
CPSC 259 Hashing Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Hashing

 Textbook Reference:

Thareja first edition: Chapter 15, pages 613-637

Thareja second edition: Chapter 15, pages 464-688

 Hassan Khosravi

(Borrowing some slides from Steve Wolfman)

CPSC 259 Hashing Page 2

Learning Goals
After this unit, you should be able to:
•  Define various forms of the pigeonhole principle; recognize and

solve the specific types of counting and hashing problems to which
they apply.

•  Provide examples of the types of problems that can benefit from a
hash data structure.

•  Compare and contrast open addressing and chaining.
•  Evaluate collision resolution policies.
•  Describe the conditions under which hashing can degenerate from

O(1) expected complexity to O(n).
•  Identify the types of search problems that do not benefit from

hashing (e.g. range searching) and explain why.
•  Manipulate data in hash structures both irrespective of

implementation and also within a given implementation.

CPSC 259 Hashing Page 3

Algorithms

Sorting Algorithms
Insertion, Selection, bubble

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic Analysis

CPSC 259 Journey

Recursion

Dictionary

Binary Search Tree

Pointers	

Dynamic	Memory	Alloca2on	
	

Priority Queue

Binary Heap

Divide and Conquer paradigm
(Mergesort and Quicksort)

Heapsort

Hashing

CPSC 259 Hashing Page 4

Reminder: Dictionary ADT

•  Dictionary operations
–  create
–  destroy
–  insert
–  find
–  Delete

•  Stores values associated with user-specified keys

–  values may be any (homogenous) type
–  keys may be any (homogenous) comparable type

•  midterm
–  would be tastier with

brownies
•  prog-project

–  so painful… who invented
templates?

•  wolf
–  the perfect mix of oomph

and Scrabble value

insert

find(wolf)

• 	brownies	
			-	tasty	

• 	wolf	
				-	the	perfect	mix	of	oomph		
						and	Scrabble	value	

CPSC 259 Hashing Page 5

Implementations So Far

•  Unsorted list O(1) O(n) O(n)
•  Sorted Array O(n) O(log n) O(n)
•  BSTs O(log n) O(log n) O(log n)

insert delete find

Can we do better? O(1)?

CPSC 259 Hashing Page 6

Example 1 (natural, numeric keys)
•  In a small company of 100 employees, each employee is

assigned an Emp_ID number in the range 0 – 99.
•  To store the employee’s records in an array, each

employee’s Emp_ID number acts as an index into the array
where this employee’s record will be stored as shown in
figure

KEY ARRAY OF EMPLOYEE’S RECORD
Key 0 [0] Record of employee having Emp_ID 0
Key 1 [1] Record of employee having Emp_ID 1
………………………… …………………………………………..
Key 99 [99] Record of employee having Emp_ID 99

CPSC 259 Hashing Page 7

Follow-up example
•  Let’s assume that the same company uses a five digit Emp_ID

number as the primary key. If we want to use the same technique as
above, we will need an array of size 100,000, of which only 100
elements will be used.

•  It is impractical to waste that much storage just to ensure that

each employee’s record is in a unique and predictable location.

KEY ARRAY OF EMPLOYEE’S RECORD

Key 00000 [0] Record of employee having Emp_ID 00000

………………………… ………………………………………….

Key n [n] Record of employee having Emp_ID n

………………………… …………………………………………..

Key 99999 [99999] Record of employee having Emp_ID 99999

0	
…	

99999	
?	

0	
…	
99	

CPSC 259 Hashing Page 8

First Pass: Resizable Vectors

0	

1	

2	 ‘a’

3	

4	

Insert	<2, ‘a’> Insert	<7, ‘c’>

0	

1	

2	 ‘a’

3	

4	

5	

6	

7	 ‘c’

0	

1	

2	

3	

4	

CPSC 259 Hashing Page 9

What’s Wrong with Our First Pass?

0	

1	

2	 ‘a’

3	

4	

Insert	<2, ‘a’> Insert	<7, ‘c’>

0	

1	

2	 ‘a’

3	

4	

5	

6	

7	 ‘c’

0	

1	

2	

3	

4	

Give example commands (insert, find, remove)
that illustrate what’s wrong!

