
CPSC 259 Linked Lists Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Linked Lists

Textbook References:

(a) Etter, 3rd edition: Chapter 7, pages 340-359
 (b) Thareja (first edition) Chapter 8

(c) Thareja (second edition): Chapter 6

Hassan Khosravi
Borrowing many slides from Ed Knorr

CPSC 259 Linked Lists Page 2

Learning Goals for this Unit
•  Define and use linked lists in an implementation with

dynamic memory allocation.
•  Traverse a node-based linked list using a loop
•  Mutate a node-based linked list
•  Determine the time complexities of operations on arrays

and linked lists.
•  Compare and contrast the implementation of a list using

arrays, singly-linked lists, and doubly-linked lists in C.

CPSC 259 Linked Lists Page 3

Let us begin this section by considering operations on arrays that have a
given capacity or size denoted by n. Note that the capacity may be
different than the current number of elements in the array.

By now, you should be very familiar with arrays. Arrays tend to be easy
to code and easy to visualize. In terms of complexity, they offer fast
access.

e.g., printf(“salary is $%.2f\n”, staff[85].salary);

What is the time complexity of adding an element to an array that is not
currently full, when order is unimportant? ____________

O(1)

Unordered Arrays

CPSC 259 Linked Lists Page 4

Unordered Arrays
•  The time complexity of deleting an element from an

unordered array, such that we don’t leave a hole in the
array (with a garbage value), is ________

–  A: O(1)
–  B: O(n)
–  C: neither
–  D: Both
–  E: I don’t know

CPSC 259 Linked Lists Page 5

Unordered Arrays
•  The time complexity of deleting the current element from

an unordered array, such that we don’t leave a hole in the
array (with a garbage value), is ________ because: O(1)

2 4 5 6 4 4 9

2 4 9 6 4 4 Delete	 5	

CPSC 259 Linked Lists Page 6

Ordered Arrays
Inserting to an array without
holes, (in which order
matters) has time complexity?

O(n)

Deleting from an array without
holes, (in which order matters)
has time complexity?

O(n)

CPSC 259 Linked Lists Page 7

Linked Lists
•  Consider the following abstraction, picturing a short

linked list:

•  What might it look like in memory?
`

2 100 Null

5 Null 100

1 600 1080

1080
…
600
…
140
120
100 Node

previous next data

5 N 1 2 N

N	 represents	 NULL	

CPSC 259 Linked Lists Page 8

Inserting an Element to a Linked List

2 140 Null

5 Null 100

9 100 1080

1 600 140

1080
…
600
…
140
120
100

previous next

9

5N 1 2 N
5 N 1 2 N

data

CPSC 259 Linked Lists Page 9

Removing an Element from a Linked List

2 600 Null

5 Null 1080

1 600 1080

1080
…
600
…
140
120
100

previous next

delete

5 N 1 2 N 5 N

1
2 N

data

CPSC 259 Linked Lists Page 10

Website for Visualizing Data Structures
•  http://visualgo.net/list.html

CPSC 259 Linked Lists Page 11

Linked Lists -- Advantages
•  Advantage: Linked lists are connected “nodes” of data

that we can add to, or delete from, on-the-fly. Thus, a
linked list can grow or shrink “dynamically”, while the
program is running.

•  Advantage: The programmer doesn’t have to determine
(or “guess”) the size of the linked list ahead of time. If we
need another node, we just get one (via malloc) and
connect it to the list

CPSC 259 Linked Lists Page 12

Linked lists -- Disadvantages
•  Disadvantage: To access a node, we may need to go

through quite a bit of the linked list to find it (i.e., O(n)
access). Arrays have O(1) access (e.g., arrays can get to
staff[85] instantly; however, a linked list would have to
visit 85 elements in its chain before getting to the 86th
one).

•  Disadvantage: A linked list needs more space to store the
data because of the pointer field.

•  Disadvantage: Linked lists are harder to program, debug,
and test—than arrays.

