
CPSC 259 Asymptotic Analysis Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Asymptotic Analysis

Textbook References:
 (a) Thareja (first edition) 4.6-4.7

(b) Thareja (second edition): 2.8 – 2.12

Hassan Khosravi
Borrowing some slides from Alan Hu and Steve Wolfman

CPSC 259 Asymptotic Analysis Page 2

Learning Goals
•  Justify which operation(s) we should measure in an algorithm/

program in order to estimate its “efficiency”.
•  Define the “input size” n for various problems, and determine the

effect (in terms of performance) that increasing the value of n has
on an algorithm.

•  Given a fragment of code, write a formula which measures the
number of steps executed, as a function of n.

•  Define the notion of Big-O complexity, and explain pictorially
what it represents.

•  Compute the worst-case asymptotic complexity of an algorithm in
terms of its input size n, and express it in Big-O notation.

CPSC 259 Asymptotic Analysis Page 3

Learning Goals (cont)
•  Compute an appropriate Big-O estimate for a given function T(n).
•  Discuss the pros and cons of using best-, worst-, and average-case

analysis, when determining the complexity of an algorithm.
•  Describe why best-case analysis is rarely relevant and how worst-

case analysis may never be encountered in practice.
•  Given two or more algorithms, rank them in terms of their time and

space complexity.
•  [Future units] Give an example of an algorithm/problem for which

average-case analysis is more appropriate than worst-case analysis.

CPSC 259 Asymptotic Analysis Page 4

A Task to Solve and Analyze
•  Find a student’s name in a class given her student ID

CPSC 259 Asymptotic Analysis Page 5

Efficiency
•  Complexity theory addresses the issue of how efficient an

algorithm is, and in particular, how well an algorithm scales as the
problem size increases.

•  Some measure of efficiency is needed to compare one algorithm to
another (assuming that both algorithms are correct and produce the
same answers). Suggest some ways of how to measure efficiency.
–  Time (How long does it take to run?)
–  Space (How much memory does it take?)
–  Other attributes?

•  Expensive operations, e.g. I/O
•  Elegance, Cleverness
•  Energy, Power
•  Ease of programming, legal issues, etc.

CPSC 259 Asymptotic Analysis Page 6

Analyzing Runtime
How long does this take?

old2 = 1; !
old1 = 1; !
for (i=3; i<n; i++) { !
 result = old2+old1; !
 old1 = old2; !
 old2 = result; !
} !
	

CPSC 259 Asymptotic Analysis Page 7

Analyzing Runtime
How long does this take?

IT DEPENDS
•  What is n?
•  What machine?
•  What language?
•  What compiler?
•  How was it programmed?

old2 = 1; !
old1 = 1; !
for(i=3; i<n; i++){ !
 result = old2+old1; !
 old1 = old2; !
 old2 = result; !
} !
	

Wouldn’t	 it	 be	 nice	 if	 it	 didn’t	 depend	
on	 so	 many	 things?	

CPSC 259 Asymptotic Analysis Page 8

Number of Operations
•  Let us focus on one complexity measure: the number of

operations performed by the algorithm on an input of a given size.
•  What is meant by “number of operations”?

–  # instructions executed
–  # comparisons

•  Is the “number of operations” a precise indicator of an algorithm’s
running time (time complexity)? Compare a “shift register”
instruction to a “move character” instruction, in assembly language.
–  No, some operations are more costly than others

•  Is it a fair indicator?
–  Good enough

CPSC 259 Asymptotic Analysis Page 9

Analyzing Runtime
How many operations does this

take?

IT DEPENDS
•  What is n?

old2 = 1 !
old1 = 1 !
for(i=3; i<n; i++){ !
 result = old2+old1 !
 old1 = old2 !
 old2 = result!
} !
	

•  Running time is a function of n such as T(n)
•  This is really nice because the runtime analysis doesn’t

depend on hardware or subjective conditions anymore

CPSC 259 Asymptotic Analysis Page 10

Input Size
•  What is meant by the input size n? Provide some

application-specific examples.
•  Dictionary:

•  # words

•  Restaurant:
•  # customers or # food choices or # employees

•  Airline:
•  # flights or # luggage or # costumers

•  We want to express the number of operations performed as
a function of the input size n.

CPSC 259 Asymptotic Analysis Page 11

Run Time as a Function of Size of Input
•  But, which input?
–  Different inputs of same size have different run times

 E.g., what is run time of linear search in a list?
–  If the item is the first in the list?
–  If it’s the last one?
–  If it’s not in the list at all?

What should we report?

