
CPSC 259 Pointers Page 1

CPSC 259: Data Structures and Algorithms
for Electrical Engineers

Pointers, Arrays, and Dynamic Memory Allocation

Textbook References:
(a) Etter: Chapter 6, pages 283-294, 308-316

(b) Thareja first edition: Chapter 3, pages 97-109
(c) Thareja second edition: 1.11, 3.7-3.8

Hassan Khosravi

Borrowing some slides from Ed Knorr

CPSC 259 Pointers Page 2

Learning Goals for This Unit
•  Describe the purpose of a pointer data type.
•  Describe the relationship between addresses and pointers.

•  Explain the difference in parameter passing for call-by-value versus
call-by-reference.

•  Explain the purpose of dynamic memory allocation. Give examples
of where dynamic memory allocation is particularly useful, and
examples of where it is not (i.e., where static allocation (at compile
time) is better).

•  Gain experience with pointers in C and describe their tradeoffs and
risks (e.g., dangling pointers, memory leaks).

•  Demonstrate how dynamic memory management is handled in C
(e.g., allocation and deallocation from the memory heap).

CPSC 259 Pointers Page 3

Addresses and Pointers
•  When implementing data structures in C, we often need to consider

addresses and pointers.
•  You can think of addresses in memory in a way analogous to rooms

in a hotel, or houses in a city. Each room or house has a specific
location that is identified by its room number or street address. For
example, if we want to put something in a specific house, then we
need to know which house. The address tells us which house it is.

•  Similarly, each storage location in memory (RAM) has an address
associated with it. The address is the location in memory where a
given variable or identifier stores its data.

CPSC 259 Pointers Page 4

Variable declaration
•  Each byte of memory has a unique address.

•  a is an identifier that references a block or chunk of memory that is
used to store the integer value 6. Rather than referencing this block
using a hard-to-remember numeric address, we use the identifier
instead; this makes programming much easier.

•  At compile time, the compiler knows how much memory to
allocate to a (i.e., 4 bytes for an integer). Four bytes can hold
integers in the range of approximately +/− 2 billion. Why?

int a; !
char c; !
a = 5; !
a++;	

4	 bytes	 =	 32	 bits	
The	 first	 bit	 is	 the	 sign;	 	 the	 other	 31	 bits	 allow	 for	 231=	 	 2,147,	 483,	 648	

CPSC 259 Pointers Page 5

Addresses, &, and pointers
•  You’re already familiar with addresses from the scanf statement.

Recall that the scanf function required us to provide the address
of a location, rather than just the identifier. The address was
identified using the “address of” operator, which is &.
–  scanf("%d", &a);

•  A pointer is a data type that contains the address of the object in
memory, but it is not the object itself.
–  p is a pointer, which is storing the address of a.

CPSC 259 Pointers Page 6

Addresses, &, and pointers (cont)
•  We declare a pointer to an object in the following way:

 dataType *identifier;

•  For example, to declare a pointer to an integer, we can do
the following:

 int *intPtr; or int* intPtr; or int * intPtr;
•  Warning: The declaration:

 int* var1, var2;
… declares var1 to be a pointer to an integer, but var2 to be an integer! To

declare both as pointers, do the following, or just do one per line:
 int *var1, *var2;

CPSC 259 Pointers Page 7

Addresses, &, and pointers (cont)
•  Consider the following code segment:

 int a = 5;

 int* p;

•  How do we get p to contain the address of (i.e., “to point to”) a?
This is achieved using the & (address-of) operator:

 p = &a;

•  Now that p is pointing to a , how do we reference the object
pointed to by p? By using the * (dereferencing) operator:
 printf("dereferencing p = %d \n",*p); // 5

 IMPORTANT	 –	 The	 two	 different	 stars	

	 	 	 	 int*	 p	 à	 declares	 an	 integer	 pointer	 p	

	 	 	 	 *p	 =	 a	 à	 	 	 uses	 the	 *	 operator	 to	 dereference	 p	 	 	

CPSC 259 Pointers Page 8

Addresses, &, and pointers example

 int a = 5; !
 int* p = &a; !
 printf("value of a = %d \n",a); // 5!
 printf("address of a = %p \n", &a); // 204!
 printf("value of p = %p \n", p); // 204!
 printf("dereferencing p = %d \n",*p); // 5

