CPSC 259: Data Structures and Algorithms for Electrical Engineers

Hashing

Textbook Reference:
Thareja first edition: Chapter 15, pages 613-637
Thareja second edition: Chapter 15, pages 464-688

Hassan Khosravi
 (Borrowing some slides from Steve Wolfman)

Learning Goals

After this unit, you should be able to:

- Define various forms of the pigeonhole principle; recognize and solve the specific types of counting and hashing problems to which they apply.
- Provide examples of the types of problems that can benefit from a hash data structure.
- Compare and contrast open addressing and chaining.
- Evaluate collision resolution policies.
- Describe the conditions under which hashing can degenerate from $\mathrm{O}(1)$ expected complexity to $\mathrm{O}(\mathrm{n})$.
- Identify the types of search problems that do not benefit from hashing (e.g. range searching) and explain why.
- Manipulate data in hash structures both irrespective of implementation and also within a given implementation.

CPSC 259 Journey

Tools
Pointers
Dynamic Memory Allocation
Asymptotic Analysis
Recursion
Heapsort
Sorting Algorithms Insertion, Selection, bubble Divide and Conquer paradigm (Mergesort and Quicksort) Algorithms

Reminder: Dictionary ADT

- Dictionary operations
- create
- destroy
- insert
- find
- Delete
- midterm
- would be tastier with brownies
- prog-project
- so painful... who invented templates?
- wolf
- the perfect mix of oomph and Scrabble value
- Stores values associated with user-specified keys
- values may be any (homogenous) type
- keys may be any (homogenous) comparable type

Implementations So Far

 insert find delete- Unsorted list
- Sorted Array
- BSTs
$\mathrm{O}(1)$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\mathrm{n})$
O(n)
$\mathrm{O}(\log \mathrm{n})$
$\mathrm{O}(\mathrm{n})$
$\mathrm{O}(\log n) \quad \mathrm{O}(\log n)$
$\mathrm{O}(\log \mathrm{n})$

Can we do better? $\mathrm{O}(1)$?

Example 1 (natural, numeric keys)

- In a small company of 100 employees, each employee is assigned an Emp_ID number in the range $0-99$.
- To store the employee's records in an array, each employee's Emp_ID number acts as an index into the array where this employee's record will be stored as shown in figure

KEY		ARRAY OF EMPLOYEE' S RECORD
Key 0	[0]	Record of employee having Emp_ID 0
Key 1	[1]	Record of employee having Emp_ID 1
.........
Key 99	[99]	Record of employee having Emp_ID 99

Follow-up example

- Let's assume that the same company uses a five digit Emp_ID number as the primary key. If we want to use the same technique as above, we will need an array of size 100,000 , of which only 100 elements will be used.

KEY		ARRAY OF EMPLOYEE'S RECORD
Key 00000	[0]	Record of employee having Emp_ID 00000
..........		..
Key n	[n]	Record of employee having Emp_ID n
...........		..
Key 99999	[99999]	Record of employee having Emp_ID 99999

- It is impractical to waste that much storage just to ensure that each employee's record is in a unique and predictable location.

First Pass: Resizable Vectors

What's Wrong with Our First Pass?

Give example commands (insert, find, remove) that illustrate what's wrong!

Hash Table Goal

Aside: How do arrays do that?

We can do:
$a[2]=$ some data

Q: If I know houses on a certain block in Vancouver are on 33-foot-wide lots, where is the $5^{\text {th }}$ house?
A: It's from $(5-1)^{*} 33$ to $5^{*} 33$ feet from the start of the block.
element_type a[SIZE];

Q : Where is $\mathrm{a}[\mathrm{i}]$?
A: start of $a+i^{*}$ sizeof(element_type)

Aside: This is why array elements have to be the same size, and why we start the indices from 0 .

What is the $25^{\text {th }}$ Element?

What is the $25^{\text {th }}$ Element Now?

considered as a circular array

Second Pass: Circular Array (For the Win?)

Does this solve our memory usage problem?

What's Wrong with our Second Pass?