CPSC 259 Asymptotic Analysis Page 12

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

CPSC 259 Asymptotic Analysis Page 13

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

Mostly	
useless	

CPSC 259 Asymptotic Analysis Page 14

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

Useful,	
pessimis:c	

CPSC 259 Asymptotic Analysis Page 15

Which Run Time?

•  Average Case (Expected Time)

•  Requires a notion of an "average" input to an algorithm, which
uses a probability distribution over possible inputs.

•  Allows discriminating among algorithms with the same worst
case complexity
•  Classic example: Insertion Sort vs QuickSort

Useful,	 hard	 to	
do	 right	

CPSC 259 Asymptotic Analysis Page 16

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

Very	 useful,	 but	 ill-‐
defined	

CPSC 259 Asymptotic Analysis Page 17

Scalability!
•  What’s more important?
–  At n=5, plain recursion version is faster.
–  At n=3500, complex version is faster.

•  Computer science is about solving problems people
couldn’t solve before. Therefore, the emphasis is almost
always on solving the big versions of problems.

•  (In computer systems, they always talk about “scalability”,
which is the ability of a solution to work when things get
really big.)

CPSC 259 Asymptotic Analysis Page 18

Asymptotic Analysis
•  Asymptotic analysis is analyzing what happens to the run

time (or other performance metric) as the input size n goes
to infinity.
–  The word comes from “asymptote”, which is where you look at

the limiting behavior of a function as something goes to infinity.

•  This gives a solid mathematical way to capture the
intuition of emphasizing scalable performance.

•  It also makes the analysis a lot simpler!

CPSC 259 Asymptotic Analysis Page 19

Big-O (Big-Oh) Notation
•  Let T(n) and f(n) be functions mapping Z+→R+.

Time
(or anything
else we can
measure)

Input size

T(n)

f(n)

We want to compare the “overall” runtime (or memory
usage or …) of a piece of code against a familiar,
simple function.

Positive integers
Positive real numbers

CPSC 259 Asymptotic Analysis Page 20

Big-O Notation

Time
(or anything
else we can
measure)

Input size n0

T(n)
The function f(n) is, asymptotically “greater than
or equal to” the function T(n) if in the “long run”,
f(n) (multiplied by a suitable constant) upper-
bounds T(n).

f(n)

c f(n)
T(n)	 ∈	 O(f(n))	 if	 ∃	 c	 and	 n0	 such	 that	

	 T(n)	 ≤	 c	 f(n)	 ∀n	 ≥	 n0	
For all

There exists

CPSC 259 Asymptotic Analysis Page 21

Big-O Notation

Time
(or anything
else we can
measure)

Input size n0

T(n)
We do want the comparison to be valid for all
sufficiently large inputs… but we’re willing to
ignore behaviour on small examples.
(Looking for a “steady state”.)

f(n)

c f(n)
T(n)	 ∈	 O(f(n))	 if	 ∃	 c	 and	 n0	 such	 that	

	 T(n)	 ≤	 c	 f(n)	 ∀n	 ≥	 n0	
For all

There exists

CPSC 259 Asymptotic Analysis Page 22

Big-O Notation (cont.)
•  Using Big-O notation, we might say that Algorithm A “runs

in time Big-O of n log n”, or that Algorithm B “is an order
n-squared algorithm”. We mean that the number of
operations, as a function of the input size n, is O(n log n) or
O(n2) for these cases, respectively.

•  Constants don’t matter in Big-O notation because we’re
interested in the asymptotic behavior as n grows arbitrarily
large; but, be aware that large constants can be very
significant in an actual implementation of the algorithm.

CPSC 259 Asymptotic Analysis Page 23

Rates of Growth
•  Suppose a computer executes 1012 ops per second:

n = 10 100 1,000 10,000 1012

n 10-11s 10-10s 10-9s 10-8s 1s

n lg n 10-11s 10-9s 10-8s 10-7s 40s

n2 10-10s 10-8s 10-6s 10-4s 1012s

n3 10-9s 10-6s 10-3s 1s 1024s

2n 10-9s 1018s 10289s

104s = 2.8 hrs 1018s = 30 billion years

CPSC 259 Asymptotic Analysis Page 24

Asymptotic Analysis Hacks
•  Eliminate low order terms
–  4n + 5 ⇒ 4n
–  0.5 n log n - 2n + 7 ⇒ 0.5 n log n
–  2n + n3 + 3n ⇒ 2n

•  Eliminate coefficients
–  4n ⇒ n
–  0.5 n log n ⇒ n log n
–  n log (n2) = 2 n log n ⇒ n log n

CPSC 259 Asymptotic Analysis Page 25

Silicon Downs
Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82lg n

mn3

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

For	 each	 race,	 which	 “horse”	 is	
“faster”.	 	 Note	 that	 faster	
means	 smaller,	 not	 larger!	
	