CPSC 259 Hashing Page 10

Hash Table Goal

some	
data	

…
	

We can do:

a[2] = some data

k-1

3

2

1

0

some	
data	

…
	

We want to do:

a[“Steve”] = some data

“Martin”

“Ed”

“Steve”

“Hassan”

“Alan”

“Will”

How will insert, find,
 and delete work?

CPSC 259 Hashing Page 11

Aside: How do arrays do that?
Q: If I know houses on a certain block in
Vancouver are on 33-foot-wide lots,
where is the 5th house?
A: It’s from (5-1)*33 to 5*33 feet from
the start of the block.

element_type a[SIZE];

Q: Where is a[i]?
A: start of a + i*sizeof(element_type)

Aside: This is why array elements have to
be the same size, and why we start the
indices from 0.

some	
data	

…
	

We can do:

a[2] = some data

k-1

3

2

1

0

CPSC 259 Hashing Page 12

What is the 25th Element?

0	

1	

2	 ‘a’

3	

4	

5	

6	

7	 ‘c’

CPSC 259 Hashing Page 13

What is the 25th Element Now?

0	

1	

2	 ‘a’

3	

4	

5	

6	

7	 ‘c’

considered	as		
a	circular	array	

0

1

2

3

7

6

5

4

‘a’

‘c’

CPSC 259 Hashing Page 14

Second Pass: Circular Array
(For the Win?)

0

1

2

3

7

6

5

4

Insert	<37, ‘i’>

0

1

2

3

7

6

5

4
Does this solve our memory usage problem?

‘i’

CPSC 259 Hashing Page 15

What’s Wrong with our Second Pass?
0

1

2

3

7

6

5

4

Let’s insert 2 and 258?

258	%	8	=	2	
258	%	16	=	2	
258	%	32	=	2	
258	%	64	=	2	
258	%	128	=	2	
258	%	256	=	2	

Solu2ons:		
•  Prime	table	sizes	helps	
•  Some	way	to	handle	these	collisions	without	resizing?	

Resize until they don’t?

CPSC 259 Hashing Page 16

How Do We Turn Strings into Numbers?

0

1

2

3

7

6

5

4

Insert	<“eep”, ‘i’>

0

1

2

3

7

6

5

4

What should we do?

CPSC 259 Hashing Page 17

Third Pass: Strings ARE Numbers

0

1

2

3

7

6

5

4

Insert	<“eep”, ‘i’>

0

1

2

3

7

6

5

4

e e p
01100101 01100101 01110000 = 6,645,104

6,645,104	%	8	=	0	

‘i’

CPSC 259 Hashing Page 18

Third Pass: Strings ARE Numbers

0

1

2

3

7

6

5

4

Insert	<“eep”, ‘i’>

0

1

2

3

7

6

5

4

e e p
01100101 01100101 01110000 = 6,645,104

6,645,104	%	8	=	0	

‘i’

Those	numbers	get	REALLY	big	
an2disestablishmentarianism.	Just	saying.	

CPSC 259 Hashing Page 19

Fourth Pass: Hashing!
•  We only need perhaps a 64 (128?) bit number. There’s no

point in forming a huge number.

•  We need a function to turn the strings into numbers,
typically on a bounded range…

an2disestablishmentarianism	 1,097,757,801

Maybe	we	can	only	use	some	parts	of	the	string	

CPSC 259 Hashing Page 20

Schlemiel, Schlemazel,
Trouble for Our Hash Table?

•  Let’s try out:
–  “schlemiel” and “schlemazel”?
–  “microscopic” and “telescopic”?
–  “abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba” and

“abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba”

•  Which bits of the string should we keep? Does our hash table care?

That’s	hashing!	Take	our	data	and	turn	it	into	a	sorta-random	number,	
		ideally	one	that	spreads	out	similar	strings	far	apart!	

CPSC 259 Hashing Page 21

Punt to Another Dictionary?

0

1

2

3

7

6

5

4

Insert	<13, ‘o’>	
Insert	<37, ‘i’>

0

1

2

3

7

6

5

4

<13, ‘o’>	
<37, ‘i’>

BST,	AVL,	linked	list,	
or	other	dic2onary	

When should we
resize in this case?

CPSC 259 Hashing Page 22

Punt to Another Slot?

