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Learning Goals 
•  Justify which operation(s) we should measure in an algorithm/

program in order to estimate its “efficiency”. 
•  Define the “input size” n for various problems, and determine the 

effect (in terms of performance) that increasing the value of n has 
on an algorithm. 

•  Given a fragment of code, write a formula which measures the 
number of steps executed, as a function of n. 

•  Define the notion of Big-O complexity, and explain pictorially 
what it represents. 

•  Compute the worst-case asymptotic complexity of an algorithm in 
terms of its input size n, and express it in Big-O notation. 
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Learning Goals (cont) 
•  Compute an appropriate Big-O estimate for a given function T(n). 
•  Discuss the pros and cons of using best-, worst-, and average-case 

analysis, when determining the complexity of an algorithm. 
•  Describe why best-case analysis is rarely relevant and how worst-

case analysis may never be encountered in practice.  
•  Given two or more algorithms, rank them in terms of their time and 

space complexity. 
•  [Future units] Give an example of an algorithm/problem for which 

average-case analysis is more appropriate than worst-case analysis. 
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A Task to Solve and Analyze 
•  Find a student’s name in a class given her student ID 
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Efficiency 
•  Complexity theory addresses the issue of how efficient an 

algorithm is, and in particular, how well an algorithm scales as the 
problem size increases. 

•  Some measure of efficiency is needed to compare one algorithm to 
another (assuming that both algorithms are correct and produce the 
same answers).  Suggest some ways of how to measure efficiency. 
–  Time (How long does it take to run?) 
–  Space (How much memory does it take?) 
–  Other attributes? 

•  Expensive operations, e.g.  I/O 
•  Elegance, Cleverness 
•  Energy, Power 
•  Ease of programming, legal issues, etc. 
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Analyzing Runtime 
How long does this take? 
 
 
 

old2 = 1; !
old1 = 1; !
for (i=3; i<n; i++) { !
    result = old2+old1; !
    old1 = old2; !
    old2 = result; !
} !
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Analyzing Runtime 
How long does this take? 
 
 
IT DEPENDS 
•  What is n? 
•  What machine? 
•  What language? 
•  What compiler? 
•  How was it programmed? 
 
 
 
 
 

old2 = 1; !
old1 = 1; !
for(i=3; i<n; i++){ !
  result = old2+old1; !
  old1 = old2; !
  old2 = result; !
} !
	  

Wouldn’t	  it	  be	  nice	  if	  it	  didn’t	  depend	  
on	  so	  many	  things?	  
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Number of Operations 
•  Let us focus on one complexity measure:  the number of 

operations performed by the algorithm on an input of a given size. 
•  What is meant by “number of operations”? 

–  # instructions executed 
–  # comparisons 

•  Is the “number of operations” a precise indicator of an algorithm’s 
running time (time complexity)?  Compare a “shift register” 
instruction to a “move character” instruction, in assembly language. 
–  No, some operations are more costly than others 

•  Is it a fair indicator? 
–  Good enough 
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Analyzing Runtime 
How many operations does this 

take? 
 
IT DEPENDS 
•  What is n? 
 
 
 
 
 

old2 = 1 !
old1 = 1 !
for(i=3; i<n; i++){ !
  result = old2+old1 !
  old1 = old2 !
  old2 = result!
} !
	  

•  Running time is a function of n such as T(n) 
•  This is really nice because the runtime analysis doesn’t 

depend on hardware or subjective conditions anymore 
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Input Size 
•  What is meant by the input size n?  Provide some 

application-specific examples. 
•  Dictionary: 

•  # words 

•  Restaurant: 
•  # customers or # food choices or # employees 

•  Airline: 
•  # flights or # luggage or # costumers 

•  We want to express the number of operations performed as 
a function of the input size n.  
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Run Time as a Function of Size of Input 
•  But, which input? 
–  Different inputs of same size have different run times 

 E.g., what is run time of linear search in a list? 
–  If the item is the first in the list? 
–  If it’s the last one? 
–  If it’s not in the list at all? 

 
What should we report? 
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 

Mostly	  
useless	  
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 

Useful,	  
pessimis:c	  
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Which Run Time? 

•  Average Case (Expected Time) 

•  Requires a notion of an "average" input to an algorithm, which 
uses a probability distribution over possible inputs. 

