through all character positions: a

loop through all character positions: b

loop through all character positions: c

bc	
bc	
cb	

abc	
acb	

ac	
ac	
ca	

bac	
bca	

ab	
ab	
ba	

cab	
cba	

abc	
acb	
bac	
bca	
cab	
cba	

CPSC 259 Recursion Page 100

Classic Problems that can be Solved
Recursively (Fractals)

Sierpinski	triangle	 Koch	Curve	

CPSC 259 Recursion Page 101

Classic Problems that can be Solved
Recursively (Sorting)

 3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

-4 3 5 7 1 2 6 9

-4 1 2 3 5 6 7 9

mergesort(array)
 if size == 1
 return
else
 mergesort(leftHalf)
 mergesort(rightHalf)
 merge(leftHalf, rightHalf)

…	
…	
…	
…	
	

CPSC 259 Recursion Page 102

Classic Problems that can be Solved
Recursively (Sorting)

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

-4 3 5 7 6 9 1 2

-4 3 5 7 1 2 6 9

-4 1 2 3 5 6 7 9

mergesort(array)
 if size == 1
 return
else
 mergesort(leftHalf)
 mergesort(rightHalf)
 merge(leftHalf, rightHalf)

CPSC 259 Recursion Page 103

Classic Problems that can be Solved
Recursively (Backtracking)

Maze Sudoku

Source:	Wikipedia	
hYp://en.wikipedia.org/wiki/Backtracking	

Source:	Wikipedia	
hYp://en.wikipedia.org/wiki/Maze	

CPSC 259 Recursion Page 104

Classic Problems that can be Solved
Recursively (operations on data structures)

Source:	Flickr,	labeled	for	noncommercial	reuse		

CPSC 259 Recursion Page 105

Challenging Activity
•  Problem: Try to write code that prints out all permutations

of a string using iteration.

CPSC 259 Recursion Page 106

Which One is More Powerful?

•  Iteration and recursion are equally powerful and
can solve the same problems.
•  Simulating iteration with recursion is easy.

int i = 0; !
while (i < n){ !
 doFoo(i); !
 i++; !
}	

void recDoFoo(int i, int n){ !
 if (i >= n) !
 return; !
 !
 else{ !
 doFoo(i); !
 recDoFoo(i + 1, n); !
 } !
} !

 recDoFoo(0, n);

CPSC 259 Recursion Page 107

Which One is More Powerful?

•  Iteration and recursion are equally powerful and
can solve the same problems.
•  Simulating recursion with iteration is harder and

beyond the scope of this course

•  But here is the general idea
– Simulate the call stack by creating a stack

yourself.
– This can be tricky, so it is better to let the

computer do this for you.

CPSC 259 Recursion Page 108

Iterative vs. Recursive Approaches

– Use iteration when
•  runtime is extremely important (even small differences)
•  your algorithm doesn’t use a lot of extra space and

you’re happy with the runtime.

– Use recursion since
•  recursive programs can be relatively simpler to write,

analyze, and understand than iterative versions.
•  recursive programs can benefit from the call stack in

more complex problems that run slower and/or require
more space.

CPSC 259 Recursion Page 109

Be Very Careful When You Use Recursion
•  Poorly designed recursive procedures can use a lot

of memory and be very slow.
•  It is is much easier to shoot yourself in the foot without

noticing when you use recursion.

CPSC 259 Recursion Page 110

Can We Write Fibonacci Iteratively?
Recursive

int fib(int n){ !
 if (n==1) !
 return 1; !
 else if(n==2) !
 return 1; !
 else!
 return fib(n-1) + !
 fib(n-2); !
}

Iterative
int fib_iterative(int n) { !
 int answer=1; !
 int answerminus1 = 1; !
 int answerminus2 = 1; !
 for (int i = 3; i <= n; i++) { !
 answer = answerminus1 + !
 answerminus2; !
 answerminus2 = answerminus1; !
 answerminus1 = answer; !
 } !
 return answer; !
}

Let’s	run	them	

CPSC 259 Recursion Page 111

Runtime Comparison of Different Fibonacci
Implementations (in seconds)