All	 analysis	 are	 done	
asympto:cally	 	
	
a.  LeH	
b.  Right	
c.  Tied	
d.  It	 depends	

CPSC 259 Asymptotic Analysis Page 26

Race I

n3 + 2n2 100n2 + 1000 vs.	

a. Left
b. Right
c. Tied
d. It depends

CPSC 259 Asymptotic Analysis Page 27

Race I

n3 + 2n2 100n2 + 1000 vs.	

a. Left
b. Right
c. Tied
d. It depends

CPSC 259 Asymptotic Analysis Page 28

Race II

n0.1 log n vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 259 Asymptotic Analysis Page 29

Race II

n0.1 log n vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

Moral of the story? nϵ is slower than log n for any ϵ > 0

CPSC 259 Asymptotic Analysis Page 30

Race III

n + 100n0.1 2n + 10 log n vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 259 Asymptotic Analysis Page 31

Race III

n + 100n0.1 2n + 10 log n vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

Although left seems faster, asymptotically it is a TIE

CPSC 259 Asymptotic Analysis Page 32

Race IV

5n5 n! vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 259 Asymptotic Analysis Page 33

Race IV

5n5 n! vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 259 Asymptotic Analysis Page 34

Race V

n-152n/100 1000n15 vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 259 Asymptotic Analysis Page 35

Race V

n-15 2n/100 1000n15 vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

Any exponential is slower than any polynomial.
 It doesn’t even take that long here (~250 input size)

CPSC 259 Asymptotic Analysis Page 36

Race VI

82 log2 (n) 3n7 + 7n vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

Log	 Rules:	
1)	 log(mn)	 =	 log(m)	 +	 log(n)	
2)	 log(m/n)	 =	 log(m)	 –	 log(n)	
3)	 log(mn)	 =	 n	 ·∙	 log(m)	
4)	 n	 =	 2k	 	 à	 log2	 n	 =	 k	 	

CPSC 259 Asymptotic Analysis Page 37

	
	

Race VI

82 log2(n) 3n7 + 7n vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

82lg(n) = 8lg(n
2) = (23)lg(n

2) = 233lg(n
2) = 2lg(n

6) = n6

Log	 Rules:	
1)	 log(mn)	 =	 log(m)	 +	 log(n)	
2)	 log(m/n)	 =	 log(m)	 –	 log(n)	
3)	 log(mn)	 =	 n	 ·∙	 log(m)	
4)	 n	 =	 2k	 	 à	 log	 n	 =	 k	

CPSC 259 Asymptotic Analysis Page 38

Log Aside
logab means “the exponent that turns a into b”
lg x means “log2x” (the usual log in CS)
log x means “log10x” (the common log)
ln x means “logex” (the natural log)

•  There’s just a constant factor between the three main log

bases, and asymptotically they behave equivalently.

CPSC 259 Asymptotic Analysis Page 39

Race VII

mn3 2mn vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 259 Asymptotic Analysis Page 40

Race VII

mn3 2mn vs.	

a.  Left
b.  Right
c.  Tied
d.  It depends

It depends on values of m and n

CPSC 259 Asymptotic Analysis Page 41

Silicon Downs

Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82lg n

mn3

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

Winner

O(n2)

O(log n)

TIE O(n)

O(n5)

O(n15)

O(n6)

IT DEPENDS

CPSC 259 Asymptotic Analysis Page 42

The fix sheet
•  The fix sheet (typical growth rates in order)
–  constant: O(1)
–  logarithmic: O(log n) (logkn, log n2 ∈ O(log n))
–  Sub-linear: O(nc) (c is a constant, 0 < c < 1)
–  linear: O(n)
–  (log-linear): O(n log n) (usually called “n log n”)
–  (superlinear): O(n1+c) (c is a constant, 0 < c < 1)
–  quadratic: O(n2)
–  cubic: O(n3)
–  polynomial: O(nk) (k is a constant)
–  exponential: O(cn) (c is a constant > 1) Intractable!	

Tractable	

CPSC 259 Asymptotic Analysis Page 43

Name-drop your friends
–  constant: O(1)
– Logarithmic: O(log n)
–  Sub-linear: O(nc)
–  linear: O(n)
–  (log-linear): O(n log n)
–  (superlinear): O(n1+c)
–  quadratic: O(n2)
–  cubic: O(n3)
–  polynomial: O(nk)
–  exponential: O(cn)

	
Casually	 name-‐drop	 the	 appropriate	
terms	 in	 order	 to	 sound	 bracingly	 cool	
to	 colleagues:	 “Oh,	 linear	 search?	 I	 hear	
it’s	 sub-‐linear	 on	 quantum	 computers,	
though.	 	 Wild,	 eh?”	