•  Allows discriminating among algorithms with the same worst 
case complexity 
•  Classic example: Insertion Sort vs QuickSort  

 

Useful,	  hard	  to	  
do	  right	  
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 

Very	  useful,	  but	  ill-‐
defined	  
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Scalability! 
•  What’s more important? 
–  At n=5, plain recursion version is faster. 
–  At n=3500, complex version is faster. 

•  Computer science is about solving problems people 
couldn’t solve before. Therefore, the emphasis is almost 
always on solving the big versions of problems. 

•  (In computer systems, they always talk about “scalability”, 
which is the ability of a solution to work when things get 
really big.) 
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Asymptotic Analysis 
•  Asymptotic analysis is analyzing what happens to the run 

time (or other performance metric) as the input size n goes 
to infinity. 
–  The word comes from “asymptote”, which is where you look at 

the limiting behavior of a function as something goes to infinity. 

•  This gives a solid mathematical way to capture the 
intuition of emphasizing scalable performance. 

•  It also makes the analysis a lot simpler! 
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Big-O (Big-Oh) Notation 
•  Let T(n) and f(n) be functions mapping Z+→R+. 
 

Time 
(or anything  
else we can  
measure) 

Input size 

T(n) 

f(n) 

We want to compare the “overall” runtime (or memory  
usage or …) of a piece of code against a familiar,  
simple function. 

Positive integers 
Positive real numbers 



CPSC 259                                Asymptotic Analysis                                                               Page 20 

Big-O  Notation 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 
The function f(n) is, asymptotically “greater than 
or equal to” the function T(n) if in the “long run”, 
f(n) (multiplied by a suitable constant) upper-
bounds T(n). 
 

f(n) 

c f(n) 
T(n)	  ∈	  O(f(n))	  if	  ∃	  c	  and	  n0	  such	  that	  

	  T(n)	  ≤	  c	  f(n)	  ∀n	  ≥	  n0	  
For all 

There exists 
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Big-O  Notation 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 
We do want the comparison to be valid for all 
sufficiently large inputs… but we’re willing to 
ignore behaviour on small examples.   
(Looking for a “steady state”.) 

f(n) 

c f(n) 
T(n)	  ∈	  O(f(n))	  if	  ∃	  c	  and	  n0	  such	  that	  

	  T(n)	  ≤	  c	  f(n)	  ∀n	  ≥	  n0	  
For all 

There exists 
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Big-O Notation (cont.) 
•  Using Big-O notation, we might say that Algorithm A “runs 

in time Big-O of n log n”, or that Algorithm B “is an order 
n-squared algorithm”.  We mean that the number of 
operations, as a function of the input size n, is O(n log n) or 
O(n2) for these cases, respectively. 

•  Constants don’t matter in Big-O notation because we’re 
interested in the asymptotic behavior as n grows arbitrarily 
large; but, be aware that large constants can be very 
significant in an actual implementation of the algorithm. 
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Rates of Growth 
•  Suppose a computer executes 1012 ops per second: 

n = 10 100 1,000 10,000 1012 

n 10-11s 10-10s 10-9s 10-8s 1s 

n lg n 10-11s 10-9s 10-8s 10-7s 40s 

n2 10-10s 10-8s 10-6s 10-4s 1012s 

n3 10-9s 10-6s 10-3s 1s 1024s 

2n 10-9s 1018s 10289s   
 

 

104s = 2.8 hrs    1018s = 30 billion years 
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Asymptotic Analysis Hacks 
•  Eliminate low order terms 
–  4n + 5 ⇒ 4n 
–  0.5 n log n - 2n + 7 ⇒ 0.5 n log n 
–  2n + n3 + 3n ⇒ 2n 

•  Eliminate coefficients 
–  4n ⇒ n 
–  0.5 n log n ⇒ n log n 
–  n log (n2) = 2 n log n ⇒ n log n 
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Silicon Downs 
Post #1 
 
n3 + 2n2 
 
n0.1 
 
n + 100n0.1 
 
5n5 
 
n-152n/100 
 
82lg n 
 
mn3 

Post #2 
 
100n2 + 1000 
 
log n 
 
2n + 10 log n 
 
n! 
 
1000n15 
 
3n7 + 7n 
 
2mn 

For	  each	  race,	  which	  “horse”	  is	  
“faster”.	  	  Note	  that	  faster	  
means	  smaller,	  not	  larger!	  
	  