0

1

2

3

7

6

5

4

Insert	<13, ‘o’>	
Insert	<37, ‘i’>

0

1

2

3

7

6

5

4

‘o’

‘i’

Slot	5	is	full,	but	no	“dic2onaries	in	each	slot”	this	2me.		
Overflow	to	slot	6?	When	should	we	resize?	

CPSC 259 Hashing Page 23

Hash Table Approach

But… is there a problem in this pipe-dream?

f(x)	

Alan
Steve

Hassan
Will

Ed

CPSC 259 Hashing Page 24

Hash Table Dictionary Data Structure
•  Hash function: maps keys to

integers
–  result: can quickly find the

right spot for a given entry

•  Unordered and sparse table
–  result: cannot efficiently list all

entries in order or list entries
between one value and another
(a “range” query)

f(x)	

Alan
Steve

Hassan
Will

Ed

CPSC 259 Hashing Page 25

Hash Table Terminology

f(x)	

Alan
Steve
Hassan
Will

Ed

hash function

collision

keys
load factor λ = # of entries in table

 tableSize

CPSC 259 Hashing Page 26

Hash Table Code First Pass

•  What should the hash function be?
•  What should the table size be?
•  How should we resolve collisions?

Value find(Key key) { !
 int index = hash(key) % tableSize; !
 return Table[index]; !
} !
	

CPSC 259 Hashing Page 27

A Good (Perfect?) Hash Function…
•  is easy (fast) to compute
–  O(1) and fast in practice.

•  distributes the data evenly
– hash(a) % size ≠ hash(b) % size.

•  uses the whole hash table. for all 0 ≤ k < size, there’s an i
such that
– hash(i) % size = k.

CPSC 259 Hashing Page 28

Good Hash Function for Integers
•  Choose
–  tableSize is

•  prime for good spread
•  Resize using power of two for fast

calculations/convenient size

–  hash(n) = n % tableSize
•  (fast and good enough?)

Insert 2
Insert 5
Insert 10
Find 10
Insert 14
Insert -1

3

2

1

0

6

5

4

2

5

10

14

-1

CPSC 259 Hashing Page 29

Suppose we have a table capable of holding 5000 records, and
whose keys consist of strings that are 6 characters long. We can
apply numeric operations to the ASCII codes of the characters in
the string in order to determine a hash index:

 int hash(char * key){ !
 int hashCode = 0; !
 int index = 0; !
 while (key[index] != ‘\0’){ !
 hashCode += (int)key[index]; !
 index++; !
 } !
 return hashCode % 5000; !
} !
	

C	 A	 M	 E	 C	 O	 /0	
C = 67
A = 65
M = 77
E = 69
C = 67
O = 79
 = 424

CAMECO	

0 4999 424

Good Hash Function for Strings?

Is	this	a		
good	idea?	

CPSC 259 Hashing Page 30

Good Hash Function for Strings?
•  What is a significant problem with this approach?
•  Hash of any string with the same 6 letters is the same

•  ASCII values have a max of 255

•  6*255 = 1530, which means [1531 – 4999] are wasted

•  Alternative approach
•  Let s = s1s2s3s4…s5: choose
–  hash(s) = s1 + s2128 + s31282 + s41283 + … + sn128n

•  Problems:
–  hash(“really, really big”) is really, really big!
–  hash(“one thing”) % 128 is close to hash(“other thing”) % 128

CPSC 259 Hashing Page 31

Making the String Hash Easy to Compute

•  Use Horner’s Rule (Qin’s Rule?)

int hash(string s) { !
 h = 0; !
 for (i = s.length() - 1; i >= 0; i--) { !
 h = (si + 31*h) % tableSize; !
 } !
 return h; !
} !

hash(help) = h+31(e+31(l+31*p))

You would also need to %

a + bx +cx2 = a + x(b + xc)

CPSC 259 Hashing Page 32

Hash Function Summary
•  Goals of a hash function
– reproducible mapping from key to table entry
– evenly distribute keys across the table
– separate commonly occurring keys

(neighbouring keys?)
– complete quickly

CPSC 259 Hashing Page 33

How to Design a Hash Function
•  Know what your keys are or Study how your keys are

distributed.
•  Try to include all important information in a key in the

construction of its hash.
•  Try to make “neighbouring” keys hash to very different

places.
•  Balance complexity/runtime of the hash function against

spread of keys (very application dependent).