CPSC 259 Pointers Page 9

Pointers example
int a=10;

int b= 20;

int* p= &a;

int* t= &b ;

*p = 12 // changes the value
stored at 204 to 12

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

CPSC 259 Pointers Page 10

Clicker Question
int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing a=b the content of the
memory at
A: 204 will change
B: 148 will change
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

CPSC 259 Pointers Page 11

Clicker Question (answered)
int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing a=b the content of the
memory at
A: 204 will change
B: 148 will change
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=20

int* p = 204

int* t=64

int b=20

10

20

p

t

a

b

20

20

p

t

a

b

CPSC 259 Pointers Page 12

Clicker Question
int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing *p = *t the content of the
memory at
A: 204 will change
B: 148 will change
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

CPSC 259 Pointers Page 13

Clicker Question (answered)
int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing *p = *t the content of
the memory at
A: 204 will change
B: 148 will change
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=20

int* p = 204

int* t=64

int b=20

10

20

p

t

a

b

20

20

p

t

a

b

CPSC 259 Pointers Page 14

Clicker Question
int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing p = &b
A: The value of p changes
B: The value of *p changes
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

CPSC 259 Pointers Page 15

Clicker Question (answered)
int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing p = &b
A: The value of p changes
B: The value of *p changes
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 64

int* t=64

int b=20

10

20

p

t

a

b

10

20

p

t

a

b

CPSC 259 Pointers Page 16

Clicker Question
a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

int a=10;
int b= 20;
int* p= &a;
int* t= &b;

After performing p = &b; *p=a

A: the value of p changes

B: the value of b changes

C: both A and B

D: none of the above

CPSC 259 Pointers Page 17

int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing p = &b; *p=a

A: the value of p changes
B: the value of b changes
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 64

int* t=64

int b=10

10

20

p

t

a

b

10

10

p

t

a

b

Clicker Question (answered)

CPSC 259 Pointers Page 18

int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing p = t;
A: the address of a cannot be retrieved
B: changing *t will change *p
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

Clicker Question

CPSC 259 Pointers Page 19

int a=10;

int b= 20;

int* p= &a;

int* t= &b;

After performing p = t;
A: the address of a cannot be retrieved // &a
B: changing *t will change *p
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 64

int* t=64

int b=20

10

20

p

t

a

b

10

20

p

t

a

b

Clicker Question (answered)

CPSC 259 Pointers Page 20

int a=10;

int b= 20;

int* p= &a;

int* t= &b;

*p=b and p=&b
A: Are literally the same;
B: both change the value of *p to 20
C: both end up making p be equal to t
D: Both B and C

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 204

int* t=64

int b=20

Clicker Question

CPSC 259 Pointers Page 21

int a=10;

int b= 20;

int* p= &a;

int* t= &b;

*p=b and p=&b
A: Are literally the same;
B: both change the value of *p to 20
C: both end up making p be equal to t
D: Both B and C

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=10

int* p = 64

int* t=64

int b=20

a=10

p = 204

t=64

b=20

204	

64	

148	

110	

int a=20

int* p = 204

int* t=64

int b=20

p=&b *p=b

20

20

p

t

a

b

10

20

p

t

a

b

Clicker Question (answered)

CPSC 259 Pointers Page 22

Question

What is the value of p and *p after p++ is executed?
p+1 = 0x7fff5fbff8d0, *(p+1)= garbage

int main() !
{ !
 int a = 5; !
 int* p = &a; // assume 0x7fff5fbff8cc!
 !
 printf("value of p = %p \n", p); !
 printf("dereferencing p = %d \n",*p); !
 p++; !
 !
 printf("value of p+1 = %p \n", p); !
 printf("dereferencing p+1 = %d \n",*p); !
} !

CPSC 259 Pointers Page 23

More on Strings later, but a quick example

!
int main(){ !
 char* ch = "Hello world"; !
 printf("%s \n", ch); /* Hello world */!
 printf("%c \n", ch[2]); /* l */ !
 printf("%c \n", *(ch+1)); /* e */!
 return 0; !
}

CPSC 259 Pointers Page 24

Pointer types

int* à points to an integer
char* à points to a char

Why don’t we use a generic
type for pointers?