CPSC 259 Linked Lists Page 13

Hockey Player Example:
struct player { !
 int jersey_number; !
 char * name; !
 struct player * next; /* to link this node to the next node */!
}; !
typedef struct player player; !
!
int main(void){ !
 player * head_list1 = NULL; !
 player * head_list2 = NULL; !
 player gretzky = {99, "Wayne Gretzky", NULL}; !
 /* Example 1 */!
 head_list1 = &gretzky; !
 display_list(head_list1); !
 !
 /* Example 2 */!
 head_list2 = insert_at_head(head_list2, 22, "Daniel Sedin"); !
 head_list2 = insert_at_head(head_list2, 33, "Henrik Sedin"); !
 display_list(head_list2); !
}	

CPSC 259 Linked Lists Page 14

Hockey Player Example:
•  Here is a function to insert a new node at the start of a (possibly

empty) linked list:

player * insert_at_head(player * head, int player_number, char *
player_name){ !
!
 player * new_node; !
 !
 new_node = (player *) malloc(sizeof(player)); !
 !
 new_node->jersey_number = player_number; !
 new_node->name = player_name; !
 new_node->next = head; /* point to current head of list */!
 !
 printf("Node was added.\n\n"); !
 return new_node; /* the new node is the new head */!
}	

CPSC 259 Linked Lists Page 15

Clicker question
•  Would this work?

A: Yes this is totally fine
B: No, this would not work
C: I have no idea

player* insert_at_head(player * head, int player_number, !
 char * player_name){ !
player new_node; !

 !
new_node->jersey_number = player_number; !
new_node->name = player_name; !
new_node->next = head; /* point to current head of list */!
!
printf("Node was added.\n\n"); !
return &new_node; /* the new node is the new head */!

} !
	

CPSC 259 Linked Lists Page 16

Clicker question
•  Would this work?

A: Yes this is totally fine
B: No, this would not work
C: I have no idea

player* insert_at_head(player * head, int player_number, !
 char * player_name){ !
player new_node; !

 !
new_node->jersey_number = player_number; !
new_node->name = player_name; !
new_node->next = head; /* point to current head of list */!
!
printf("Node was added.\n\n"); !
return &new_node; /* the new node is the new head */!

} !
	

Memory is allocated on the stack and
will automatically be deallocated when
 the function ends

CPSC 259 Linked Lists Page 17

Hockey Player Example:
•  Here is a function to iterate through a (possibly empty)

linked list, starting at the head of the list, and printing out
information from each node:

void display_list(player * node){ !
 int k = 0; !
 !
 while (node){ /* only stop when node becomes NULL */!
 printf("Node %d is: %s, Jersey Number %d\n“, k, node->name, !
 node->jersey_number); !
 node = node->next; !
 k++; !
 } !
 printf("There were %d node(s) in the list.\n\n", k); !
}	

See the hockey_players_linked_list files

CPSC 259 Linked Lists Page 18

More operations on linked lists
•  What if you wanted to insert/delete nodes into the middle

of a list?

CPSC 259 Linked Lists Page 19

Clicker question (Inserting into a list)

•  Consider the following linked list, and possible commands

•  Assuming that we would like to keep the list sorted, which

of the following list of commands correctly inserts the new
node into the list

W: current->next = new
X: current= current->next
Y: new->next = current->next
Z: current = new

A: X X X Y W
B: X X X X W Y
C: X X X W Y
D: X X X W Z Y
E: None of the above

1 2 3 4 6 7 N

current new 5 N

CPSC 259 Linked Lists Page 20

Clicker Question (answer)
•  Consider the following linked list, and possible commands

•  Assuming that we would like to keep the list sorted, which
of the following list of commands correctly inserts the new
node into the list

W: current->next = new
X: current= current->next
Y: new->next = current->next
Z: current = new

1 2 3 4 6 7 N

current new

A: X X X Y W

1 2 3 4 6 7 N

current new 5 N

5 N

If W is performed before Y,
 then the second half of the list is lost

CPSC 259 Linked Lists Page 21

Clicker question (deleting from a list)

•  Consider the following linked list, and possible commands

•  Which one of the following list of commands correctly
deletes 3 from the list

V: current= current->next
W: prev = prev->next
X: prev->next = current->next
Y: current->next = prev->next
Z: free(current); current= NULL;

current

A: V W V Y Z
B: W V W X Z
C: V W V X Z
D: V V W W Y Z
E: None of the above

prev

1 2 3 4 6 7 N

CPSC 259 Linked Lists Page 22

Clicker question (deleting from a list)

•  Consider the following linked list, and possible commands

•  Which one of the following list of commands correctly
deletes 3 from the list

V: current= current->next
W: prev = prev->next
X: prev->next = current->next
Y: current->next = prev->next
Z: free(current);current= NULL;

1 2 3 4 6 7

current

C: V W V X Z

prev

1 2 4 6 7

current prev

CPSC 259 Linked Lists Page 23

Comparison of Worst Case Complexities
•  Assume we know the number of entries in the arrays.

