
CPSC 259 Sorting Page 1

CPSC 259: Data Structures and Algorithms for
Electrical Engineers

Sorting

 Textbook Reference:
Thareja first edition: Chapter 14: Pages 586-606

Thareja second edition: Chapter 14: Pages 424-456

Hassan Khosravi

CPSC 259 Sorting Page 2

Learning Goals
•  Describe and apply various sorting algorithms:

•  Insertion Sort, Selection Sort, Mergesort , Quicksort, Bubble
Sort, and Heapsort

•  Compare and contrast the tradeoffs of these algorithms.
•  State differences in performance for large files versus

small files on various sorting algorithms.
•  Analyze the complexity of these sorting algorithms.
•  Manipulate data using various sorting algorithms

(irrespective of any implementation).

CPSC 259 Sorting Page 3

Algorithms

Sorting Algorithms
Insertion, Selection, bubble

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic Analysis

CPSC 259 Journey

Recursion

Dictionary

Binary Search
Tree

Pointers	

Dynamic	Memory	Alloca2on	
	

Priority Queue

Binary Heap Divide and Conquer paradigm
(Mergesort and Quicksort)

Heapsort

CPSC 259 Sorting Page 4

•  Computational complexity
•  Average case behaviour: Why do we care?
•  Worst/best case behaviour: Why do we care?

•  Memory Usage: How much extra memory is used?

•  Stability: Stable sorting algorithms maintain the
relative order of records with equal keys.

Categorizing Sorting Algorithms

CPSC 259 Sorting Page 5

Categorizing Sorting Algorithms

Source:	Wikipedia	

•  Stability: Stable sorting
algorithms maintain the
relative order of records with
equal keys.

CPSC 259 Sorting Page 6

Stability example
•  Stable sorting algorithms maintain the relative order of

records with equal keys.

Tyrion	Lannister	

Cersei	Lannister	

Daenerys	Targaryen	

Jaime	Lannister	

Sort	by	l	name	

Break	2es	with	f	name	

		

Cersei	Lannister	

Jaime	Lannister	

Tyrion	Lannister	

Daenerys	Targaryen	

Tyrion	Lannister	

Cersei	Lannister	

Daenerys	Targaryen	

Jaime	Lannister	

Sort	by	f	name	first	
Cersei	Lannister	

Jaime	Lannister	

Tyrion	Lannister	

Daenerys	Targaryen	

Cersei	Lannister	

Daenerys	Targaryen	

Jaime	Lannister	

Tyrion	Lannister	

Sort		using	a	stable	sort	

CPSC 259 Sorting Page 7

Selection Sort
•  Sorts an array by repeatedly finding the smallest

element of the unsorted tail region and moving it
to the front.

CPSC 259 Sorting Page 8

•  Find the smallest and swap it with the first element

•  Find the next smallest. It is already in the correct place

•  Find the next smallest and swap it with first element of unsorted

portion

•  Repeat

•  When the unsorted portion is of length 1, we are done

5		 9		 17		 11		 12		

5		 9		 17		 11		 12		

5		 9		 11		 17		 12		

5		 9		 11		 12		 17		

5		 9		 11		 12		 17		

Selection Sort

CPSC 259 Sorting Page 9

Selection Sort
/* !
 Purpose: Find the position of the minimum value !
 in part of an array !
 Param: data - integer array to be sorted !
 from - starting index !
 to - ending index !
 returns - index of minimum value between from and to !
 */!
!
int min_position(int data[], int from, int to) !
{ !
 int min_pos = from; !
 int i; !
 for (i = from + 1; i <= to; i++) !
 if (data[i] < data[min_pos]) !
 min_pos = i; !
 return min_pos; !
}	

CPSC 259 Sorting Page 10

Selection Sort
/* !
 Purpose: sorts elements of an array of integers using !
 selection sort !
 Param: data - integer array to be sorted !
 size - size of the array !
 */!
!
void selection_sort(int data[], int size) !
{ !
 int next; // The next position to be set to minimum!
 for (next = 0; next < size - 1; next++) !
 { !
 int min_pos = min_position(data, next, size-1); !
 if (min_pos != next) !
 swap(&data[min_pos], &data[next]); !
 } !
}	

CPSC 259 Sorting Page 11

In-Class Exercise
•  Write out all the steps that selection sort takes to

sort the following sequence:

91 5 11 90 6 16 31 88

CPSC 259 Sorting Page 12

In-Class Exercise
•  Write out all of the steps that selection sort takes to

sort the following sequence:

91 5 11 90 6 16 31 88

5 91 11 90 6 16 31 88

5 6 11 90 91 16 31 88

5 6 11 90 91 16 31 88

5 6 11 16 91 90 31 88

5 6 11 16 31 90 91 88

5 6 11 16 31 88 91 90

5 6 11 16 31 88 90 91

CPSC 259 Sorting Page 13

Clicker Question
•  What is the time complexity of selection sort in the best

and worst case.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 14

Clicker Question (answer)
•  What is the time complexity of selection sort in the best

and worst case.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 15

Clicker Question
•  Is selection sort stable?
•  A: Yes
•  B: No
•  C: I don’t know