CPSC 259 Asymptotic Analysis Page 44

Example
•  Which is faster, n3 or n3 log n?

•  Which is faster, n3 or n3.01/log n?
(Split it up and use the “dominance” relationships.)

n3 *1 vs. n3 *log n

n3 *1 vs. n3 * n0.01/ log n

CPSC 259 Asymptotic Analysis Page 45

Which of the following functions is likely to grow the
fastest, meaning that the algorithm is likely to take the
most steps, as the input size, n, grows sufficiently
large?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E. They would all be about the same.

Clicker Question

CPSC 259 Asymptotic Analysis Page 46

Which of the following functions is likely to grow the
fastest, meaning that the algorithm is likely to take the
most steps, as the input size, n, grows sufficiently
large?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E. They would all be about the same.

Clicker Question (answer)

CPSC 259 Asymptotic Analysis Page 47

Suppose we have 4 programs, A-D, that run
algorithms of the time complexities given. Which
program will finish first, when executing the
programs on input size n=10?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E.  Impossible to tell

Clicker Question

CPSC 259 Asymptotic Analysis Page 48

Suppose we have 4 programs, A-D, that run
algorithms of the time complexities given. Which
program will finish first, when executing the
programs on input size n=10?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E.  Impossible to tell

Clicker Question (Answer)

CPSC 259 Asymptotic Analysis Page 49

Which of the following statements is true? Choose
the best answer

A.  The set of functions in O(n4) have a fairly slow growth rate

B.  O(lg n) doesn‘t grow very quickly

C.  Big-O functions with the fastest growth rate represent the
fastest algorithms, most of the time

D.  Asymptotic complexity deals with relatively small input
sizes

Clicker Question

CPSC 259 Asymptotic Analysis Page 50

Which of the following statements is true? Choose
the best answer

A.  The set of functions in O(n4) have a fairly slow growth rate

B.  O(lg n) doesn‘t grow very quickly

C.  Big-O functions with the fastest growth rate represent the
fastest algorithms, most of the time

D.  Asymptotic complexity deals with relatively small input
sizes

Clicker Question (answer)

CPSC 259 Asymptotic Analysis Page 51

Proving a “There exists” Property

How do you prove “There exists a good restaurant in
Vancouver”?

How do you prove a property like

∃c c = 3c+1[]

CPSC 259 Asymptotic Analysis Page 52

Proving a Property
How do you prove “There exists a restaurant in

Vancouver, where all items on the menu are less than
$10”?

How do you prove a property like

[]102 −≤∀∃ xcxc

……∀∃

CPSC 259 Asymptotic Analysis Page 53

Proving a Big-O
Formally, to prove T(n) ∈ O(f(n)), you must show:

So, we have to come up with specific values of c and

n0 that “work”, where “work” means that for any
n>n0 that someone picks, the formula holds:

[])()(ncfnT ≤

[])()(,0 00 ncfnTnnnc ≤>∀>∃

CPSC 259 Asymptotic Analysis Page 54

Prove n log n ∈ O(n2)
•  Guess or figure out values of c and n0 that will work.

•  This is fairly trivial: log n <= n (for n>1)
 c=1 and n0 = 1 works!

	 n	 log	 n	 ≤	 cn2	
	 log	 n	 ≤	 cn	

CPSC 259 Asymptotic Analysis Page 55

Aside: Writing Proofs
•  In lecture, my goal is to give you intuition.
–  I will just sketch the main points, but not fill in all details.

•  When you write a proof (homework, exam, reports,
papers), be sure to write it out formally!
–  Standard format makes it much easier to write!

–  On exams and homeworks, you’ll get more credit.
–  In real life, people will believe you more.

CPSC 259 Asymptotic Analysis Page 56

To Prove n log n ∈ O(n2)
Proof:
By the definition of big-O, we must find values of c and n0

such that for all n ≥ n0, n log n ≤ cn2.
Consider c=1 and n0 = 1.
For all n ≥ 1, log n ≤ n.
Therefore, log n ≤ cn, since c=1.
Multiplying both sides by n (and since n ≥ n0= 1), we have
 n log n ≤ cn2.
Therefore, n log n ∈ O(n2).

(This is more detail than you’ll use in the future, but
until you learn what you can skip, fill in the details.)