01100110 00100111 11100110 01100110

p
Can we dereference p without knowing the type of the
variable that it is pointing to?

int à 4 bytes
char à 1 byte

CPSC 259 Pointers Page 25

Generic pointers
•  Generic pointers can be declared, but they need to be

casted before they can be dereferenced.

int main() !
{ !
 int x=10; !
 char ch = 'A'; !
 void* gp; !
 gp = &x; !
 printf("\n integer value = %d", *(int*)gp); /* 10 */!
 gp = &ch; !
 printf("\n now points to %c \n", *(char*)gp);/* A */!
 return 0; !
}	

CPSC 259 Pointers Page 26

Pointer to pointer

“You can keep adding levels of pointers until your brain
explodes or the compiler melts - whichever happens sooner”

CPSC 259 Pointers Page 27

Clicker Question

What would be printed to the screen after executing:
 printf(“%d\n”, *(*r))?

 A: 225 B: 215
C: 6 D: None

CPSC 259 Pointers Page 28

Clicker Question

What would be printed to the screen after executing:
 printf(“%d\n”, *(*r))?

 A: 225 B: 215
C: 6 D: None

CPSC 259 Pointers Page 29

Parameter passing (call by value)

 A: a=10
 B: a=11

#include <stdio.h> !
void increment(int a){ !
 a = a + 1; !
} !
!
int main(){ !
 int a; !
 a = 10; !
 increment(a); !
 printf("a = %d", a); !
}	

CPSC 259 Pointers Page 30

Parameter passing (call by value)

•  a	 from	 main	 is	 mapped	 to	 a	 in	 increment:	 a à a
•  If	 the	 argument	 in	 increment	 was	 called	 x	 then	 a à x
•  mapped/copied	 into	 another	 variableà	 call	 by	 value	
	 	 	

#include <stdio.h> !
void increment(int a){ !
 a = a + 1; !
} !
!
int main(){ !
 int a; !
 a = 10; !
 increment(a); !
 printf("a = %d", a); !
}	

increment
a =11

main
a = 10

300

308

350

600

CPSC 259 Pointers Page 31

Parameter passing (call by reference)
void increment(int* p){ !
 printf("address of p in function= %p \n", &p); // 350!
 printf("value of p in function= %p \n", p); // 308!
 printf("value of *p = %d \n", *p); // 10!
 *p = *p +1; !
} !
!

increment
p=308

main
a=10

300

308

350

600

Stack
int main(){ !
 int a=10; !
 printf("address of a in main = %p \n”, !
 &a); // 308!
 increment(&a); !
 printf("value of a in main = %d \n", !
 a); // 11!
}

CPSC 259 Pointers Page 32

Another example Adding- call by reference

int add(int* num1, int* num2){ !
 !
 return *num1 + *num2; !
} !
!
int main(){ !
 int a=2; !
 int b=4; !
 int c = add(&a,&b); !
 printf("%d",c); !
} !

•  Can the following program be modified so it uses a
pointer to return the answer?

CPSC 259 Pointers Page 33

Be very careful when using pointers
•  If this is your answer, then you are on the right track,
–  but ……. This is not going to work!

int* add(int* num1, int* num2){ !
 !
 int ans = *num1 + *num2; !
 return &ans; !
} !
!
int main(){ !
 int a=2; !
 int b=4; !
 int* c = add(&a,&b); !
 printf("%d",*c); !
} !

See the pointer_adding.c example

CPSC 259 Pointers Page 34

Be very careful when using pointers
void printHelloWorld(){ !
 printf("Hello World! \n"); !
} !
!
int* add (int* a, int* b){ !
 int c = *a + *b ; !
 return &c; !
} !
!
int main(){ !
 int a = 2; !
 int b = 4; !
 int* ptr = add(&a, &b); !
 printHelloWorld(); !
 printf("Sum = %d", *ptr); !
}	

What actually happens is
that section of memory is
marked as OK to
overwrite, but it’s still
there in memory, at least
until its overwritten.