Operation Array
(unordered)

Array
(ordered)

Linked List
(unordered)

Linked List
(ordered)

Insert at start
Insert at end
using head ptr
Insert after
current position
Find (search for)
a value

Delete at current
position

CPSC 259 Linked Lists Page 24

Comparison of Worst Case Complexities
•  Assume we know the number of entries in the arrays.

Operation Array
(unordered)

Array
(ordered)

Linked List
(unordered)

Linked List
(ordered)

Insert at start O(1) O(n) O(1) O(1)
Insert at end
using head ptr

O(1) O(1) O(n) O(n)

Insert after
current position

O(1) O(n) O(1) O(1)

Find (search for)
a value

O(n)

O(lg n)
for unique

keys

O(n)

O(n)

Delete at current
position

O(1) O(n) O(1) O(1)

CPSC 259 Linked Lists Page 25

Clicker question
•  If we also had a tail pointer for an ordered linked list (lowest

to highest), what would be the worst-case complexity for an
end-of-list insertion, if each new key was always larger than
the highest current value, every time?

A.  O(1)

B.  O(lg n)

C.  O(n)

D.  O(n lg n)

E.  None of the above

CPSC 259 Linked Lists Page 26

Clicker question (answer)
•  If we also had a tail pointer for an ordered linked list (lowest

to highest), what would be the worst-case complexity for an
end-of-list insertion, if each new key was always larger than
the highest current value, every time?

A.  O(1)

B.  O(lg n)

C.  O(n)

D.  O(n lg n)

E.  None of the above

1 2 3 4 5 7 9 X

start end

CPSC 259 Linked Lists Page 27

Clicker question
•  If we also had a tail pointer for the ordered linked list

case, what would be the worst-case complexity for
inserting one new key, if new keys weren’t necessarily
higher than the current highest current value?

A.  O(1)

B.  O(lg n)

C.  O(n)

D.  O(n lg n)

E.  None of the above

CPSC 259 Linked Lists Page 28

A.  O(1)

B.  O(lg n)

C.  O(n)

D.  O(n lg n)

E.  None of the above

Clicker question (answer)
•  If we also had a tail pointer for the ordered linked list

case, what would be the worst-case complexity for
inserting one new key, if new keys weren’t necessarily
higher than the current highest current value?

1 2 3 4 5 7 9 X

start end

6

CPSC 259 Linked Lists Page 29

(same idea) If we also had a tail pointer for the ordered linked list
case, what would be the worst-case complexity for inserting 100
new keys, if new keys weren’t necessarily higher than the current
highest current value? Choose the best answer.

A.  O(1)
B.  O(lg n)
C.  O(100 lg n)
D.  O(n)
E.  O(100 n)

Clicker question

CPSC 259 Linked Lists Page 30

(same idea) If we also had a tail pointer for the ordered linked list
case, what would be the worst-case complexity for inserting 100
new keys, if new keys weren’t necessarily higher than the current
highest current value? Choose the best answer.

A.  O(1)
B.  O(lg n)
C.  O(100 lg n)
D.  O(n)
E.  O(100 n)

Clicker question (answer)

CPSC 259 Linked Lists Page 31

Clicker Question
•  Consider the following linked list and possible commands.

Which correctly orders the list?

A:	 	 c	 =	 c	 -‐>	 next	
B:	 	 d	 =	 d	 -‐>	 next	
C:	 	 c	 -‐>	 next	 =	 e	
D:	 	 d	 -‐>	 next	 =	 c	
E:	 	 e	 -‐>	 next	 =	 d	
F:	 	 d	 -‐>	 next	 =	 NULL	
G:	 	 e	 -‐>	 next	 =	 NULL	 A: A A B E B B B F

B: A B B C E B F
C: A C B B E B F
D: A B B C D G
E: none of the above

CPSC 259 Linked Lists Page 32

Clicker Question Answer
•  Consider the following linked list and possible commands.

Which correctly orders the list?