CPSC 259 Hashing Page 34

The Pigeonhole Principle (informal)
You can’t put k+1 pigeons into k holes without

putting two pigeons in the same hole.

Image by
en:User:McKay,
used under CC

 attr/share-alike.

This	place	
just	isn’t	coo	
anymore.	

CPSC 259 Hashing Page 35

Clicker question

 Suppose we have 5 colours of Halloween candy, and that
there’s lots of candy in a bag. How many pieces of
candy do we have to pull out of the bag if we want to be
sure to get 2 of the same colour?

a.  2
b.  4
c.  6
d.  8
e.  None of these
	

CPSC 259 Hashing Page 36

Clicker question (answer)

 Suppose we have 5 colours of Halloween candy, and that
there’s lots of candy in a bag. How many pieces of
candy do we have to pull out of the bag if we want to be
sure to get 2 of the same colour?

a.  2
b.  4
c.  6
d.  8
e.  None of these
	

CPSC 259 Hashing Page 37

The Pigeonhole Principle (formal)
Let X and Y be finite sets where |X| > |Y|.
If f : X→Y, then f(x1) = f(x2) for some x1, x2 ∈ X, where x1 ≠

x2.

X Y

f

x1

x2

f(x1) = f(x2)

Now	
that’s	
coo!	

CPSC 259 Hashing Page 38

The Pigeonhole Principle (Example #2)
If there are 1000 pieces of each color, how many do we need

to pull to guarantee that we’ll get 2 black pieces of candy
(assuming that black is one of the 5 colors)?

a.  2
b.  6
c.  4002
d.  5001
e.  None of these

CPSC 259 Hashing Page 39

The Pigeonhole Principle (Example #2)
If there are 1000 pieces of each colour, how many do we

need to pull to guarantee that we’ll get 2 black pieces of
candy (assuming that black is one of the 5 colours)?

a.  2
b.  6
c.  4002
d.  5001
e.  None of these

This	is	not	an	appropriate	problem	
for	the	pigeonhole	principle!		We	
don’t	know	which	hole	has	two	
pigeons!	

CPSC 259 Hashing Page 40

The Pigeonhole Principle (Example #3)
If 5 points are placed in a 6cm x 8cm rectangle, argue that

there are two points that are not more than 5 cm apart.

6cm

8cm

Hint: How long
is the diagonal?

CPSC 259 Hashing Page 41

Example revisited
•  In a small company of 100 employees, each employee is assigned

an Emp_ID number in the range 00000 - 99999.
–  U (number of potential keys)=100,000
–  n (space allocated) =?

•  Hopefully not much bigger than m
•  Maybe 200 or 300

•  By the Pigeonhole Principle(PHP) multiple potential
keys are mapped to the same slot, which introduces the
possibility of collisions.

CPSC 259 Hashing Page 42

Clicker question
•  Consider n people with random birthdays (i.e., with each

day of the year equally likely). How large does n need to
be before there is at least a 50% chance that two people
have the same birthday.

A: 23
B: 57
C: 184
D: 367
E: None of the above

CPSC 259 Hashing Page 43

Clicker question (Birthday Paradox)
•  Consider n people with random birthdays. How large does

n need to be before there is at least a 50% chance that two
people have the same birthday.

A: 23 à 50%
B: 57 à 99%
C: 184
D: 367 à 100%
E: None of the above

•  Corollary: Even if we randomly hash only keys into
m slots, we get a collision with probability > 0.5.

2m

CPSC 259 Hashing Page 44

Collision Resolution

•  What do we do when two keys hash to the same entry?
–  chaining: put little dictionaries in each entry

–  open addressing: pick a next entry to try

shove extra pigeons in one hole!