CPSC 259 Pointers Page 35

Be very careful when using pointers
void printHelloWorld(){ !
 printf("Hello World! \n"); !
} !
!
int* add (int* a, int* b){ !
 int c = *a + *b ; !
 return &c; !
} !
!
int main(){ !
 int a = 2; !
 int b = 4; !
 int* ptr = add(&a, &b); !
 printHelloWorld(); !
 printf("Sum = %d", *ptr); !
}	

CPSC 259 Pointers Page 36

Modifying the Add function so it uses a pointer
to return the answer

void addptr(int* num1, int* num2, int* result){ !
 *result = *num1 + *num2; !
} !
!
int main(){ !
 int a=2; !
 int b=4; !
 int c; !
 addptr(&a,&b,&c); !
 printf("%d",c); !
 return 0; !
}

CPSC 259 Pointers Page 37

Example of the Usage of Pointers

Write code for the calculate_triangle_area function

int main(){ !
 double base, height, area; !
 !
 base = 10.0; !
 height = 5.0; !
 calculate_triangle_area(&base, &height, &area); !
 printf("The area of the triangle is: %0.1f", area); !
 !
 return 0; !
}

CPSC 259 Pointers Page 38

Example of the Usage of Pointers

See the pointers_triangle_area.c example

int main(){ !
 double base, height, area; !
 !
 base = 10.0; !
 height = 5.0; !
 calculate_triangle_area(&base, &height, &area); !
 printf("The area of the triangle is: %0.1f", area); !
 !
 return 0; !
}

void calculate_triangle_area(double* b, double* h, double* a) !
{ !
 *a = 0.5 * *b * *h; !
} !

CPSC 259 Pointers Page 39

Addresses, &, and Call-by-Reference
•  Arrays are always assumed to be pass-by-reference

•  Note that we don’t need to provide “&” when specifying
the address of the whole array;

•  However, if we want to specify the address of an
individual element (cell) in the array, then we would do so
(e.g., &data[4]).

double getMaximum(double data[], int size); /* prototype */!
double getMaximum(double * data, int size); /* equivalent */!
answer = getMaximum(myArray, length); /* function call */

CPSC 259 Pointers Page 40

Pointers arithmetic
int A[5]; !
int* q = &A[0]; !
printf("%p \n",q); // 200!
A[0] = 2; !
A[1] = 4; !
printf("%d \n",*q); // 2
printf("%d \n",*(q+1)); // 4

2 4

 int x=5; !
 int* p = &x; !
 printf("%p \n",p); // 300!
 printf("%d \n",*p); // 5!
 printf("%d \n",*(p+1));//garbage	

CPSC 259 Pointers Page 41

Arrays as function arguments
See example array_function.c
In this example we’re going to look at two
functions that find the sum of the values inside of
an array.

int sum_elements_with_size(int a[], int size); !
!

!
!
!
!
int sum_elements_without_size(int a[]);

The second function cannot find the correct sum
because it cannot determine how big the array is.

main

Array

s_e_wo_s

 a= 200

200

600

main

Array

s_e_w_s

 a= 200

200

600
size= 5

CPSC 259 Pointers Page 42

Dynamic Memory Allocation
–  Sometimes we don’t know how much memory we need at

compile time.
–  Every user may use the program differently. For example,

suppose you allocate an array capable of holding 1000 integers,
and you hardcode the value “1000”.
•  What if the user plans to store more than 1000 integers?

 Change program and recompile
•  What if the user only needs 5 integers, and not 1000?

 Wasting memory
–  If you hardcode the value 1000 in the body of the program, this is

not good. Why not?
 Hard to find and change

–  If you hardcode it as a symbolic constant, this is better; but,
there’s still a problem: Cannot change it without changing code

CPSC 259 Pointers Page 43

Memory management in C
•  Frame/Stack segment

•  Area of memory that temporary holds arguments and variables

–  There is no need to manage the memory yourself, variables are
allocated and freed automatically

–  Stack has size limits
–  Stack variables only exist while the function that created them, is

running

void MyFunction(){ !
 int i; // created on stack!

}// variable goes out of scope and is now deleted.!

CPSC 259 Pointers Page 44

Stack Example

Having large data structures on the stack is a problem and leads to Stack
overflow

int square (int x){ !
 return x*x; !
} !
!
int squareOfSum(int x, int y){ !
 return square(x+y); !
 !
} !
!

int main() { !
 int a = 4; !
 int b = 8; !
 int total = squareOfSum(a, b); !
 printf("%d", total); !
}	

Stack

main
a,b

squareOfSum
x,y

square
x

CPSC 259 Pointers Page 45

Dynamic Memory Allocation
– When our program runs, we can request extra space on-

the-fly (i.e., when we need it—even large amounts!)
from the memory heap.