CPSC 259 Asymptotic Analysis Page 57

Example
•  Prove T(n) = n3 + 20 n +1 ∈ O(n3)

•  n3 + 20 n +1 ≤ cn3 for n>n0

•  1 + 20/n2 + 1/n3 ≤ c à holds for c = 22 and n0 = 1
•  Prove T(n) = n3 + 20 n +1 ∈ O(n4)

•  n3 + 20 n +1 ≤ cn4 for n>n0

•  1/n + 20/n3 + 1/n4 ≤ c à holds for c = 22 and n0= 1

•  Prove T(n) = n3 + 20 n +1 ∈ O(n2)
•  n3 + 20 n +1 ≤ cn2 for n>n0

•  n + 20/n + 1/n2 ≤ c à You cannot find such c or n0

CPSC 259 Asymptotic Analysis Page 58

Computing Big-O
•  If T(n) is a polynomial of degree d
•  (i.e., T(n) = a0 + a1n + a2n2 + … + ad nd),

•  then its Big-O estimate is simply the largest term without
its coefficient, that is, T(n) ∈ O(nd).

•  If T1(n) ∈ O(f(n)) and T2(n) ∈ O(g(n)), then
–  T1 (n) + T2(n) ∈ O(max(f(n), g(n))).
•  T1(n) = 4 n3/2 + 9
•  T2(n) = 30 n lg n + 17n

•  T(n) = T1(n) + T2(n) ∈ O(max(n3/2, n lg n) = O(n3/2)

CPSC 259 Asymptotic Analysis Page 59

•  Compute Big-O with witnesses c and n0 for
•  T(n) = 25n2 - 50n + 110.

25n2 - 50n + 110 ≤ 25n2 + 50n + 110 ≤ cn2

25 + 50/n + 110/n2 ≤ c
T(n) ∈ O(n2) c=27, n0 =110

 or
 c = 185, n0 =1

We	 are	 interested	 in	 the	 “:ghtest”	
Big-‐O	 es:mate	 and	 not	 necessarily	
the	 smallest	 c	 and	 n0	

More Example

Triangle	 inequality	
|a+b|	 ≤	 |a|	 +	 |b|	
	
(subs:tute	 –b	 with	 b)	
	 |a-‐b|	 ≤	 |a|	 +	 |-‐b|	 ≤	 |a|	 +	 |b|	

CPSC 259 Asymptotic Analysis Page 60

•  Example Compute Big-O with witnesses c and n0 for T(n) = 106.

•  Example Compute Big-O with witnesses c and n0 for T(n) = log (n!).

106≤ c
T(n) ∈ O(1) c=106, n0 = whatever

log (n!) = log(1*2..*n)
 =log(1) + log(2) + … + log(n)
 ≤ log(n) + log(n) + … + log(n)
 ≤ n log(n) <= cn log(n)

T(n) ∈ O(n log(n)) c=10, n0 = 10

Log	 Rules:	
1)	 log(mn)	 =	 log(m)	 +	 log(n)	
2)	 log(m/n)	 =	 log(m)	 –	 log(n)	
3)	 log(mn)	 =	 n	 ·∙	 log(m)	

More Example

CPSC 259 Asymptotic Analysis Page 61

Proving a Big-O

Time
(or anything
else we can
measure)

Input size n0

T(n)

f(n)

c f(n)
T(n)	 ∈	 O(f(n))	 if	 ∃	 c	 and	 n0	 such	 that	

	 T(n)	 ≤	 c	 f(n)	 ∀n	 ≥	 n0	

CPSC 259 Asymptotic Analysis Page 62

Big-Omega (Ω) notation
•  Just as Big-O provides an upper bound, there exists Big-Omega (Ω)

notation to estimate the lower bound of an algorithm, meaning that, in
the worst case, the algorithm takes at least so many steps:

T(n)	 ∈	 Ω(f(n))	 if	 ∃	 d	 and	 n0	 such	 that	
	 d	 f(n)	 ≤	 	 T(n)	 ∀	 n	 ≥	 n0	

Time
(or anything
else we can
measure)

Input size
n0

T(n)

d f(n)

f(n)

CPSC 259 Asymptotic Analysis Page 63

Proving Big-Ω

•  Just like proving Big-O, but backwards…

•  Prove T(n) = n3 + 20 n +1 ∈ Ω(n2)

dn2 ≤ n3 + 20n + 1
d ≤ n + 20/n + 1/n2

d=10, n0 = 20

CPSC 259 Asymptotic Analysis Page 64

Big-Theta (Θ) notation
•  Furthermore, each algorithm has both an upper bound and a lower

bound, and when these correspond to the same growth order
function, the result is called Big-Theta (Θ) notation.