CPSC 259 Hashing Page 45

3

2

1

0

6

5

4

a	 d	

e	 b	

c	

Hashing with Chaining

•  Put a little dictionary at
each entry
–  choose type as appropriate
–  common case is unordered

move-to-front linked list
(chain)

•  Properties
– λ can be greater than 1
–  performance degrades with

length of chains

h(a) = h(d)
h(e) = h(b)

load factor λ = # of entries in table

 tableSize

CPSC 259 Hashing Page 46

Example: Suppose h(x) = ⎣x/10⎦ mod 5

 Hash: 12540, 51288, 90100, 41233, 54991, 45329, 14236

0
1
2
3
4 12540	

51288	

90100	

41233	

54991	

45329	

14236	

In-class exercise

Example: find node with key 14236

CPSC 259 Hashing Page 47

Deleting when using chaining

Example: Suppose h(x) = ⎣x/10⎦ mod 5

 Hash: 12540, 51288, 41233, 54991, 14236

3
4 12540	

51288	 41233	

54991	

14236	

•  Delete 41233

•  Remove 41233 from the linked list

3
4 12540	

51288	

54991	

14236	

CPSC 259 Hashing Page 48

Load Factor in Chaining
•  Search cost
–  unsuccessful search:

•  On average λ

–  successful search:

•  On average ~λ/2 +1 (what the book says)
•  More precisely

•  Desired load factor:
•  between 1/2 and 1.

load factor λ = # of entries in table

 tableSize

1+ n−1
2m =1+ λ

2 −
λ
2n (n-1)/m		are		

in	this	slot	

CPSC 259 Hashing Page 49

Advantages of Chaining:

•  The size s of the hash table can be smaller than the number of

items n hashed. Why is this often a good thing?
•  Fewer blank/wasted cells (especially in the case where

the number of cells greatly exceeds the number of keys).
•  Collision handling can be O(1).
•  Can accommodate overflows

Disadvantages of Chaining:
•  Search time can become O(n) due to long chains.

Pros and cons of chaining

CPSC 259 Hashing Page 50

Open Addressing

What if we only allow one Key at
each entry?
–  two objects that hash to the same

spot can’t both go there
–  first one there gets the spot
–  next one must go in another spot

•  Properties
–  λ ≤ 1
–  performance degrades with

difficulty of finding right spot

a	

c	

e	
3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d	

b	load factor λ = # of entries in table

 tableSize

CPSC 259 Hashing Page 51

Probing

•  Probing how to:
–  given a key k, hash to h(k)
–  if h(k) is occupied, try h(k) + f(1)
–  If h(k) + f(1) is occupied, try h(k) + f(2)
–  And so forth

•  Probing properties
–  the ith probe is to (h(k) + f(i)) mod size where f(0) = 0
–  if i reaches size, the insert has failed
–  depending on f(), the insert may fail sooner
–  long sequences of probes are costly!

CPSC 259 Hashing Page 52

Linear Probing, f(i) = i
 •  Probe sequence is

–  h(k) mod size
–  h(k) + 1 mod size
–  h(k) + 2 mod size
–  …

CPSC 259 Hashing Page 53

Clicker Question
 •  Using the hash function h(x) = x % 7 insert the following

values using linear probing: 76, 93, 40, 47, 10, 55

•  In what index would would 55 be stored?

•  A: 6
•  B: 0
•  C: 1
•  D: 2
•  E: None of the above

CPSC 259 Hashing Page 54

probes:

47	

93	

40	

10	3

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76	

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76	

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93	

76	

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93	

40	

76	

3

2

1

0

6

5

4

insert(47)
47%7 = 5

3

47	

93	

40	

76	

10	3

2

1

0

6

5

4

insert(10)
10%7 = 3

1

55	

76	

93	

40	

47	

Clicker Question (answer)
•  Using the hash function h(x) = x % 7 insert the following values

using linear probing: 76, 93, 40, 47, 10, 55

CPSC 259 Hashing Page 55

Load Factor in Linear Probing

•  For any λ < 1, linear probing will find an empty slot
•  Search cost (for large table sizes)
–  successful search:

–  unsuccessful search:
•  How performance degrades as λ gets bigger () ⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

()⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

load factor λ = # of entries in table

 tableSize

λ=0.25	 λ=0.5	 λ=0.75	 λ=0.9	

Avg	#	slots	searched	 1.4	 2.5	 8.5	 50.5	

λ=0.25	 λ=0.5	 λ=0.75	 λ=0.9	

Avg	#	slots	searched	 1.17	 1.5	 2.5	 5.5	

CPSC 259 Hashing Page 56

Load Factor in Linear Probing

•  For any λ < 1, linear probing will find an empty slot
•  Search cost (for large table sizes)

–  successful search:

–  unsuccessful search:

•  Linear probing suffers from primary clustering
•  Performance quickly degrades for λ > 1/2

() ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

()⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

load factor λ = # of entries in table

 tableSize

Values	hashed	
close	to	each	
other	probe	
the	same	
slots.	