All	  analysis	  are	  done	  
asympto:cally	  	  
	  
a.  LeH	  
b.  Right	  
c.  Tied	  
d.  It	  depends	  
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Race I 

n3 + 2n2 100n2 + 1000 vs.	  

a. Left 
b. Right 
c. Tied 
d. It depends 
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Race I 

n3 + 2n2 100n2 + 1000 vs.	  

a. Left 
b. Right 
c. Tied 
d. It depends 
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Race II 

n0.1 log n vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race II 

n0.1 log n vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Moral of the story? nϵ is slower than log n for any ϵ > 0 
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Race III 

n + 100n0.1 2n + 10 log n vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race III 

n + 100n0.1 2n + 10 log n vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Although left seems faster, asymptotically it is a TIE 
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Race IV 

5n5 n! vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race IV 

5n5 n! vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race V 

n-152n/100 1000n15 vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race V 

n-15 2n/100 1000n15 vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Any exponential is slower than any polynomial. 
 It doesn’t even take that long here (~250 input size) 
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Race VI 

82 log2 (n) 3n7 + 7n vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Log	  Rules:	  
1)	  log(mn)	  =	  log(m)	  +	  log(n)	  
2)	  log(m/n)	  =	  log(m)	  –	  log(n)	  
3)	  log(mn)	  =	  n	  ·∙	  log(m)	  
4)	  n	  =	  2k	  	  à	  log2	  n	  =	  k	  	  
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Race VI 

82 log2(n) 3n7 + 7n vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

82lg(n) = 8lg(n
2 ) = (23)lg(n

2 ) = 233lg(n
2 ) = 2lg(n

6 ) = n6

Log	  Rules:	  
1)	  log(mn)	  =	  log(m)	  +	  log(n)	  
2)	  log(m/n)	  =	  log(m)	  –	  log(n)	  
3)	  log(mn)	  =	  n	  ·∙	  log(m)	  
4)	  n	  =	  2k	  	  à	  log	  n	  =	  k	  
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Log Aside 
logab means “the exponent that turns a into b” 
lg x means   “log2x” (the usual log in CS) 
log x means “log10x” (the common log) 
ln x means   “logex” (the natural log) 
 
•  There’s just a constant factor between the three main log 

bases, and asymptotically they behave equivalently.  
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Race VII 

mn3 2mn vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race VII 

mn3 2mn vs.	  

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

It depends on values of m and n 
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Silicon Downs 

Post #1 
 
n3 + 2n2 
 
n0.1 
 
n + 100n0.1 
 
5n5 
 
n-152n/100 
 
82lg n 
 
mn3 

Post #2 
 
100n2 + 1000 
 
log n 
 
2n + 10 log n 
 
n! 
 
1000n15 
 
3n7 + 7n 
 
2mn 

Winner 
 
O(n2)  
 
O(log n) 
 
TIE O(n) 
 
O(n5) 
 
O(n15) 
 
O(n6) 
 
IT DEPENDS 
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The fix sheet 
•  The fix sheet (typical growth rates in order) 
–  constant:  O(1) 
–  logarithmic:  O(log n)  (logkn, log n2 ∈ O(log n)) 
–  Sub-linear: O(nc)              (c is a constant, 0 < c < 1) 
–  linear:   O(n) 
–  (log-linear):  O(n log n) (usually called “n log n”) 
–  (superlinear):  O(n1+c)            (c is a constant, 0 < c < 1) 
–  quadratic:  O(n2) 
–  cubic:   O(n3) 
–  polynomial:  O(nk)   (k is a constant) 
–  exponential:  O(cn)   (c is a constant > 1) Intractable!	  

Tractable	  
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Name-drop your friends 
–  constant:  O(1) 
– Logarithmic: O(log n)   
–  Sub-linear:  O(nc) 
–  linear:   O(n) 
–  (log-linear):  O(n log n)   
–  (superlinear): O(n1+c) 
–  quadratic: O(n2) 
–  cubic:   O(n3) 
–  polynomial:  O(nk)    
–  exponential:  O(cn)    

	  
Casually	  name-‐drop	  the	  appropriate	  
terms	  in	  order	  to	  sound	  bracingly	  cool	  
to	  colleagues:	  “Oh,	  linear	  search?	  I	  hear	  
it’s	  sub-‐linear	  on	  quantum	  computers,	  
though.	  	  Wild,	  eh?”	  
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Example 
•  Which is faster, n3 or n3 log n? 
 