CPSC 259 Sorting Page 16

Clicker Question
•  Is selection sort stable?
•  A: Yes
•  B: No, but it is possible to make selection sort stable
•  C: I don’t know

90 5 11 90 6 16 2 88

2 5 11 90 6 16 90 88

CPSC 259 Sorting Page 17

When is the Selection Sort algorithm used?
•  One advantage of selection sort is that it requires only O(n)

write operations. If we have a system where write
operations are extremely expensive and read operations are
not, then selection sort could be ideal. One such scenario
would be if we are sorting a file in-place on flash memory
or an external hard drive.

Name	 Best	 Average	 Worst	 Stable	 Memory	
Selec2on	Sort	 O(n2)	 O(n2)	 O(n2)	 challenging	 O(1)	

CPSC 259 Sorting Page 18

Insertion Sort
•  Given a list, take the current element and insert it at the

appropriate position of the list, adjusting the list every
time you insert

CPSC 259 Sorting Page 19

Insertion Sort
•  while some elements unsorted:

–  Using linear search, find the location in the sorted portion where the
1st element of the unsorted portion should be inserted

–  Move all the elements after the insertion location up one position to
make space for the new element

13 21 45 79 47 22 38 74 36 66 94 29 57 81 60 16

45

66 60 45

the fourth iteration of this loop is shown here

CPSC 259 Sorting Page 20

In-class exercise
l  Write out all of the steps that insertion sort takes to sort

the following sequence:
29 10 14 37 13

CPSC 259 Sorting Page 21

Insertion Sort
/* !
 Purpose: sorts elements of an array of integers using
insertion sort !
 !
 Param: data - integer array to be sorted !
 length - size of the array !
 */!
!
void insertion_sort(int data[], int length){ !
 for (int i = 1; i < length; i++){ !
 int val = data [i]; !
 int newIndex = bSearch(data, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 data [j] = data [j-1]; !
 !
 data [newIndex] = val; !
 }	
} !

CPSC 259 Sorting Page 22

Clicker question
•  What is the time complexity of Insertion Sort in the best

and worst case, assuming linear search is used.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 23

Clicker question (answer)

•  What is the time complexity of Insertion Sort in
the best and worst case, assuming linear search is
used.

• 
B: O(n), O(n2)
•  Best case

•  Worst case

•  Average case

a1 a2 a3 a4 a5

1= n ∈O(n)
i=1

n

∑

i = n(n+1) / 2 ∈O(n2)
i=1

n

∑

i / 2 = n(n+1) / 4∈O(n2)
i=1

n

∑

CPSC 259 Sorting Page 24

Clicker question
•  What is the time complexity of Insertion Sort in the best

and worst case, assuming binary search is used.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 25

Clicker question
•  What is the time complexity of Insertion Sort in the best

and worst case, assuming binary search is used.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 26

Clicker Question
•  Suppose we are sorting an array of ten integers using a

sorting algorithm. After four iterations of the algorithm's
main loop, the array elements are ordered as shown here:

 1 2 3 4 5 0 6 7 8 9

A. The algorithm might be either selection sort or insertion sort.
B. The algorithm might be selection sort, but could not be insertion sort.
C. The algorithm might be insertion sort, but could not be selection sort.
D. The algorithm is neither selection sort nor insertion sort.

CPSC 259 Sorting Page 27

Clicker Question (answer)
•  Suppose we are sorting an array of ten integers using a

sorting algorithm. After four iterations of the algorithm's
main loop, the array elements are ordered as shown here:

 1 2 3 4 5 0 6 7 8 9

A. The algorithm might be either selection sort or insertion sort.
B. The algorithm might be selection sort, but could not be insertion sort.
C. The algorithm might be insertion sort, but could not be selection sort.
D. The algorithm is neither selection sort nor insertion sort.

CPSC 259 Sorting Page 28

Selection Sort vs. Insertion Sort

Source	

CPSC 259 Sorting Page 29

When is the Insertion Sort algorithm used?
•  Insertion Sort is the algorithm of choice either when the

data is nearly sorted (because it is adaptive) or when the
problem size is small (because it has low overhead).

Name	 Best	 Average	 Worst	 Stable	 Memory	
Selec2on	Sort	 O(n2)	 O(n2)	 O(n2)	 challenging	 O(1)	
Inser2on	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	

CPSC 259 Sorting Page 30

Mergesort
•  Mergesort is an example of a divide-and-conquer

algorithm that recursively splits the problem into
branches, and later combines them to form the solution.

•  Key Steps in Mergesort:

1. Split the array into two halves.

2. Recursively sort each half.

3. Merge the two (sorted) halves together to produce a bigger,
sorted array.

•  Note: The time to merge two sorted sub-arrays of sizes m
and n is linear: O(m + n).