CPSC 259 Hashing Page 57

Quadratic Probing, f(i) = i2

•  Probe sequence is
–  h(k) mod size
–  (h(k) + 1) mod size
–  (h(k) + 4) mod size
–  (h(k) + 9) mod size
–  …

CPSC 259 Hashing Page 58

Clicker Question
•  Using the hash function h(x) = x % 7 insert the following values

using quadratic probing: 76, 40, 48, 5, 55

•  In what index would would 55 be stored?

•  A: 6
•  B: 0
•  C: 1
•  D: 3
•  E: None of the above

CPSC 259 Hashing Page 59

Quadratic Probing Example J

probes:

76	

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76	

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40	 40	

76	

3

2

1

0

6

5

4

insert(48)
48%7 = 6

2

48	 48	

40	

76	

3

2

1

0

6

5

4

insert(5)
5%7 = 5

3

5	 5	

40	

55	3

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76	

48	

•  Using the hash function h(x) = x % 7 insert the following values
using quadratic probing: 76, 40, 48, 5, 55

CPSC 259 Hashing Page 60

Clicker Question
•  Using the hash function h(x) = x % 7 insert the following values

using quadratic probing: 76, 93, 40, 35, 47

•  In what index would would 47 be stored?

•  A: 6
•  B: 0
•  C: 1
•  D: 3
•  E: None of the above

CPSC 259 Hashing Page 61

Quadratic Probing Example L

probes:

76	

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

35	

93	

40	

76	

3

2

1

0

6

5

4

insert(47)
47%7 = 5

76	

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93	 93	

76	

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40	

93	

40	

76	

3

2

1

0

6

5

4

insert(35)
35%7 = 0

1

35	

•  Using the hash function h(x) = x % 7 insert the following values
using quadratic probing: 76, 93, 40, 35, 47

∞

CPSC 259 Hashing Page 62

Quadratic Probing Succeeds (for λ ≤ ½)
•  Claim: If size is prime, the first size/2 probes are distinct
•  Proof : omitted

•  Result: If size is prime and λ ≤ ½, then quadratic probing will find
an empty slot in size/2 probes or fewer

•  Quadratic probing does not suffer from primary
clustering

•  Quadratic probing does suffer from secondary clustering
–  How could we possibly solve this?

Values	hashed	
to	the	SAME	
index	probe	

the	same	slots.	

CPSC 259 Hashing Page 63

CPSC 259 Administrative Notes
•  Lab 5 take-home due Sun Dec 6
–  Feel free to drop by the second hour of other lab sections to get

help.
•  Connect quiz and textbook exercises on Hashing are now

available

•  Concept Inventory
– A study to help us understand some of the misconceptions

students have in learning C
– Helps you practice for the final AND earn bonus (0.5%

course grade)
–  Stay tuned! There will be a note on Piazza, which will be

emailed out to everyone

CPSC 259 Hashing Page 64

Office Hours
•  We’ll be holding additional extra office hours starting this

Thursday. Stay tuned and check the course calendar.

•  Thursday, 12pm-1pm Jonathan ICCS 008
•  Thursday, 3:30pm-4:30on Michael ICCS X237
•  Friday, 1:00pm-2:00pm Hassan ICCS 241
•  Monday, 2:00pm-4:00pm Hassan ICCS 241
•  Tuesday, 10:00am-12pm Sean ICCS X237
•  Tuesday, 4:00pm-6:00pm Sean ICCS X237
•  Wednesday 12:00pm-1:00pm Michael ICCS X237

CPSC 259 Hashing Page 65

Double Hashing, f(i) = i ⋅ hash2(x)
•  Probe sequence is
–  h1(k) mod size
–  (h1(k) + 1 ⋅ h2(x)) mod size
–  (h1(k) + 2 ⋅ h2(x)) mod size
–  …

CPSC 259 Hashing Page 66

A Good Double Hash Function…
•  is quick to evaluate.
•  differs from the original hash function.
•  never evaluates to 0 (mod size).