 
 
•  Which is faster, n3 or n3.01/log n? 
(Split it up and use the “dominance” relationships.) 
 

n3 *1      vs. n3 *log n               

n3 *1      vs. n3 *  n0.01/ log n              
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Which of the following functions is likely to grow the 
fastest, meaning that the algorithm is likely to take the 
most steps, as the input size, n, grows sufficiently 
large? 
 
 

 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E. They would all be about the same. 

Clicker Question 
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Which of the following functions is likely to grow the 
fastest, meaning that the algorithm is likely to take the 
most steps, as the input size, n, grows sufficiently 
large? 
 
 

 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E. They would all be about the same. 

Clicker Question (answer) 
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Suppose we have 4 programs, A-D, that run 
algorithms of the time complexities given. Which 
program will finish first, when executing the 
programs on input size n=10?  
 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E.  Impossible to tell 

Clicker Question 
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Suppose we have 4 programs, A-D, that run 
algorithms of the time complexities given. Which 
program will finish first, when executing the 
programs on input size n=10?  
 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E.  Impossible to tell 

Clicker Question (Answer) 
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Which of the following statements is true?  Choose 
the best answer 
 

A.  The set of functions in O(n4) have a fairly slow growth rate 
 

B.  O(lg n) doesn‘t grow very quickly 
 

C.  Big-O functions with the fastest growth rate represent the 
fastest algorithms, most of the time 
 
D.  Asymptotic complexity deals with relatively small input 
sizes 

Clicker Question 
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Which of the following statements is true?  Choose 
the best answer 
 

A.  The set of functions in O(n4) have a fairly slow growth rate 
 

B.  O(lg n) doesn‘t grow very quickly 
 

C.  Big-O functions with the fastest growth rate represent the 
fastest algorithms, most of the time 
 
D.  Asymptotic complexity deals with relatively small input 
sizes 

Clicker Question (answer) 
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Proving a “There exists” Property 

How do you prove “There exists a good restaurant in 
Vancouver”? 

 
How do you prove a property like 
 

∃c c = 3c+1[ ]
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Proving a                 Property 
How do you prove “There exists a restaurant in 

Vancouver, where all items on the menu are less than 
$10”? 

 
How do you prove a property like 
 

[ ]102 −≤∀∃ xcxc

……∀∃
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Proving a Big-O 
Formally, to prove T(n) ∈ O(f(n)), you must show: 
 
 
 
So, we have to come up with specific values of c and 

n0 that “work”, where “work” means that for any 
n>n0 that someone picks, the formula holds: 

 
 

[ ])()( ncfnT ≤

[ ])()(,0 00 ncfnTnnnc ≤>∀>∃



CPSC 259                                Asymptotic Analysis                                                               Page 54 

Prove n log n ∈ O(n2) 
•  Guess or figure out values of c and n0 that will work. 

 
•  This is fairly trivial:  log n <= n (for n>1) 
   c=1 and n0 = 1 works! 
 
 

	  n	  log	  n	  ≤	  cn2	  
	  log	  n	  ≤	  cn	  
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Aside:  Writing Proofs 
•  In lecture, my goal is to give you intuition. 
–  I will just sketch the main points, but not fill in all details. 

•  When you write a proof (homework, exam, reports, 
papers), be sure to write it out formally! 
–  Standard format makes it much easier to write! 

–  On exams and homeworks, you’ll get more credit. 
–  In real life, people will believe you more. 
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To Prove n log n ∈ O(n2) 
Proof: 
By the definition of big-O, we must find values of c and n0 

such that for all n ≥ n0, n log n ≤ cn2. 
Consider c=1 and n0 = 1. 
For all n ≥ 1, log n ≤ n. 
Therefore, log n ≤ cn, since c=1. 
Multiplying both sides by n (and since n ≥ n0= 1), we have       
        n log n ≤ cn2. 
Therefore, n log n ∈ O(n2). 
 