Let's insert 2 and 258 ?
Resize until they don't?

$$
\begin{aligned}
& 258 \% 8=2 \\
& 258 \% 16=2 \\
& 258 \% 32=2 \\
& 258 \% 64=2 \\
& 258 \% 128=2 \\
& 258 \% 256=2
\end{aligned}
$$

Solutions:

- Prime table sizes helps
- Some way to handle these collisions without resizing?

How Do We Turn Strings into Numbers?

What should we do?

Third Pass: Strings ARE Numbers

Third Pass: Strings ARE Numbers

Fourth Pass: Hashing!

- We only need perhaps a 64 (128?) bit number. There's no point in forming a huge number.
- We need a function to turn the strings into numbers, typically on a bounded range...

Maybe we can only use some parts of the string

Schlemiel, Schlemazel, Trouble for Our Hash Table?

- Let's try out:
- "schlemiel" and "schlemazel"?
- "microscopic" and "telescopic"?
- "abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba" and "abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba"
- Which bits of the string should we keep? Does our hash table care?

That's hashing! Take our data and turn it into a sorta-random number, ideally one that spreads out similar strings far apart!

Punt to Another Dictionary?

When should we
resize in this case?

Punt to Another Slot?

Slot 5 is full, but no "dictionaries in each slot" this time.
Overflow to slot 6? When should we resize?

Hash Table Approach

Hash Table Dictionary Data Structure

- Hash function: maps keys to integers
- result: can quickly find the right spot for a given entry

- Unordered and sparse table
- result: cannot efficiently list all entries in order or list entries between one value and another (a "range" query)

Hash Table Terminology

Hash Table Code First Pass

```
Value find(Key key) {
    int index = hash(key) % tableSize;
    return Table[index];
}
```

- What should the hash function be?
- What should the table size be?
- How should we resolve collisions?

A Good (Perfect?) Hash Function...

- is easy (fast) to compute
- $\mathrm{O}(1)$ and fast in practice.
- distributes the data evenly
$-\operatorname{hash}(a) \%$ size $\neq \operatorname{hash}(b) \%$ size.
- uses the whole hash table. for all $0 \leq \mathrm{k}<$ size, there's an i such that
$-\operatorname{hash}(i) \%$ size $=k$.

Good Hash Function for Integers

- Choose
- tableSize is
- prime for good spread
- Resize using power of two for fast calculations/convenient size
- hash(n) $=$ n \% tableSize
- (fast and good enough?)

Insert 2

Insert 5
Insert 10
Find 10
Insert 14
Insert -1

| 0 | 14 |
| :--- | :--- | :--- |
| 1 | 14 |
| 2 | |
| | 2 |
| | 10 |
| 4 | 10 |
| 5 | |
| | 5 |
| 6 | -1 |

Good Hash Function for Strings?

Suppose we have a table capable of holding 5000 records, and whose keys consist of strings that are 6 characters long. We can apply numeric operations to the ASCII codes of the characters in the string in order to determine a hash index:

```
int hash(char * key){
    int hashCode = 0;
    int index = 0;
    while (key[index] != `\0'){
        hashCode += (int)key[index];
        index++;
    }
    return hashCode % 5000;
}
```

c

A	M	E	C	O	$/ 0$

$C=67$
$A=65$
$M=77$
$E=69$
$C=67$
$O=79$
$=424$

CAMECO

Good Hash Function for Strings?

- What is a significant problem with this approach?
- Hash of any string with the same 6 letters is the same
- ASCII values have a max of 255
- $6 * 255=1530$, which means [$1531-4999$] are wasted
- Alternative approach
- Let $\mathrm{s}=\mathrm{s}_{1} \mathrm{~s}_{2} \mathrm{~S}_{3} \mathrm{~s}_{4} \ldots \mathrm{~s}_{5}$: choose
$-\operatorname{hash}(\mathrm{s})=\mathrm{s}_{1}+\mathrm{s}_{2} 128+\mathrm{s}_{3} 128^{2}+\mathrm{s}_{4} 128^{3}+\ldots+\mathrm{s}_{\mathrm{n}} 128^{\mathrm{n}}$
- Problems:
- hash("really, really big") is really, really big!
- hash("one thing") \% 128 is close to hash("other thing") \% 128