– We’ll use two functions to handle our request for
memory (called “allocation”) from the heap, and our
return of that memory (when we don’t need it anymore
—called “deallocation”):

– Heap objects must explicitly be deleted by the
programmer.

CPSC 259 Pointers Page 46

Dynamic Memory Allocation
Function malloc returns a pointer to a memory block of at
least size bytes:
 ptr = (cast-type*)malloc(byte-size);

Function free returns the memory block (previously
allocated with malloc) and pointed to by p to the memory
heap:

free(ptr);

Yes, the computer remembers how many bytes need to be
freed, provided you give it the correct address (ptr).

CPSC 259 Pointers Page 47

Heap example
include <stdio.h> !
include <stdlib.h> !
!
int main(){ !
 int a; /* goes on stack */!
 int* p = (int*) malloc(sizeof(int)); !
} !

int main(){ !
 int a; /* goes on stack */!
 int* p = (int*) malloc(sizeof(int)); !
 *p =10; !
}

•  What if there is no free memory left on the heap?
malloc will return a null pointer.

CPSC 259 Pointers Page 48

More examples
1. Suppose we want to allocate space for exactly 10

integers in an array:

include <stdio.h> !
include <stdlib.h> !
!
int main(){ !
 int* i; !
 i = (int*) malloc(10 * sizeof(int)); !
 if (i == NULL){ !
 printf("Error: can’t get memory ...\n"); !
 exit(1); /* terminate processing */!
 } !
 !
 i[0] = 3; // *(i+0)=3;!
 i[1] = 16; // *(i+1) = 16;!
 printf("%d",*i); !
 /* perform some actions */!
}

CPSC 259 Pointers Page 49

More examples
  Suppose we want to allocate space for a variable number of

employees‘ hourly wages in an array:
include <stdio.h> !
include <stdlib.h> !
!
int main(){ !
 int employees, index; !
 double* wages; !
 printf(" Total number of employees? "); !
 scanf("%d", &employees); /* user enters # of employees */ !
!
 wages = (double*) malloc(employees * sizeof(double)); !
 if (!wages){ /* same as “if (wages == Null)” */!
 printf("error, no more memory available \n"); !

 } !
 !
 printf(" everything’s OK \n"); !
 /* perform some actions */ !
} !

See the dma_examples.c for another example

CPSC 259 Pointers Page 50

Dangling pointer
When we’re done with the object we free it, which reclaims the memory

free(num);

5	

include <stdio.h> !
include <stdlib.h> !
!
int main(){ !
 int* i = (int*)malloc(sizeof(int)); !
 *i = 5; !
 free(i); !
 printf("%d",*i); // 5 is printed!
} !

What actually happens is that section of
memory is marked as OK to overwrite,
but it’s still there in memory, at least
until its overwritten.

CPSC 259 Pointers Page 51

Dangling pointer
•  If we don’t change our pointer so that it no longer refers to

the deleted object, it is now referring to deallocated
memory.

•  The system may later re-allocate that memory and the
pointer will behave unpredictably when dereferenced.

•  Such a pointer is called a dangling pointer and leads to
bugs that can be subtle and brutally difficult to find.

????

CPSC 259 Pointers Page 52

Dangling pointer and NULL pointer
•  Thus, whenever you call free, you must set the pointer either to a

new value, if you’re reusing the pointer, or to NULL.
•  Think of NULL as the “absence of an object”-- its nothing,

literally!

  Suppose we want to free the storage allocated in the previous two
examples:

 /* int* i; */!
 /* i = (int*) malloc(10 * sizeof(int)); */!
 ... !
 free(i); /* i becomes a dangling pointer */!
 i = NULL; /* i is no longer a dangling pointer */!
 !
 /* double* wages; */!
 /* wages = (double*) malloc(employees * sizeof(double)); */!
 ... !
 free(wages); !
 wages = NULL;

CPSC 259 Pointers Page 53

Segmentation Faults

•  Don’t try to dereference a dangling pointer
–  This will usually crash the program, because you’re trying to

dereference memory that doesn’t belong to you (e.g., the memory
belongs to someone else, or it belongs to the operating system and
is inaccessible to your program)

•  Also, if you’ve already freed memory, don’t try to re-access it.
•  Also, don’t go out-of-bounds on an array or other data structure.