(This is more detail than you’ll use in the future, but 
until you learn what you can skip, fill in the details.) 
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Example 
•    Prove  T(n) =  n3 + 20 n +1 ∈ O(n3) 

•  n3 + 20 n +1 ≤ cn3       for n>n0 

•  1 + 20/n2 + 1/n3 ≤ c à holds for c = 22 and  n0 = 1 
•   Prove T(n) =  n3 + 20 n +1 ∈ O(n4) 

•  n3 + 20 n +1 ≤ cn4       for n>n0 

•  1/n + 20/n3 + 1/n4 ≤ c à holds for c = 22 and  n0= 1 
 

•  Prove T(n) =  n3 + 20 n +1  ∈ O(n2) 
•  n3 + 20 n +1 ≤ cn2       for n>n0 

•  n + 20/n + 1/n2 ≤ c à You cannot find such  c or n0 
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Computing Big-O  
•  If T(n) is a polynomial of degree d   
•   (i.e., T(n) = a0 + a1n + a2n2 + … + ad nd),  

•  then its Big-O estimate is simply the largest term without 
its coefficient, that is, T(n) ∈ O(nd). 

•  If T1(n) ∈ O(f(n)) and T2(n) ∈ O(g(n)), then  
–  T1 (n) + T2(n) ∈ O( max(f(n), g(n)) ). 
•  T1(n) = 4 n3/2 + 9  
•  T2(n) = 30 n lg n + 17n 

•  T(n) = T1(n) + T2(n) ∈ O( max(n3/2, n lg n)  = O(n3/2) 
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•  Compute Big-O with witnesses c and n0 for  
•  T(n) = 25n2 - 50n + 110. 

 
 
 
 

 

 

25n2 - 50n + 110  ≤   25n2 + 50n + 110 ≤  cn2 

25 + 50/n + 110/n2 ≤  c 
T(n) ∈ O(n2)     c=27, n0 =110 

          or 
                                      c = 185, n0 =1  
 

We	  are	  interested	  in	  the	  “:ghtest”	  
Big-‐O	  es:mate	  and	  not	  necessarily	  
the	  smallest	  c	  and	  n0	  

More Example 

Triangle	  inequality	  
|a+b|	  ≤	  |a|	  +	  |b|	  
	  
(subs:tute	  –b	  with	  b)	  
	  |a-‐b|	  ≤	  |a|	  +	  |-‐b|	  ≤	  |a|	  +	  |b|	  
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•  Example   Compute Big-O with witnesses c and n0 for T(n) = 106. 

 

 

•  Example Compute Big-O with witnesses c and n0 for T(n) = log (n!). 

106≤  c 
T(n) ∈ O(1)   c=106, n0 = whatever  

log (n!) = log(1*2..*n)  
             =log(1) + log(2) + … + log(n) 
            ≤ log(n) + log(n) + …  + log(n)   
            ≤ n log(n) <= cn log(n) 
 
T(n) ∈ O(n log(n))            c=10, n0 = 10  

Log	  Rules:	  
1)	  log(mn)	  =	  log(m)	  +	  log(n)	  
2)	  log(m/n)	  =	  log(m)	  –	  log(n)	  
3)	  log(mn)	  =	  n	  ·∙	  log(m)	  

More Example 
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Proving a Big-O 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 

f(n) 

c f(n) 
T(n)	  ∈	  O(f(n))	  if	  ∃	  c	  and	  n0	  such	  that	  

	  T(n)	  ≤	  c	  f(n)	  ∀n	  ≥	  n0	  
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Big-Omega (Ω) notation 
•  Just as Big-O provides an upper bound, there exists Big-Omega (Ω) 

notation to estimate the lower bound of an algorithm, meaning that, in 
the worst case, the algorithm takes at least so many steps: 

T(n)	  ∈	  Ω(f(n))	  if	  ∃	  d	  and	  n0	  such	  that	  
	  d	  f(n)	  ≤	  	  T(n)	  ∀	  n	  ≥	  n0	  

Time 
(or anything  
else we can  
measure) 

Input size 
n0 

T(n) 

d f(n) 

f(n) 



CPSC 259                                Asymptotic Analysis                                                               Page 63 

Proving Big-Ω 

•  Just like proving Big-O, but backwards… 

•  Prove T(n) =  n3 + 20 n +1 ∈ Ω(n2) 

dn2  ≤  n3 + 20n + 1 
d  ≤  n + 20/n + 1/n2    

d=10,     n0 = 20  
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Big-Theta (Θ) notation 
•  Furthermore, each algorithm has both an upper bound and a lower 

bound, and when these correspond to the same growth order 
function, the result is called Big-Theta (Θ) notation. 