Making the String Hash Easy to Compute

- Use Horner's Rule (Qin's Rule?)

$$
a+b x+\mathrm{cx}^{2}=a+x(b+x c)
$$

```
int hash(string s) {
    h = 0;
    for (i = s.length() - 1; i >= 0; i--) {
        h = (si + 31*h) % tableSize;
    }
    return h;
}
```

hash(help) $=h+31(e+31(1+31 * p))$

You would also need to \%

Hash Function Summary

- Goals of a hash function
- reproducible mapping from key to table entry
- evenly distribute keys across the table
- separate commonly occurring keys
(neighbouring keys?)
- complete quickly

How to Design a Hash Function

- Know what your keys are or Study how your keys are distributed.
- Try to include all important information in a key in the construction of its hash.
- Try to make "neighbouring" keys hash to very different places.
- Balance complexity/runtime of the hash function against spread of keys (very application dependent).

The Pigeonhole Principle (informal)

You can't put $\mathrm{k}+1$ pigeons into k holes without putting two pigeons in the same hole.

This place just isn't coo anymore.

Image by
en:User:McKay, used under CC attr/share-alike.

Clicker question

Suppose we have 5 colours of Halloween candy, and that there's lots of candy in a bag. How many pieces of candy do we have to pull out of the bag if we want to be sure to get 2 of the same colour?

a. 2
 b. 4
 c. 6
 d. 8
 e. None of these

Clicker question (answer)

Suppose we have 5 colours of Halloween candy, and that there's lots of candy in a bag. How many pieces of candy do we have to pull out of the bag if we want to be sure to get 2 of the same colour?

a. 2
 b. 4
 c. 6
 d. 8
 e. None of these

The Pigeonhole Principle (formal)

Let X and Y be finite sets where $|\mathrm{X}|>|\mathrm{Y}|$.
If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)$ for some $x_{1}, x_{2} \in \mathrm{X}$, where $x_{1} \neq$ x_{2}.

The Pigeonhole Principle (Example \#2)

If there are 1000 pieces of each color, how many do we need to pull to guarantee that we'll get 2 black pieces of candy (assuming that black is one of the 5 colors)?
a. 2
b. 6
c. 4002
d. 5001
e. None of these

The Pigeonhole Principle (Example \#2)

If there are 1000 pieces of each colour, how many do we need to pull to guarantee that we'll get 2 black pieces of candy (assuming that black is one of the 5 colours)?
a. 2
b. 6
c. 4002
d. 5001
e. None of these

This is not an appropriate problem for the pigeonhole principle! We don't know which hole has two pigeons!

The Pigeonhole Principle (Example \#3)

If 5 points are placed in a $6 \mathrm{~cm} \times 8 \mathrm{~cm}$ rectangle, argue that there are two points that are not more than 5 cm apart.

Hint: How long is the diagonal?

Example revisited

- In a small company of 100 employees, each employee is assigned an Emp_ID number in the range 00000-99999.
- U (number of potential keys) $=100,000$
$-\mathrm{n}($ space allocated $)=$?
- Hopefully not much bigger than m
- Maybe 200 or 300
- By the Pigeonhole Principle(PHP) multiple potential keys are mapped to the same slot, which introduces the possibility of collisions.

Clicker question

- Consider n people with random birthdays (i.e., with each day of the year equally likely). How large does n need to be before there is at least a 50% chance that two people have the same birthday.
A: 23
B: 57
C: 184
D: 367
E: None of the above

Clicker question (Birthday Paradox)

- Consider n people with random birthdays. How large does n need to be before there is at least a 50% chance that two people have the same birthday.
A: $23 \rightarrow 50 \%$
B: $57 \rightarrow 99 \%$
C: 184
D: $367 \rightarrow 100 \%$
E: None of the above
- Corollary: Even if we randomly hash only $\sqrt{2 m}$ keys into m slots, we get a collision with probability $>\mathbf{0 . 5}$.