 30 32 34 36 38 40 42 44
Plain,

recursive 0.19 0.5 1.37 3.6 9 25 64 166

Iterative 0.0004 0.00048 0.00051 0.00052 0.00055 0.00059 0.00062 0.00065

0	

50	

100	

150	

200	

30	 32	 34	 36	 38	 40	 42	 44	

Ti
m
e	
(s
ec
on

ds
)	

input	

Plain,	recursive	

Itera2ve		

CPSC 259 Recursion Page 112

Recursion and efficiency
•  Each function invocation generates an activation record that holds

the values of arguments and local variables for that invocation.
These activation records are stored in an area of memory called the
run-time stack. The diagram below shows the state of the run-time
stack when a call to fib(4) is made from main.

•  The height of fib’s recursion tree plus 1 is the maximum number of
fib activation records on the run-time stack at any given time—in
this case 3. Memory for the runtime stack is limited. If we attempt
to generate more activation records than can be stored on the run-
time stack, a stack overflow occurs and the program will crash.

main	
fib(4)	
main	

fib(3)	
fib(4)	
main	

fib(2)	
fib(3)	
fib(4)	
main	

		
fib(3)	
fib(4)	
main	

fib(1)	
fib(3)	
fib(4)	
main	

fib(3)	
fib(4)	
main	

fib(4)	
main	

fib(2)	
fib(4)	
main	

fib(4)	
main	 main	

CPSC 259 Recursion Page 113

Plain Recursive Fibonacci

0
1
2
3
4
5
6
7
8
9

10

Sp
ac

e
Stack space used in computing fib(10)

CPSC 259 Recursion Page 114

Plain Recursive Fibonacci
Stack space used in computing fib(15)

0

2

4

6

8

10

12

14

16

Sp
ac

e

CPSC 259 Recursion Page 115

CPSC 259 Administrative Notes
•  Starting Lab 4 – Week 1 on Monday

•  Midterm Friday, Nov 13

•  Unfortunately, we’ve had a few plagiarism cases that I’m
following up on.
–  Course policy on plagiarism is stated on the course website

CPSC 259 Recursion Page 116

Thank you for your feedback
•  Great to know that most people like how the course is

progressing.
– Average response to “Overall, the instructor was an effective

teacher” was ~4.8

•  Some common dislikes
–  8 am lectures!
– Textbook

• Any recommendations?
•  Stanford's tutorial notes for C programming.

– Quizzes
– Midterm was a bit long

CPSC 259 Recursion Page 117

Redundant Computation
 •  Do we really need to compute fib(3) multiple times?

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

(1) Redundant computation
(2) Requires a lot of memory

Can we do better?

CPSC 259 Recursion Page 118

Be Very Careful When You Use Recursion
•  Poorly designed recursive procedures can use a lot of memory and

be very slow.
•  It is is much easier to shoot yourself in the foot without noticing when you use

recursion.

•  Well designed recursive procedures are almost (constant
factor difference) as fast as iterative procedures

•  Memoization can make recursive functions run faster.

CPSC 259 Recursion Page 119

Recursion -- Memoization
•  Memoization

–  After computing a solution, store it in a table before returning.
(Leave a “memo” to yourself.)

–  At start of the function, check if you’ve solved this case before.
If so, return the already calculated solution.

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(6)

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(4)

n	 Fn	
6	

5	

4	

3	

2	

1	
1	

1	

2	

3	

5	

8	

CPSC 259 Recursion Page 120

Recursion -- Memoization
•  Memoization

–  After computing a solution, store it in a table before returning.
(Leave a “memo” to yourself.)

–  At start of the function, check if you’ve solved this case before.
If so, return the already calculated solution.