Time 
(or anything  
else we can  
measure) 

Input size 
n0 

T(n) 

d f(n) 

f(n) 

n0 

c f(n) 
T(n)	  ∈	  Θ(f(n))	  if	  ∃	  c,	  d	  and	  n0	  such	  that	  

	  d	  f(n)	  ≤	  	  T(n)	  ≤	  c	  f(n)	  ∀	  n	  ≥	  n0	  
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Examples 

10,000 n2 + 25 n ∈ Θ(n2) 
10-10 n2 ∈ Θ(n2) 
n log n ∈ O(n2) 
n log n ∈ Ω(n) 
n3 + 4 ∈ O(n4) but not Θ(n4) 
n3 + 4 ∈ Ω(n2) but not Θ(n2) 
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Proving Big-Θ 
•  Just prove Big-O and Big-Ω 
•  Prove T(n) =  n3 + 20 n +1∈ Θ(n3) 

dn3 ≤ n3 + 20 n +1 ≤ cn3       for n>n0 
d ≤ 1 + 20/n2 + 1/n3 ≤ c  
 
holds for d=1, c=22 ,  n0 = 25 
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Proving Big-Θ 
•  Just prove Big-O and Big-Ω 
•  Prove T(n) =  n3 + 20 n +1∈ Θ(n3) 

dn3 ≤ n3 + 20 n +1 ≤ cn3       for n>n0 
holds for d=1, c=22 ,  n0 = 25 
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CPSC 259 Administrative Notes 
•  Lab 2 
–  In-lab part is due at the end of your second lab 
– Programming Tests start on Monday  

•  Connect quiz on Complexity is now available 

•  PeerWise call one ends October 9  
–  It would be great to see some more questions relating to 

complexity and Structs. 
– There are a lot of unclaimed identifiers 

•  We're going to use semi-flipped classroom 
methodology 
–  Go over the pre-lecture slides before attending lecture 

•  Anonymous Feedback (see my personal website) 
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Analyzing Code 
•  But how can we obtain T(n) from an algorithm/code 
 

•  C operations              - constant time 
•  consecutive stmts   - sum of times 
•  conditionals    - max of branches, condition 
•  loops      - sum of iterations 
•  function calls    - cost of function body 
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Analyzing Code 

•  Step 1: What’s the input size n? 
•  Step 2: What kind of analysis should we perform?  
–  Worst-case?  Best-case?  Average-case? 

•  Step 3: How much does each line cost?  (Are lines the 
right unit?) 

find(key, array) !
    for i = 1 to length(array) do!
        if array[i] == key !
            return i !
    !
    return -1	  
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Analyzing Code 

•  Step 4: What’s T(n) in its raw form? 
•  Step 5: Simplify T(n) and convert to order notation.  

(Also, which order notation: O, Θ, Ω?) 
•  Step 6: Prove the asymptotic bound by finding constants 
c and n0 such that  
–  for all n ≥ n0, T(n) ≤ cn. 

find(key, array) !
    for i = 1 to length(array) do!
        if array[i] == key !
            return i !
    !
    return -1	  
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Example 1 

•  This example is pretty straightforward. Each loop goes n 
times, and a constant amount of work is done on the 
inside. 

for i = 1 to n do !
   for j = 1 to n do !
      sum = sum + 1	   ] n times ] n times 

T (n) = (1+ 2)
j=1

n

∑
i=1

n

∑ = (1+ 2n)
i=1

n

∑ = n+ 2n2 =O(n2 )

1 
1 
1 

k =
i= j

n

∑ k(n− j +1)
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Example 1 (simpler version) 

•  Count the number of times sum = sum + 1 occurs  
 

for i = 1 to n do !
   for j = 1 to n do !
      sum = sum + 1	   ] n times ] n times 

T (n) = 1
j=1

n

∑
i=1

n

∑ = n
i=1

n

∑ = n2 =O(n2 )

1 
1 
1 
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Example 2 
i = 1 !
   while i < n do!
      for j = i to n do!
         sum = sum + 1 !
      i++	  

Time	  complexity:	  
a.  Θ(n)	  
b.  Θ(n	  lg	  n)	  
c.  Θ(n2)	  
d.  Θ(n2	  lg	  n)	  
e.  None	  of	  these 

i =
i=1

n

∑ n(n+1)
2
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Example 2 (Pure Math Approach)  
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Example 2 (Pure Math Approach)  

(                   )             (              ) 
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Example 2 (Pure Math Approach)  

(                   )             (              ) 
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Example 2 (Pure Math Approach)  

Yay!!! 