Collision Resolution

- What do we do when two keys hash to the same entry?
- chaining: put little dictionaries in each entry
shove extra pigeons in one hole!
- open addressing: pick a next entry to try

Hashing with Chaining

- Put a little dictionary at each entry
- choose type as appropriate
- common case is unordered move-to-front linked list (chain)
- Properties
$-\lambda$ can be greater than 1
- performance degrades with length of chains

load factor $\lambda=\frac{\# \text { of entries in table }}{\text { tableSize }}$

In-class exercise

Example: Suppose $h(x)=\lfloor x / 10\rfloor \bmod 5$
Hash: 12540, 51288, 90100, 41233, 54991, 45329, 14236

Example: find node with key 14236

Deleting when using chaining

Example: Suppose $h(x)=\lfloor x / 10\rfloor \bmod 5$
Hash: 12540, 51288, 41233, 54991, 14236

- Delete 41233
- Remove 41233 from the linked list

Load Factor in Chaining

- Search cost
- unsuccessful search:
- On average λ
- successful search:
- On average $\sim \lambda / 2+1$ (what the book says)
- More precisely
- Desired load factor:

$$
1+\frac{n-1}{2 m}=1+\frac{\lambda}{2}-\left.\frac{\lambda}{2 n}\right|_{\substack{(n-1) / m \\ \text { in this slot }}}
$$

- between $1 / 2$ and 1.

$$
\text { load factor } \lambda=\frac{\# \text { of entries in table }}{\text { tableSize }}
$$

Pros and cons of chaining

Advantages of Chaining:

- The size s of the hash table can be smaller than the number of items n hashed. Why is this often a good thing?
- Fewer blank/wasted cells (especially in the case where the number of cells greatly exceeds the number of keys).
- Collision handling can be $\mathrm{O}(1)$.
- Can accommodate overflows

Disadvantages of Chaining:

- Search time can become $O(n)$ due to long chains.

Open Addressing

What if we only allow one Key at each entry?

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot
- Properties
$-\lambda \leq 1$

$$
\text { load factor } \lambda=\frac{\# \text { of entries in table }}{\text { tableSize }}
$$

- performance degrades with difficulty of finding right spot

Probing

- Probing how to:
- given a key k, hash to $h(k)$
- if $h(k)$ is occupied, try $h(k)+f(1)$
- If $h(k)+f(1)$ is occupied, try $h(k)+f(2)$
- And so forth
- Probing properties
- the $i^{\text {th }}$ probe is to $(h(k)+f(i))$ mod size where $f(0)=0$
- if i reaches size, the insert has failed
- depending on $f()$, the insert may fail sooner
- long sequences of probes are costly!

Linear Probing, $\mathrm{f}(\mathrm{i})=\mathrm{i}$

- Probe sequence is
$-h(k) \bmod$ size
$-h(k)+1 \bmod$ size
$-h(k)+2 \bmod$ size
- ...

Hash-Insert (T, k)
$1 \quad i=0$
2 repeat
$3 \quad j=h(k, i)$
4 if $T[j]==$ NIL
$5 \quad T[j]=k$
return j
else $i=i+1$
8 until $i==m$
9 error "hash table overflow"

HASH-SEARCH (T, k)
$1 \quad i=0$
2 repeat

$$
\begin{aligned}
& j=h(k, i) \\
& \text { if } T[j]==k
\end{aligned}
$$ return j

$i=i+1$
until $T[j]==$ NIL or $i==m$
return NIL

Clicker Question

- Using the hash function $h(x)=\mathrm{x} \% 7$ insert the following values using linear probing: 76, 93, 40, 47, 10, 55
- In what index would would 55 be stored?