Time
(or anything
else we can
measure)

Input size
n0

T(n)

d f(n)

f(n)

n0

c f(n)
T(n)	 ∈	 Θ(f(n))	 if	 ∃	 c,	 d	 and	 n0	 such	 that	

	 d	 f(n)	 ≤	 	 T(n)	 ≤	 c	 f(n)	 ∀	 n	 ≥	 n0	

CPSC 259 Asymptotic Analysis Page 65

Examples

10,000 n2 + 25 n ∈ Θ(n2)
10-10 n2 ∈ Θ(n2)
n log n ∈ O(n2)
n log n ∈ Ω(n)
n3 + 4 ∈ O(n4) but not Θ(n4)
n3 + 4 ∈ Ω(n2) but not Θ(n2)

CPSC 259 Asymptotic Analysis Page 66

Proving Big-Θ
•  Just prove Big-O and Big-Ω
•  Prove T(n) = n3 + 20 n +1∈ Θ(n3)

dn3 ≤ n3 + 20 n +1 ≤ cn3 for n>n0
d ≤ 1 + 20/n2 + 1/n3 ≤ c

holds for d=1, c=22 , n0 = 25

CPSC 259 Asymptotic Analysis Page 67

Proving Big-Θ
•  Just prove Big-O and Big-Ω
•  Prove T(n) = n3 + 20 n +1∈ Θ(n3)

dn3 ≤ n3 + 20 n +1 ≤ cn3 for n>n0
holds for d=1, c=22 , n0 = 25

CPSC 259 Asymptotic Analysis Page 68

CPSC 259 Administrative Notes
•  Lab 2
–  In-lab part is due at the end of your second lab
– Programming Tests start on Monday

•  Connect quiz on Complexity is now available

•  PeerWise call one ends October 9
–  It would be great to see some more questions relating to

complexity and Structs.
– There are a lot of unclaimed identifiers

•  We're going to use semi-flipped classroom
methodology
–  Go over the pre-lecture slides before attending lecture

•  Anonymous Feedback (see my personal website)

CPSC 259 Asymptotic Analysis Page 69

Analyzing Code
•  But how can we obtain T(n) from an algorithm/code

•  C operations - constant time
•  consecutive stmts - sum of times
•  conditionals - max of branches, condition
•  loops - sum of iterations
•  function calls - cost of function body

CPSC 259 Asymptotic Analysis Page 70

Analyzing Code

•  Step 1: What’s the input size n?
•  Step 2: What kind of analysis should we perform?
–  Worst-case? Best-case? Average-case?

•  Step 3: How much does each line cost? (Are lines the
right unit?)

find(key, array) !
 for i = 1 to length(array) do!
 if array[i] == key !
 return i !
 !
 return -1	

CPSC 259 Asymptotic Analysis Page 71

Analyzing Code

•  Step 4: What’s T(n) in its raw form?
•  Step 5: Simplify T(n) and convert to order notation.

(Also, which order notation: O, Θ, Ω?)
•  Step 6: Prove the asymptotic bound by finding constants
c and n0 such that
–  for all n ≥ n0, T(n) ≤ cn.

find(key, array) !
 for i = 1 to length(array) do!
 if array[i] == key !
 return i !
 !
 return -1	

CPSC 259 Asymptotic Analysis Page 72

Example 1

•  This example is pretty straightforward. Each loop goes n
times, and a constant amount of work is done on the
inside.

for i = 1 to n do !
 for j = 1 to n do !
 sum = sum + 1] n times] n times

T (n) = (1+ 2)
j=1

n

∑
i=1

n

∑ = (1+ 2n)
i=1

n

∑ = n+ 2n2 =O(n2)

1
1
1

k =
i= j

n

∑ k(n− j +1)

CPSC 259 Asymptotic Analysis Page 73

Example 1 (simpler version)

•  Count the number of times sum = sum + 1 occurs

for i = 1 to n do !
 for j = 1 to n do !
 sum = sum + 1] n times] n times

T (n) = 1
j=1

n

∑
i=1

n

∑ = n
i=1

n

∑ = n2 =O(n2)

1
1
1

CPSC 259 Asymptotic Analysis Page 74

Example 2
i = 1 !
 while i < n do!
 for j = i to n do!
 sum = sum + 1 !
 i++	

Time	 complexity:	
a.  Θ(n)	
b.  Θ(n	 lg	 n)	
c.  Θ(n2)	
d.  Θ(n2	 lg	 n)	
e.  None	 of	 these

i =
i=1

n

∑ n(n+1)
2

CPSC 259 Asymptotic Analysis Page 75

Example 2 (Pure Math Approach)

CPSC 259 Asymptotic Analysis Page 76

Example 2 (Pure Math Approach)

() ()

CPSC 259 Asymptotic Analysis Page 77

Example 2 (Pure Math Approach)

() ()

CPSC 259 Asymptotic Analysis Page 78

Example 2 (Pure Math Approach)

Yay!!!