3 

3 
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Example 2 (Simplified Math Approach) 
i = 1 !
   while i < n do!
      for j = i to n do!
         sum = sum + 1 !
      i++	  

T (n) = 1
j=i

n

∑
i=1

n−1

∑

T (n) = (n− i+1) = n+ n−1+...+ 2
i=1

n−1

∑

The second sigma is n-i+1 

T (n) = n(n+1) / 2 ∈Θ(n2 ) i =
i=1

n

∑ n(n+1)
2

Count this line 
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Example 2 Pretty Pictures Approach 

* * * * * * * * * * 
  * * * * * * * * * 
    * * * * * * * * 
      * * * * * * * 
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

•  Imagine	  drawing	  one	  point	  for	  each	  
:me	  the	  “sum=sum+1”	  line	  	  gets	  
executed.	  In	  the	  first	  itera:on	  of	  
the	  outer	  loop,	  you’d	  draw	  n	  
points.	  	  In	  the	  second,	  n-‐1.	  	  Then	  
n-‐2,	  n-‐3,	  and	  so	  on	  down	  to	  (about)	  
1.	  	  Let’s	  draw	  that	  picture…	  

	  
	  

 i = 1      /* takes “1” step */!
  while i < n do /* i varies 1 to n-1 */!
    for j = i to n do /* j varies i to n */!
      sum = sum + 1 /* takes “1” step */!
    i++    /* takes “1” step */ !
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Example 2 Pretty Pictures Approach 

•  It is a triangle and its area is proportional to runtime 

n rows 

T (n) = Base×Height
2 = n2

2 ∈Θ(n2 )

* * * * * * * * * * 
  * * * * * * * * * 
    * * * * * * * * 
      * * * * * * * 
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

n columns 
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Example 2 (Faster/Slower Code Approach) 

•  Let’s assume that this code is “too hard” to deal with.  So, 
let’s find just an upper bound. 
–  In which case we get to change the code in any way that 

makes it run no faster (even if it runs slower). 

 i = 1      /* takes “1” step */!
  while i < n do /* i varies 1 to n-1 */!
    for j = i to n do /* j varies i to n */!
      sum = sum + 1 /* takes “1” step */!
    i++    /* takes “1” step */ !
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Example 2 (Faster/Slower Code Approach) 

•  We’ll	  let	  j	  go	  from	  1	  to	  n	  rather	  than	  i	  to	  n.	  	  Since	  i	  ≥	  1,	  this	  is	  
no	  less	  work	  than	  the	  code	  was	  already	  doing…	  

•  But	  this	  is	  just	  an	  upper	  bound	  O(n2),	  since	  we	  made	  the	  
code	  run	  slower.	  

	  
	  
•  Could	  it	  actually	  run	  faster?	  

        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 

 i = 1      /* takes “1” step */!
  while i < n do /* i varies 1 to n-1 */!
    for j = 1 to n do /* j varies 1 to n */!
      sum = sum + 1 /* takes “1” step */!
    i++    /* takes “1” step */ !
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Example 2 (Faster/Slower Code Approach) 

•  Let’s do a lower-bound, in which case we can make the code 
run faster if we want.  
–  Let’s make j start at n-1. Does the code run faster? Is that helpful? 

 
 

 

Runs faster but you get Ω(n) which is not what we want  
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

* 
* 
* 
* 
* 
* 

 i = 1      /* takes “1” step */!
  while i < n do /* i varies 1 to n-1 */!
    for j = n-1 to n do /* j varies n-1 to n */!
      sum = sum + 1 /* takes “1” step */!
    i++    /* takes “1” step */ !
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Example 2 (Faster/Slower Code Approach) 

•  Let’s make j start at n/2. Does the code run faster? Is that 
helpful? 
 Hard to argue that it is faster. Every inner loop now runs n/2 times 

        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

              * * * 
              * * * 
              * * * 
              * * * 
              * * * 
              * * * 

 i = 1      /* takes “1” step */!
  while i < n do /* i varies 1 to n-1 */!
    for j = n/2 to n do /* j varies n/2 to n */!
      sum = sum + 1 /* takes “1” step */!
    i++    /* takes “1” step */ !
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Example 2(Faster /Slower Code Approach) 

•  Let’s change the bounds on both i and j to make both loops 
faster. 