A: 6

- B: 0

C: 1
D: 2
E: None of the above

Clicker Question (answer)

- Using the hash function $h(x)=\mathrm{x} \% 7$ insert the following values using linear probing: 76, 93, 40, 47, 10, 55
insert(76) insert(93) insert(40) insert(47) insert(10) insert(55) $76 \% 7=6 \quad 93 \% 7=2 \quad 40 \% 7=5 \quad 47 \% 7=5 \quad 10 \% 7=3 \quad 55 \% 7=6$

probes: 1

1

1

3

0	47
1	
2	93
3	10
4	
5	40
6	76

1

3

Load Factor in Linear Probing

$$
\text { load factor } \lambda=\frac{\# \text { of entries in table }}{\text { tableSize }}
$$

- For any $\lambda<1$, linear probing will find an empty slot
- Search cost (for large table sizes)
- successful search:

$\lambda=0.25$	$\lambda=0.5$	$\lambda=0.75$	$\lambda=0.9$
1.17	1.5	2.5	5.5

- unsuccessful search:
- How performance degrades as λ gets bigger $\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)$

	$\lambda=0.25$	$\lambda=0.5$	$\lambda=0.75$	$\lambda=0.9$
Avg \# slots searched	1.4	2.5	8.5	50.5

Load Factor in Linear Probing

$$
\text { load factor } \lambda=\frac{\# \text { of entries in table }}{\text { tableSize }}
$$

- For any $\lambda<1$, linear probing will find an empty slot
- Search cost (for large table sizes)
- successful search:
- unsuccessful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)
$$

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

Values hashed close to each other probe the same slots.

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda>1 / 2$

Quadratic Probing, $f(i)=i^{2}$

- Probe sequence is
$-h(k) \bmod$ size
$-(\mathrm{h}(\mathrm{k})+1) \bmod$ size
$-(\mathrm{h}(\mathrm{k})+4) \bmod$ size
$-(\mathrm{h}(\mathrm{k})+9) \bmod$ size
- ...

Clicker Question

- Using the hash function $h(x)=\mathrm{x} \% 7$ insert the following values using quadratic probing: 76, 40, 48, 5, 55
- In what index would would 55 be stored?
- A: 6
- B: 0
- C: 1
- D: 3
- E: None of the above

Quadratic Probing Example ©

- Using the hash function $h(x)=\mathrm{x} \% 7$ insert the following values using quadratic probing: 76, 40, 48, 5, 55

probes: 1

Clicker Question

- Using the hash function $h(x)=\mathrm{x} \% 7$ insert the following values using quadratic probing: 76, 93, 40, 35, 47
- In what index would would 47 be stored?
- A: 6
- B: 0
- C: 1
- D: 3
- E: None of the above

Quadratic Probing Example :

- Using the hash function $h(x)=\mathrm{x} \% 7$ insert the following values using quadratic probing: $76,93,40,35,47$

Quadratic Probing Succeeds (for $\lambda \leq 1 / 2$)

- Claim: If size is prime, the first size/2 probes are distinct
- Proof : omitted
- Result: If size is prime and $\lambda \leq 1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer
- Quadratic probing does not suffer from primary clustering
- Quadratic probing does suffer from secondary clustering
- How could we possibly solve this?

Values hashed to the SAME index probe the same slots.

CPSC 259 Administrative Notes

- Lab 5 take-home due Sun Dec 6
- Feel free to drop by the second hour of other lab sections to get help.
- Connect quiz and textbook exercises on Hashing are now available
- Concept Inventory
- A study to help us understand some of the misconceptions students have in learning C
- Helps you practice for the final AND earn bonus (0.5% course grade)
- Stay tuned! There will be a note on Piazza, which will be emailed out to everyone

Office Hours

- We'll be holding additional extra office hours starting this Thursday. Stay tuned and check the course calendar.
- Thursday, 12pm-1pm
- Thursday, 3:30pm-4:30on
- Friday, 1:00pm-2:00pm
- Monday, 2:00pm-4:00pm
- Tuesday, 10:00am-12pm
- Tuesday, $4: 00 \mathrm{pm}-6: 00 \mathrm{pm}$
- Wednesday 12:00pm-1:00pm

Jonathan ICCS 008
Michael ICCS X237
Hassan ICCS 241
Hassan
Sean
Sean
Michael

ICCS 241
ICCS X237
ICCS X237
ICCS X237

Double Hashing, $\mathrm{f}(\mathrm{i})=\mathrm{i} \cdot \operatorname{hash} 2(\mathrm{x})$

- Probe sequence is
$-\mathrm{h}_{1}(\mathrm{k}) \bmod$ size
$-\left(h_{1}(\mathrm{k})+1 \cdot \mathrm{~h}_{2}(\mathrm{x})\right) \bmod$ size
$-\left(\mathrm{h}_{1}(\mathrm{k})+2 \cdot \mathrm{~h}_{2}(\mathrm{x})\right)$ mod size
- ...