CPSC 259 Pointers Page 54

malloc vs. calloc
•  Contrast memory allocation (malloc) and cleared allocation (calloc):

!
double* x = (double *) malloc(number_to_get * sizeof(double)); !
double* y = (double *) calloc(number_to_get, sizeof(double)); !
…

malloc: The contents of the memory you acquire from the heap are
deemed to be uninitialized. Think of the locations as containing
“garbage values”.
!

calloc: The memory you acquire is set (cleared) to binary zeros.
Often, you don’t need calloc because the programmer is going to
explicitly populate the memory locations with appropriate data.

CPSC 259 Pointers Page 55

Memory Leaks
•  Keep track of the memory you allocate in a program;

otherwise, you won’t be able to reference it again! (or
free it!)

#include <stdio.h> !
#include <stdlib.h> !
!
int main(){ !
 int a; /* goes on stack */!
 int* p = (int*) malloc(sizeof(int)); !
 *p =10; !
 p = (int*) malloc(sizeof(int)); !
 *p = 20; !
} !

CPSC 259 Pointers Page 56

Memory Leaks
•  More examples

See the memory_leak.c example

 while (1) { /* endless loop */!
 getMemory = (char *) malloc(40960); !
 if (getMemory == NULL) { !
 printf("Error: no more memory available\n"); !
 system("pause"); !
 return -1; !
 } !
 printf("got memory at location %p\n", getMemory); !
 }	

CPSC 259 Pointers Page 57

Example
•  What is printed to the screen, and clearly identify any

memory leaks and dangling pointers.
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

CPSC 259 Pointers Page 58

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t
z
w

Stack
Heap

CPSC 259 Pointers Page 59

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t
z
w

Stack
Heap

3

CPSC 259 Pointers Page 60

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t
z
w

Stack
Heap

5

3

CPSC 259 Pointers Page 61

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w

Stack
Heap

5

3

CPSC 259 Pointers Page 62

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

Stack
Heap

5

3

CPSC 259 Pointers Page 63

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

Stack
Heap

5

8

CPSC 259 Pointers Page 64

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

Stack
Heap

5

8

CPSC 259 Pointers Page 65

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

Stack
Heap

5

8

2

CPSC 259 Pointers Page 66

 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

5

8

2

Example

Stack
Heap

CPSC 259 Pointers Page 67

 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

5

8

2

Example

Stack
Heap

CPSC 259 Pointers Page 68

Example
 int w; !
 int z; !
 int* t = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* x = (int*) malloc(sizeof(int)); !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

Stack
Heap

5

8

2

CPSC 259 Pointers Page 69

Example
 int* x = (int*) malloc(sizeof(int)); !
 int* y = (int*) malloc(sizeof(int)); !
 int* t = (int*) malloc(sizeof(int)); !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 free(x); !
 *t = 2; !
 y = &z; !
 x = y; !
 free(t); !
 printf("*x= %d *y= %d z=%d w=%d", *x, *y, z, w); !

x
y
t

z = 8
w=5

Stack Heap
5

8

2

*x= 8 *y= 8 z=8 w=5

Dangling pointer

CPSC 259 Pointers Page 70

Dynamic Allocation of a 2-D Array
 See dma_2d.c please

myarray

Heap

Stack

CPSC 259 Pointers Page 71

Stack vs Heap Pros and Cons
•  Stack
–  very fast access
–  don't have to explicitly de-

allocate variables
–  space is managed

efficiently by CPU,
memory will not become
fragmented

–  local variables only
–  limit on stack size (OS-

dependent)
–  variables cannot be resized

■  Heap
●  variables can be accessed

globally
●  no limit on memory size
●  (relatively) slower access
●  no guaranteed efficient use of

space
●  you must manage memory

(you're in charge of
allocating and freeing
variables)

●  variables can be resized

CPSC 259 Pointers Page 72

Learning Goals revisited
•  Describe the purpose of a pointer data type.
•  Describe the relationship between addresses and pointers.

•  Explain the difference in parameter passing for call-by-value versus
call-by-reference.

•  Explain the purpose of dynamic memory allocation. Give examples
of where dynamic memory allocation is particularly useful, and
examples of where it is not (i.e., where static allocation (at compile
time) is better).

•  Gain experience with pointers in C and describe their tradeoffs and
risks (e.g., dangling pointers, memory leaks).

•  Demonstrate how dynamic memory management is handled in C
(e.g., allocation and deallocation from the memory heap).