A:	 	 c	 =	 c	 -‐>	 next	
B:	 	 d	 =	 d	 -‐>	 next	
C:	 	 c	 -‐>	 next	 =	 e	
D:	 	 d	 -‐>	 next	 =	 c	
E:	 	 e	 -‐>	 next	 =	 d	
F:	 	 d	 -‐>	 next	 =	 NULL	
G:	 	 e	 -‐>	 next	 =	 NULL	 A: A A B E B B B F

B: A B B C E B F
C: A C B B E B F
D: A B B C D G
E: none of the above

CPSC 259 Linked Lists Page 33

Doubly Linked List

§  A doubly linked list or a two way linked list is a

more complex type of linked list which contains a

pointer to the next as well as previous node in the

sequence. Therefore, it consists of three parts and not

just two. The three parts are data, a pointer to the

next node and a pointer to the previous node
START 5 N 1 2 N

CPSC 259 Linked Lists Page 34

Doubly Linked List
•  In	 C	 language,	 the	 structure	 of	 a	 doubly	 linked	 list	 is	 given	 as,	
	
	
	
	
	
	
	
•  The prev field of the first node and the next field of the last node

will contain NULL. The prev field is used to store the address of the
preceding node. This would enable to traverse the list in the
backward direction as well.

struct node{ !
 struct node *prev; !
 int data; !
 struct node *next; !
}; !

CPSC 259 Linked Lists Page 35

Doubly Linked List
•  Advantages:
–  Can navigate back and forth (and visit nodes in either direction)

without going back to the start/end
–  Can add a node before/after the current node in O(1)
–  Can remove a node before/after the current node in O(1)

•  Disadvantage
–  Requires more space
–  Harder to program

CPSC 259 Linked Lists Page 36

Removing from a doubly linked list
 node *curr, *temp; !
 ... !
 /* curr points to the current node; curr is not head or tail */!
 curr->prev->next = curr->next; !
 curr->next->prev = curr->prev; !
 temp = curr->next; /* Why are we using “temp” here? */!
 free(curr); /* free (deallocate) memory /* !
 curr = temp;	

5 N 1 2 N 5 N

1
2 N

2 600 Null

5 Null 1080

1 600 1080

1080

…

600

…

140

120

100

previous next

delete

value
current current

CPSC 259 Linked Lists Page 37

Linked list exercise (1)
•  Write a count() function that counts the number of times a

given int occurs in a list.

int count(node* head, int searchFor) { !
 node* current = head; !
 int count = 0; !
 while (current != NULL) { !
 if (current->data == searchFor) !
 count++; !
 current = current->next; !
 } !
 return count; !
}	

CPSC 259 Linked Lists Page 38

Linked list exercise
•  Write a insertHead1 function that uses the following

prototype
 node * insertHead1(node * head, int value); !

node * insertHead1(node * head, int value){ !
 node * newNode; !
 newNode = (node*)malloc(sizeof(node)); !
 newNode->data = value; !
 newNode->next = head; !
 return newNode; !
}	

1 7 3 4 2 6 5 N

head

9
new_node

CPSC 259 Linked Lists Page 39

Linked list exercise
•  Write a insertHead2 function that uses the following

prototype
 void insertHead2(node ** headRef, int value); !

void insertHead2(node ** headRef, int value){ !
 node * newNode; !
 newNode = (node*)malloc(sizeof(node)); !
 newNode->data = value; !
 newNode->next = *headRef; !
 *headRef = newNode; !
}	

1 7 3 4 2 6 5 N

head

9
new_node

headRef	

CPSC 259 Linked Lists Page 40

Popular Interview Question
•  Write a function that partitions a linked list around a value

x, such that all nodes less than or equal to x come before
all nodes greater than x.

Node * partition1(Node * head, int num) !
	

CPSC 259 Linked Lists Page 41

/* Move values smaller than num to beginning of the list */!
Node * partition1(Node * head, int num) !
{ !
 Node * current = head; !
 Node * after = NULL; !
 while (current){ !
 if (current->next) !
 after = current->next; !
 else!
 after = NULL; !
 !
 if(after && after->data <= num){ !
 current->next = after->next; !
 after->next = head; !
 head = after; !
 } !
 else!
 current = current->next; !
 } !
 return head; !
}	

CPSC 259 Linked Lists Page 42

Learning Goals revisited
•  Define and use linked lists in an implementation with

dynamic memory allocation.
•  Traverse a node-based linked list using a loop
•  Mutate a node-based linked list
•  Determine the time complexities of operations on arrays

and linked lists.
•  Compare and contrast the implementation of a list using

arrays, singly-linked lists, and doubly-linked lists in C.