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

fib(6)

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(4)

n	 Fn	
6	

5	

4	

3	

2	

1	
1	

1	

2	

3	

5	

8	

CPSC 259 Recursion Page 121

Memoizing Fib
int fibMem(int n) !
{ !
 int* fibTable = (int*) calloc(sizeof(int) , MAX); !
 return fibMemoHelper(n, fibTable); !
 !
}	

int fibMemoHelper(int n, int fibTable[]) !
{ !
 if (n==1) !
 fibTable[1] = 1; !
 else if (n==2) !
 fibTable[2] = 1; !
 else if (fibTable[n]==0) !
 fibTable[n] = fibMemoHelper(n-1, fibTable)+ !
 fibMemoHelper(n-2, fibTable); !
 !
 return fibTable[n]; !
}	

CPSC 259 Recursion Page 122

Runtime Comparison of Different Fibonacci
Implementations (in seconds)

 30 32 34 36 38 40 42 44
Plain, recursive 0.19 0.5 1.37 3.6 9 25 64 166

Memoized 0.0005 0.0005 0.00051 0.00053 0.00055 0.0006 0.0006 0.0006
Iterative 0.0004 0.00048 0.00051 0.00052 0.00055 0.00059 0.00059 0.00059

0	

50	

100	

150	

200	

30	 32	 34	 36	 38	 40	 42	 44	

Ti
m
e	
(s
ec
on

ds
)	

input	

Plain,	recursive	

Memoized	

Itera2ve		

CPSC 259 Recursion Page 123

Runtime Comparison -- a Closer Look (1)
(in seconds)

 10 100 1,000 10,000
Memoized 0.00041 0.0009 0.001 0.013
Iterative 0.0003 0.0004 0.0009 0.0082

0	
0.002	
0.004	
0.006	
0.008	
0.01	
0.012	
0.014	

10	 100	 1,000	 10,000	

Ti
m
e	
(s
ec
on

ds
)	

input	

Memoized	

Itera2ve		

CPSC 259 Recursion Page 124

Clicker Question
•  factorial_memoized(100)is expected to run _____

than factorial_plain_recursive(100)?

•  A: significantly faster
 B: slightly faster
 C: slightly slower
 D: significantly slower
 E: none of the above

CPSC 259 Recursion Page 125

Clicker Question (answer)
•  factorial_memoized(100)is expected to run _____

than factorial_plain_recursive(100)?

•  A: significantly faster
 B: slightly faster
 C: slightly slower
 D: significantly slower
 E: none of the above

CPSC 259 Recursion Page 126

Runtime Comparison -- a Closer Look (2)
(in seconds)

 10 100 1,000 10,000 100,000
Memoized 0.00041 0.0009 0.001 0.013 Crashed
Iterative 0.0003 0.0004 0.0009 0.0082 0.048

0	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

10	 100	 1,000	 10,000	 100,000	

Ti
m
e	
(s
ec
on

ds
)	

input	

Memoized	

Itera2ve		

CPSC 259 Recursion Page 127

Memoized Fibonacci

Stack	space	used	in	compu2ng	fib_memoized(10)

0
1
2
3
4
5
6
7
8
9

10

0 5 10 15 20 25 30 35 40

Sp
ac

e

Time

CPSC 259 Recursion Page 128

Memoized Fibonacci
Stack	space	used	in	compu2ng	fib_memoized(40)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180

Sp
ac

e

Time
(1) Redundant computation
(2) Requires a lot of memory

CPSC 259 Recursion Page 129

Be Very Careful When You Use Recursion
•  Poorly designed recursive procedures can use a lot of memory and

be very slow.
•  It is is much easier to shoot yourself in the foot without noticing when you use

recursion.

•  Well designed recursive procedures can use almost
(constant factor difference) the same amount of memory as
iterative procedures:

•  Tail recursion can make recursive functions use
less space.

CPSC 259 Recursion Page 130

Clicker Question

•  What do you think would happen if you execute this
function?

A: This will result in a stack overflow
B: This will magically not result in a stack overflow
C: It depends
D: None of the above

void endlesslyGreet(){ !
 printf("Hello World! \n"); !
 endlesslyGreet(); !
}	

CPSC 259 Recursion Page 131

Tail Recursion
•  A function is “tail recursive” if for every recursive call in

the function, that call is the absolute last thing the function
needs to do before returning.

•  In that case, why bother pushing a new stack frame?
There’s nothing to remember. Just re-use the old frame.

•  That’s what most compilers will do.