•  One good choice is to choose a prime R < size
–  hash2(x) = R - (x mod R)

CPSC 259 Hashing Page 67

Clicker Question
•  Using the hash functions h1(x) = x % 7 and h2(x)=5 - (x % 5) insert

the following values using double hashing 76, 93, 40, 47, 10, 55

•  In what index would would 55 be stored?

•  A: 6
•  B: 0
•  C: 1
•  D: 3
•  E: None of the above

CPSC 259 Hashing Page 68

Double Hashing Example

probes:

insert(55)
55%7 = 6

5 - (55%5) = 5

insert(76)
76%7 = 6

76	

3

2

1

0

6

5

4

1

insert(93)
93%7 = 2

insert(40)
40%7 = 5

insert(47)
47%7 = 5

5 - (47%5) = 3

insert(10)
10%7 = 3

47	

93	

40	

76	

10	3

2

1

0

6

5

4

1

93	

55	

40	

10	3

2

1

0

6

5

4

2

47	

76	76	

3

2

1

0

6

5

4

1

93	 93	

76	

3

2

1

0

6

5

4

1

40	

93	

40	

76	

3

2

1

0

6

5

4

2

47	

•  Using the hash functions h1(x) = x % 7 and h2(x)=5 - (x % 5) insert
the following values using double hashing 76, 93, 40, 47, 10, 55

CPSC 259 Hashing Page 69

The primary hash function is: h1(k) = (2k + 5) mod 11.
The secondary hash function is: h2(k) = 7 – (k mod 7)

Hash these keys, in this order: 12, 44, 13, 88, 23, 94, 11.
Which cell in the array does key 11 hash to?

A. 0
B. 2
C. 3
D. 4
E. 10

0
1
2
3
4
5
6
7
8
9
1
0

Clicker	ques2on	

CPSC 259 Hashing Page 70

h1(k) = (2k + 5) mod 11. h2(k) = 7 – (k mod 7)

12, 44, 13, 88, 23, 94, 11. Which cell in the array does
key 11 hash to?

0
1
2
3
4
5
6
7
8
9
1
0

Clicker	ques2on	(answer)	

h(12) = (2(12) + 5) % 11 = 7

h(44) = (2(44) + 5) % 11 = 5

h(13) = (2(13) + 5) % 11 = 9

h(88) = (2(88) + 5) % 11 = 5 +7 – 88%7 = 8

h(23) = (2(23) + 5) % 11 = 7 + 7 – 23%7 = 12

h(94) = (2(94) + 5) % 11 = 6

h(11) = (2(11) + 5) % 11 = 5 +2(7 – 11%7) = 11

A. 0
B. 2
C. 3
D. 4
E. 10

12

44

13
88

23

94

11

CPSC 259 Hashing Page 71

Load Factor in Double Hashing
•  For any λ < 1, double hashing will find an empty slot

(given appropriate table size and hash2)
•  Search cost appears to approach optimal (random hash):

–  successful search:

–  unsuccessful search:

•  No primary clustering and no secondary clustering
•  One extra hash calculation

λ−1
1
λλ −1
1ln1

λ=0.25	 λ=0.5	 λ=0.75	 λ=0.9	

Avg	#	slots	searched	 1.3	 2	 4	 10	

λ=0.25	 λ=0.5	 λ=0.75	 λ=0.9	

Avg	#	slots	searched	 1.5	 1.4	 1.8	 2.6	

CPSC 259 Hashing Page 72

Deleting when using probing
Example:
•  Suppose locations [97] to [101] are occupied in our hash table:

[0] [1] … [97] [98] [99] [100] [101] [102] …

•  Suppose a new key hashes to [97]. Assuming a linear collision

resolution policy, the key goes to 102.

•  Later, suppose we delete the key that was hashed to [98].

•  Add a tombstone (i.e., flag, marker) for 2 reasons:
1.  If searching, keep going when you hit a tombstone.