3

3

CPSC 259 Asymptotic Analysis Page 79

Example 2 (Simplified Math Approach)
i = 1 !
 while i < n do!
 for j = i to n do!
 sum = sum + 1 !
 i++	

T (n) = 1
j=i

n

∑
i=1

n−1

∑

T (n) = (n− i+1) = n+ n−1+...+ 2
i=1

n−1

∑

The second sigma is n-i+1

T (n) = n(n+1) / 2 ∈Θ(n2) i =
i=1

n

∑ n(n+1)
2

Count this line

CPSC 259 Asymptotic Analysis Page 80

Example 2 Pretty Pictures Approach

* * * * * * * * * *
 * * * * * * * * *
 * * * * * * * *
 * * * * * * *
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

•  Imagine	 drawing	 one	 point	 for	 each	
:me	 the	 “sum=sum+1”	 line	 	 gets	
executed.	 In	 the	 first	 itera:on	 of	
the	 outer	 loop,	 you’d	 draw	 n	
points.	 	 In	 the	 second,	 n-‐1.	 	 Then	
n-‐2,	 n-‐3,	 and	 so	 on	 down	 to	 (about)	
1.	 	 Let’s	 draw	 that	 picture…	

	
	

 i = 1 /* takes “1” step */!
 while i < n do /* i varies 1 to n-1 */!
 for j = i to n do /* j varies i to n */!
 sum = sum + 1 /* takes “1” step */!
 i++ /* takes “1” step */ !

CPSC 259 Asymptotic Analysis Page 81

Example 2 Pretty Pictures Approach

•  It is a triangle and its area is proportional to runtime

n rows

T (n) = Base×Height
2 = n2

2 ∈Θ(n2)

* * * * * * * * * *
 * * * * * * * * *
 * * * * * * * *
 * * * * * * *
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

n columns

CPSC 259 Asymptotic Analysis Page 82

Example 2 (Faster/Slower Code Approach)

•  Let’s assume that this code is “too hard” to deal with. So,
let’s find just an upper bound.
–  In which case we get to change the code in any way that

makes it run no faster (even if it runs slower).

 i = 1 /* takes “1” step */!
 while i < n do /* i varies 1 to n-1 */!
 for j = i to n do /* j varies i to n */!
 sum = sum + 1 /* takes “1” step */!
 i++ /* takes “1” step */ !

CPSC 259 Asymptotic Analysis Page 83

Example 2 (Faster/Slower Code Approach)

•  We’ll	 let	 j	 go	 from	 1	 to	 n	 rather	 than	 i	 to	 n.	 	 Since	 i	 ≥	 1,	 this	 is	
no	 less	 work	 than	 the	 code	 was	 already	 doing…	

•  But	 this	 is	 just	 an	 upper	 bound	 O(n2),	 since	 we	 made	 the	
code	 run	 slower.	

	
	
•  Could	 it	 actually	 run	 faster?	

 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

 i = 1 /* takes “1” step */!
 while i < n do /* i varies 1 to n-1 */!
 for j = 1 to n do /* j varies 1 to n */!
 sum = sum + 1 /* takes “1” step */!
 i++ /* takes “1” step */ !

CPSC 259 Asymptotic Analysis Page 84

Example 2 (Faster/Slower Code Approach)

•  Let’s do a lower-bound, in which case we can make the code
run faster if we want.
–  Let’s make j start at n-1. Does the code run faster? Is that helpful?

Runs faster but you get Ω(n) which is not what we want
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

*
*
*
*
*
*

 i = 1 /* takes “1” step */!
 while i < n do /* i varies 1 to n-1 */!
 for j = n-1 to n do /* j varies n-1 to n */!
 sum = sum + 1 /* takes “1” step */!
 i++ /* takes “1” step */ !

CPSC 259 Asymptotic Analysis Page 85

Example 2 (Faster/Slower Code Approach)

•  Let’s make j start at n/2. Does the code run faster? Is that
helpful?
 Hard to argue that it is faster. Every inner loop now runs n/2 times

 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

 * * *
 * * *
 * * *
 * * *
 * * *
 * * *

 i = 1 /* takes “1” step */!
 while i < n do /* i varies 1 to n-1 */!
 for j = n/2 to n do /* j varies n/2 to n */!
 sum = sum + 1 /* takes “1” step */!
 i++ /* takes “1” step */ !