A Good Double Hash Function...

- is quick to evaluate.
- differs from the original hash function.
- never evaluates to 0 (mod size).
- One good choice is to choose a prime $\mathrm{R}<$ size
$-\operatorname{hash}_{2}(x)=R-(x \bmod R)$

Clicker Question

- Using the hash functions $h_{l}(x)=\mathrm{x} \% 7$ and $h_{2}(x)=5-(x \% 5)$ insert the following values using double hashing 76, 93, 40, 47, 10, 55
- In what index would would 55 be stored?
- A: 6
- B: 0
- C: 1
- D: 3
- E: None of the above

Double Hashing Example

- Using the hash functions $h_{l}(x)=\mathrm{x} \% 7$ and $h_{2}(x)=5-(x \% 5)$ insert the following values using double hashing 76, 93, 40, 47, 10, 55
insert(76) insert(93) insert(40) insert(47) insert(10) insert(55) $76 \% 7=6 \quad 93 \% 7=2 \quad 40 \% 7=5 \quad 47 \% 7=5 \quad 10 \% 7=3 \quad 55 \% 7=6$ $5-(47 \% 5)=3 \quad 5-(55 \% 5)=5$

Clicker question

The primary hash function is: $\mathbf{h}_{\mathbf{1}}(\mathbf{k})=(2 k+5) \bmod 11$. The secondary hash function is: $\mathbf{h}_{\mathbf{2}}(\mathbf{k})=\mathbf{7}-(\mathbf{k} \bmod 7)$

Hash these keys, in this order: 12, 44, 13, 88, 23, 94, 11. Which cell in the array does key 11 hash to?
A. 0
B. 2
C. 3
D. 4
E. 10

0
1
2
3
4
5
6
7
8
9
1
0

Clicker question (answer)

 $h_{1}(k)=(2 k+5) \bmod 11 . \quad h_{2}(k)=7-(k \bmod 7)$$12,44,13,88,23,94,11$. Which cell in the array does key 11 hash to?

$$
\begin{aligned}
& h(12)=(2(12)+5) \% 11=7 \\
& h(44)=(2(44)+5) \% 11=5
\end{aligned}
$$

A. 0

$$
h(13)=(2(13)+5) \% 11=9
$$

B. 2

$$
h(88)=(2(88)+5) \% 11=5+7-88 \% 7=8
$$

C. 3
D. 4 $h(23)=(2(23)+5) \% 11=7+7-23 \% 7=12$
E. $10 h(94)=(2(94)+5) \% 11=6$

$$
h(11)=(2(11)+5) \% 11=5+2(7-11 \% 7)=11^{9}
$$

0	11
1	23
2	
3	
4	
5	44
6	94
7	12
8	88
9	13
1	
0	

Load Factor in Double Hashing

- For any $\lambda<1$, double hashing will find an empty slot (given appropriate table size and hash ${ }_{2}$)
- Search cost appears to approach optimal (random hash):
- successful search: $\quad \frac{1}{\lambda} \ln \frac{1}{1-\lambda}$
- unsuccessful search: $\frac{1}{1-\lambda}$

	$\lambda=0.25$	$\lambda=0.5$	$\lambda=0.75$	$\lambda=0.9$
Avg \# slots searched	1.5	1.4	1.8	2.6

- No primary clustering and no secondary clustering
- One extra hash calculation

	$\lambda=0.25$	$\lambda=0.5$	$\lambda=0.75$	$\lambda=0.9$
Avg \# slots searched	1.3	2	4	10

Deleting when using probing

Example:

- Suppose locations [97] to [101] are occupied in our hash table:

- Suppose a new key hashes to [97]. Assuming a linear collision resolution policy, the key goes to 102.
- Later, suppose we delete the key that was hashed to [98].
- Add a tombstone (i.e., flag, marker) for 2 reasons:

1. If searching, keep going when you hit a tombstone.
2. If inserting, stop and add the item here.

This means that table entries can be occupied, deleted, or free

The Squished Pigeon Principle

- An insert using open addressing cannot work with a load factor of 1 or more.
- An insert using open addressing with quadratic probing may not work with a load factor of $1 / 2$ or more.
- Whether you use chaining or open addressing, large load factors lead to poor performance!
- How can we relieve the pressure on the pigeons?