T (n) = 1
j=1

n/2

∑
i=1

n/2

∑ = (n / 2)
i=1

n/2

∑ = n2 / 4∈Ω(n2 )
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

 * * * 
 * * * 
 * * * 

 i = 1      /* takes “1” step */!
  while i < n/2 + 1  do /* i varies 1 to n/2 */!
    for j = n/2 to n do /* j varies n/2 to n */!
      sum = sum + 1 /* takes “1” step */!
    i++    /* takes “1” step */ !
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Note Pretty Pictures and Faster/Slower 
are the Same(ish) Picture  

•  Both the overestimate (upper-bound) and the 
underestimate (lower-bound) are proportional to n2 

* * * * * * * * * * 
  * * * * * * * * * 
    * * * * * * * * 
      * * * * * * * 
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 
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Example 3 
for (i=1; i <= n; i++) !
   for (j=1; j <= n; j=j*2) !
       sum = sum + 1 !

Time	  complexity:	  
a.  Θ(n)	  
b.  Θ(n	  lg	  n)	  
c.  Θ(n2)	  
d.  Θ(n2	  lg	  n)	  
e.  None	  of	  these 
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Example 3 
for (i=1; i <= n; i++) !
   for (j=1; j <= n; j=j*2) !
       sum = sum + 1 !

T (n) = 1
j=0

lgn!" #$

∑
i=1

n

∑ = lgn
i=0

n

∑ = (n+1)lgn ∈O(n lgn)

Asymptotically flooring doesn’t matter  

j= 1,  2,  4, …,  x   x <= n < 2x 

= 20, 21, 22,..., 2k 2k <= 2lg n < 2k+1 

k <= lg n< k+1 k = lgn!" #$

T (n) = 1
j=1

?

∑
i=1

n

∑
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Example 4 
•  Conditional 
 if C then S1 else S2 

 
 
 

                            or 
 
•  Loops 
 while C do S 

O(c)	  +	  max	  (	  O(s1),	  O(s2)	  )	  	  

O(c)	  +	  	  O(s1)	  +	  O(s2)	  	  	  

max(O(c),	  O(s))	  *	  #	  itera:ons	  
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Example 5 
•  Problem: find a tight bound on  
–  T(n) = lg(n!) 

Time	  complexity:	  
a.  Θ(n)	  
b. Θ(n	  lg	  n)	  
c.  Θ(n2)	  
d. Θ(n2	  lg	  n)	  
e.  None	  of	  these 
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Example 

T (n) = lg(i)
i=1

n

∑ ≤ lg(n)
i=1

n

∑ ∈Ο(n lgn)

T (n) = lg(i)
i=1

n

∑ ≥ lg(i)>
i=n/2

n

∑ lg(n / 2)
i=n/2

n

∑

lg(n / 2) ≈ n / 2(lgn−1)
i=n/2

n

∑ ∈Ω(n lgn)

	  
T(n)	  ∈	  	  Θ	  (n	  lg	  n)	  
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Learning Goals revisited 
•  Justify which operation(s) we should measure in an 

algorithm/program in order to estimate its “efficiency”. 
•  Define the “input size” n for various problems, and 

determine the effect (in terms of performance) that 
increasing the value of n has on an algorithm. 

•  Given a fragment of code, write a formula which measures 
the number of steps executed, as a function of n. 

•  Define the notion of Big-O complexity, and explain 
pictorially what it represents. 

•  Compute the worst-case asymptotic complexity of an 
algorithm in terms of its input size n, and express it in 
Big-O notation. 
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Learning Goals (revisited) 
•  Compute an appropriate Big-O estimate for a given 

function T(n). 
•  Discuss the pros and cons of using best-, worst-, and 

average-case analysis, when determining the complexity of 
an algorithm. 

•  Describe why best-case analysis is rarely relevant and how 
worst-case analysis may never be encountered in practice.  

•  Given two or more algorithms, rank them in terms of their 
time and space complexity. 

•  [Future units] Give an example of an algorithm/problem 
for which average-case analysis is more appropriate than 
worst-case analysis. 