CPSC 259 Asymptotic Analysis Page 86

Example 2(Faster /Slower Code Approach)

•  Let’s change the bounds on both i and j to make both loops
faster.

T (n) = 1
j=1

n/2

∑
i=1

n/2

∑ = (n / 2)
i=1

n/2

∑ = n2 / 4∈Ω(n2)
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

 * * *
 * * *
 * * *

 i = 1 /* takes “1” step */!
 while i < n/2 + 1 do /* i varies 1 to n/2 */!
 for j = n/2 to n do /* j varies n/2 to n */!
 sum = sum + 1 /* takes “1” step */!
 i++ /* takes “1” step */ !

CPSC 259 Asymptotic Analysis Page 87

Note Pretty Pictures and Faster/Slower
are the Same(ish) Picture

•  Both the overestimate (upper-bound) and the
underestimate (lower-bound) are proportional to n2

* * * * * * * * * *
 * * * * * * * * *
 * * * * * * * *
 * * * * * * *
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

CPSC 259 Asymptotic Analysis Page 88

Example 3
for (i=1; i <= n; i++) !
 for (j=1; j <= n; j=j*2) !
 sum = sum + 1 !

Time	 complexity:	
a.  Θ(n)	
b.  Θ(n	 lg	 n)	
c.  Θ(n2)	
d.  Θ(n2	 lg	 n)	
e.  None	 of	 these

CPSC 259 Asymptotic Analysis Page 89

Example 3
for (i=1; i <= n; i++) !
 for (j=1; j <= n; j=j*2) !
 sum = sum + 1 !

T (n) = 1
j=0

lgn!" #$

∑
i=1

n

∑ = lgn
i=0

n

∑ = (n+1)lgn ∈O(n lgn)

Asymptotically flooring doesn’t matter

j= 1, 2, 4, …, x x <= n < 2x

= 20, 21, 22,..., 2k 2k <= 2lg n < 2k+1

k <= lg n< k+1 k = lgn!" #$

T (n) = 1
j=1

?

∑
i=1

n

∑

CPSC 259 Asymptotic Analysis Page 90

Example 4
•  Conditional
 if C then S1 else S2

 or

•  Loops
 while C do S

O(c)	 +	 max	 (O(s1),	 O(s2))	 	

O(c)	 +	 	 O(s1)	 +	 O(s2)	 	 	

max(O(c),	 O(s))	 *	 #	 itera:ons	

CPSC 259 Asymptotic Analysis Page 91

Example 5
•  Problem: find a tight bound on
–  T(n) = lg(n!)

Time	 complexity:	
a.  Θ(n)	
b. Θ(n	 lg	 n)	
c.  Θ(n2)	
d. Θ(n2	 lg	 n)	
e.  None	 of	 these

CPSC 259 Asymptotic Analysis Page 92

Example

T (n) = lg(i)
i=1

n

∑ ≤ lg(n)
i=1

n

∑ ∈Ο(n lgn)

T (n) = lg(i)
i=1

n

∑ ≥ lg(i)>
i=n/2

n

∑ lg(n / 2)
i=n/2

n

∑

lg(n / 2) ≈ n / 2(lgn−1)
i=n/2

n

∑ ∈Ω(n lgn)

	
T(n)	 ∈	 	 Θ	 (n	 lg	 n)	
	

CPSC 259 Asymptotic Analysis Page 93

Learning Goals revisited
•  Justify which operation(s) we should measure in an

algorithm/program in order to estimate its “efficiency”.
•  Define the “input size” n for various problems, and

determine the effect (in terms of performance) that
increasing the value of n has on an algorithm.

•  Given a fragment of code, write a formula which measures
the number of steps executed, as a function of n.

•  Define the notion of Big-O complexity, and explain
pictorially what it represents.

•  Compute the worst-case asymptotic complexity of an
algorithm in terms of its input size n, and express it in
Big-O notation.

CPSC 259 Asymptotic Analysis Page 94

Learning Goals (revisited)
•  Compute an appropriate Big-O estimate for a given

function T(n).
•  Discuss the pros and cons of using best-, worst-, and

average-case analysis, when determining the complexity of
an algorithm.

•  Describe why best-case analysis is rarely relevant and how
worst-case analysis may never be encountered in practice.

•  Given two or more algorithms, rank them in terms of their
time and space complexity.

•  [Future units] Give an example of an algorithm/problem
for which average-case analysis is more appropriate than
worst-case analysis.