Hint: think resizable arrays!

Rehashing

- When the load factor gets "too large" (over a constant threshold on λ), rehash all the elements into a new, larger table:
- takes $\mathrm{O}(\mathrm{n})$, but amortized $\mathrm{O}(1)$ as long as we (just about) double table size on the resize
- spreads keys back out, may drastically improve performance
- gives us a chance to retune parameterized hash functions
- avoids failure for open addressing techniques
- allows arbitrarily large tables starting from a small table
- clears out lazily deleted items

Application: The 2-Sum Problem

- Given: Unsorted array of integers A, and a target sum t
- Goal: Determine whether or not there are two numbers x and y in A such that $x+y=t$
- Naïve solution: $O\left(n^{2}\right)$ exhaustive search
- Better solution:
- Sort A $O(n \lg n)$
- For each x in A look for $\mathrm{t}-\mathrm{x} O(n \lg n)$
- Amazing solution:
- Insert elements of A into hash table $\mathrm{H} O(n)$
- For each x in A, lookup t-x in H $O(n)$

Application: De-Duplication

- Given a "stream" of objects
- Linear scan through a huge file
- Objects arriving in real time
- Goal: Remove duplicates (keep track of unique objects)
- Report unique visitors to a web site
- Avoid duplicates in search results
- Solution: When new object x arrives, look up $\mathrm{h}(\mathrm{x})$ and if not found insert.

The Pigeonhole Principle (Full Glory)

- Let X and Y be finite sets with $|\mathrm{X}|=n,|\mathrm{Y}|=m$, and $k=\lceil n / m\rceil$.

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, then $\exists k$ values $x_{1}, x_{2}, \ldots, x_{k} \in \mathrm{X}$ such that $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)=\ldots \mathrm{f}\left(x_{k}\right)$.

Informally: If n pigeons fly into m holes, at least 1 hole contains at least $k=\lceil n / m\rceil$ pigeons.

Pathological Data Sets

- For good hash performance, we need a good hash function
- Spreads data evenly across buckets
- Ideal: Use super-clever hash function guaranteed to spread every data set out evenly
- Problem: Such a hash function does not exist
- For every hash function, there is a pathological data set

Pathological Data Sets

- Reason
- Fix a hash function h
- Let U be the potential number of keys
- Let m be the table size
- There exists an array cell i, such that at least U / m elements hash to i under h
- If data set drawn only from these elements, then everything collides.
- This data set could be quite large since $U \gg m$

Overview of Universal Hashing

- For every deterministic hash function, there is a pathological data set.
- Solution: Do not commit to a specific hash function
- Use randomization
- Design a family H of hash functions, such that for every data set S, most functions $h \in H$ spread S out "pretty evenly"

Review question from last year's midterm

What is printed to the console when magic(5) is called?

```
#define MAX_VAL 150
void magic(int n)
    if( n <= 0)
        return;
    if( n > MAX_VAL)
        return;
        printf("%d ",n);
        magic( 2*n);
        printf("%d ",n);
        return;
```

510204080804020105

Learning Goals revisited

After this unit, you should be able to:

- Define various forms of the pigeonhole principle; recognize and solve the specific types of counting and hashing problems to which they apply.
- Provide examples of the types of problems that can benefit from a hash data structure.
- Compare and contrast open addressing and chaining.
- Evaluate collision resolution policies.
- Describe the conditions under which hashing can degenerate from $O(1)$ expected complexity to $O(n)$.
- Identify the types of search problems that do not benefit from hashing (e.g. range searching) and explain why.
- Manipulate data in hash structures both irrespective of implementation and also within a given implementation.