CPSC 259 Recursion Page 132

Compare and Contrast

void countinglyGreet(int n){ !
 !
 if (n <=1) !
 return; !
 !
 printf("Hello! \n"); !
 countinglyGreet(n-1); !
}	

int factorial(int n){ !
 !
 if (n <=1) !
 return 1; !
!
 else!
 return n * factorial(n-1); !
}	

•  How are these two functions
–  Similar?
–  Different?

 countinglyGreet(4); factorial(4);

CPSC 259 Recursion Page 133

Compare and Contrast
 countinglyGreet(4); factorial(4);

factorial(4)

factorial(3)

factorial(2)

factorial(1)

countinglyGreet(4)

countinglyGreet(3)

countinglyGreet(2)

countinglyGreet(1)

Needs	to	wait	
	for	factorial(3)	

Does	not	need	to	wait	
	for	coun2nglyGreet(3)		

CPSC 259 Recursion Page 134

Managing the Call Stack: Tail Recursion
•  This is clearly infinite recursion. The call stack will get

as deep as it can get and then stack overflow, right?

 void endlesslyGreet(){ !

 cout << "Hello, world!" << endl; !
 endlesslyGreet(); !
} !
	

Since	a	tail	call	doesn’t	need	to	generate	a	new	ac2va2on	
record	on	the	stack,	a	good	compiler	won’t	make	the	
computer	do	that.	Therefore,	tail	call	doesn’t	increase	depth	
of	call	stack.	

CPSC 259 Recursion Page 135

Tail Recursive?

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

int factorial (int n) { !
 if (n == 0) return 1; !
 else return n * factorial(n – 1); !
} !
	

CPSC 259 Recursion Page 136

Tail Recursive?

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

int factorial (int n) { !
 if (n == 0) return 1; !
 else return n * factorial(n – 1); !
} !
	

CPSC 259 Recursion Page 137

Tail Recursive Factorial
int factorial_tailrecursive(int n) !
{ !
 int result = factorial_tailrecursive_helper(n, 1); !
 return result; !
}	

int factorial_tailrecursive_helper(int n, int acc) !
{ !
 if (n ==0) !
 return acc; !
 !
 return factorial_tailrecursive_helper(n-1, acc*n); !
}	

CPSC 259 Recursion Page 138

Factorial

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

6	

1	

2	

1	

24	

factorial_tail(4,1)

factorial_tail(3,4)

factorial_tail(2,12)

factorial_tail(1,24)

factorial_tail(0 ,24)

24	

CPSC 259 Recursion Page 139

Tail Recursive Fibonacci

int fib_tailRecursive(int n, int next, int result) { !
 if (n==1) !
 return result; !
 !
 else{ !
 return fib_tailRecursive(n-1, result+next, next); !
 !
 }	

!
return fib_tailRecursive(n, 1, 1); !
	

CPSC 259 Recursion Page 140

Runtime Comparison (in seconds)
fib_tailRecursive vs. fib_iterative

0	

0.02	

0.04	

0.06	

0.08	

0.1	

10	 100	 1,000	 10,000	 100,000	

Ti
m
e	
(s
ec
on

ds
)	

Input	

Tail_recursive	

Itera2ve		

 10 100 1,000 10,000 100,000
Tail_recursive 0.00038 0.0005 0.0012 0.0093 0.078

Iterative 0.0003 0.0004 0.0009 0.0082 0.048

CPSC 259 Recursion Page 141

Recursion vs. Iteration
–  Iteration and recursion are equally powerful

problem solving techniques.
•  recursive programs can be relatively simpler to write,

analyze, and understand than iterative versions.
•  recursive programs can benefit from the call stack in

more complex problems that run slower and/or
require more space.

– Recursion may carry around a bit more (a
constant factor more) memory than iteration but if
well designed, neither is more efficient.

CPSC 259 Recursion Page 142

Learning Goals revisited
•  design simple recursive functions.
•  recognize algorithms as being iterative or recursive.
•  describe how a computer runs recursive algorithms.
•  demonstrate the ability to draw recursion trees.
•  explain how stack overflow may arise as a result of

recursion.
•  explain why a recursively defined method may take more

space than an equivalent iteratively defined method.