2.  If inserting, stop and add the item here.

This means that table entries can be occupied, deleted, or free

	dog	 		cat	 goat	 	owl	 deer	

CPSC 259 Hashing Page 73

The Squished Pigeon Principle

•  An insert using open addressing cannot work with a
load factor of 1 or more.

•  An insert using open addressing with quadratic
probing may not work with a load factor of ½ or
more.

•  Whether you use chaining or open addressing, large
load factors lead to poor performance!

•  How can we relieve the pressure on the pigeons?

Hint: think resizable arrays!

CPSC 259 Hashing Page 74

Rehashing

•  When the load factor gets “too large” (over a constant
threshold on λ), rehash all the elements into a new,
larger table:
–  takes O(n), but amortized O(1) as long as we (just about)

double table size on the resize
–  spreads keys back out, may drastically improve performance
–  gives us a chance to retune parameterized hash functions
–  avoids failure for open addressing techniques
–  allows arbitrarily large tables starting from a small table
–  clears out lazily deleted items

CPSC 259 Hashing Page 75

Application: The 2-Sum Problem
•  Given: Unsorted array of integers A, and a target sum t
•  Goal: Determine whether or not there are two numbers x

and y in A such that x+y=t

•  Naïve solution: O(n2) exhaustive search
•  Better solution:
–  Sort A O(n lg n)
–  For each x in A look for t-x O(n lg n)

•  Amazing solution:
–  Insert elements of A into hash table H O(n)
–  For each x in A, lookup t-x in H O(n)

CPSC 259 Hashing Page 76

Application: De-Duplication
•  Given a “stream” of objects
–  Linear scan through a huge file
–  Objects arriving in real time

•  Goal: Remove duplicates (keep track of unique objects)
–  Report unique visitors to a web site
–  Avoid duplicates in search results

•  Solution: When new object x arrives, look up h(x) and if
not found insert.

CPSC 259 Hashing Page 77

The Pigeonhole Principle (Full Glory)
•  Let X and Y be finite sets with |X| = n, |Y| = m, and
k = ⎡n/m⎤.

If f : X → Y, then ∃ k values x1, x2, …, xk ∈ X such that
f(x1) = f(x2) = … f(xk).

Informally: If n pigeons fly into m holes, at least 1 hole
contains at least k = ⎡n/m⎤ pigeons.

CPSC 259 Hashing Page 78

Pathological Data Sets
•  For good hash performance, we need a good hash function
–  Spreads data evenly across buckets

•  Ideal: Use super-clever hash function guaranteed to spread
every data set out evenly

•  Problem: Such a hash function does not exist
–  For every hash function, there is a pathological data set

CPSC 259 Hashing Page 79

Pathological Data Sets
•  Reason
–  Fix a hash function h
–  Let U be the potential number of keys
–  Let m be the table size

•  There exists an array cell i, such that at least U/m elements
hash to i under h

•  If data set drawn only from these elements, then
everything collides.

•  This data set could be quite large since U >> m

CPSC 259 Hashing Page 80

Overview of Universal Hashing
•  For every deterministic hash function, there is a

pathological data set.
–  Solution: Do not commit to a specific hash function

•  Use randomization
–  Design a family H of hash functions, such that for every data set

S, most functions h ∈ H spread S out “pretty evenly”

CPSC 259 Hashing Page 81

Review question from last year’s midterm
What is printed to the console when magic(5) is called?

#define MAX_VAL 150

void magic(int n)
{
 if(n <= 0)
 return;
 if(n > MAX_VAL)
 return;
 printf("%d ",n);
 magic(2*n);
 printf("%d ",n);
 return;
}

5	10	20	40	80	80	40	20	10	5	

CPSC 259 Hashing Page 82

Learning Goals revisited
After this unit, you should be able to:
•  Define various forms of the pigeonhole principle;

recognize and solve the specific types of counting and
hashing problems to which they apply.

•  Provide examples of the types of problems that can
benefit from a hash data structure.

•  Compare and contrast open addressing and chaining.
•  Evaluate collision resolution policies.
•  Describe the conditions under which hashing can

degenerate from O(1) expected complexity to O(n).
•  Identify the types of search problems that do not benefit

from hashing (e.g. range searching) and explain why.
•  Manipulate data in hash structures both irrespective of

implementation and also within a given implementation.