CPSC 259 Sorting Page 31

Mergesort

CPSC 259 Sorting Page 32

MergeSort
void msort(int x[], int lo, int hi, int tmp[]) { !
 if (lo >= hi) return; !
 int mid = (lo+hi)/2; !
 msort(x, lo, mid, tmp); !
 msort(x, mid+1, hi, tmp); !
 merge(x, lo, mid, hi, tmp); !
} !
!
void mergeSort(int x[], int n) { !
 /* temp. space */!
 int * tmp = (int *) malloc(n * sizeof(int)); !
!
 msort(x, 0, n-1, tmp); !
 free(tmp); !
} !

CPSC 259 Sorting Page 33

Merging two sorted arrays
•  Divide an array in half and sort each half

•  Merge the two sorted arrays into a single sorted array

CPSC 259 Sorting Page 34

Merge by Jon Bentley
/* !
 Purpose: Merges two adjacent ranges in an array !
 !
 param x - the array with the elements to merge !
 low - the start of the first range !
 mid - the end of the first range !
 hi - end of the second range !
 tmp[]- temp memory used for sorting !
 */!
void merge(int x[], int lo, int mid, int hi, int tmp[]) { !
 int a = lo, b = mid+1, k; !
 for(k = lo; k <= hi; k++) !
 if(a <= mid && (b > hi || x[a] < x[b])) !
 tmp[k] = x[a++]; /* store x[a] then a++ */!
 else!
 tmp[k] = x[b++]; /* store x[b] then b++ */ !
 for(k = lo; k <= hi; k++) !
 x[k] = tmp[k]; !
}	

Elegant & brilliant…
 but not how I’d write it.

CPSC 259 Sorting Page 35

3 -4 7 5 9 6 2 1

In-class exercise
•  Write out all the steps that MergeSort takes to sort the

following sequence:

CPSC 259 Sorting Page 36

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

3 -4 7 5 9 6 2 1

-4 3 5 7 6 9 1 2

-4 3 5 7 1 2 6 9

-4 1 2 3 5 6 7 9

In-class exercise
l  Write out all the steps that Mergesort takes to sort the

following sequence:

*

**

CPSC 259 Sorting Page 37

3 -4 7 5 9 6 2 1

-4 3

-4 3 7 5 9 6 2 1

x:

tmp:

x:

merge(x, 0, 0, 1, tmp);/* step * in previous slide*/!

-4 3 5 7 6 9 1 2

-4 3 5 7 1 2 6 9

x:

tmp:

x:

1 2 6 9

merge(x, 4, 5, 7, tmp); /* step ** in previous slide*/!

merge(x, 0, 3, 7, tmp); /* the final step */!

CPSC 259 Sorting Page 38

Clicker question
•  Mergesort makes two recursive calls. Which statement is

true after these recursive calls finish, but before the merge
step?
A. The array elements form a heap.
B. Elements in each half of the array are sorted amongst
themselves.
C. Elements in the first half of the array are less than or equal to
elements in the second half of the array.
D. None of the above

CPSC 259 Sorting Page 39

Clicker question
•  Mergesort makes two recursive calls. Which statement is

true after these recursive calls finish, but before the merge
step?
A. The array elements form a heap.
B. Elements in each half of the array are sorted amongst
themselves.
C. Elements in the first half of the array are less than or equal to
elements in the second half of the array.
D. None of the above

CPSC 259 Sorting Page 40

Clicker Question
•  Is Mergesort stable?
•  A: Yes
•  B: No
•  C: I don’t know

CPSC 259 Sorting Page 41

Clicker Question
•  Is Mergesort stable?
•  A: Yes
•  B: No
•  C: I don’t know

prefer the “left” of the two sorted sublists on ties

CPSC 259 Sorting Page 42

Analyzing the Mergesort Algorithm

dept
h	

#	instances	 Size	of	
instances	

#	read/write	operaAons	

0 1 n n à n
1 2 n/2 2 * n/2 à n
2 4 n/4 4 * n/4 àn
… … ...
k 2 k n/2 k 2 k * n/2 k à n
… … …
lg n 2 lg n à n n/2 lg n à 1 2lg n *1 à n

O(n)	opera2ons	at	each	level	
We	have	lg	n	levels	therefore,		
O(n	lg	n)	
	

CPSC 259 Sorting Page 43

Analyzing the Mergesort Algorithm

•  Analysis
 T(n)<= 2T(n/2) + cn
 <= 2(2T(n/4) + c(n/2)) + cn (substitution)
 = 4T(n/4) + cn + cn

 <= 4(2T(n/8) + c(n/4)) + cn + cn (substitution)
 = 8T(n/8) + cn + cn + cn

 <= 2kT(n/2k) + kcn (extrapolating 1 < k ≤ n)

T(1) <= b if n <= 1
T(n) <= 2T(n/2) + cn if n > 1	

CPSC 259 Sorting Page 44

Analyzing the Mergesort Algorithm

•  To make the analysis easier, let’s say we want to analyze
the algorithm for n=2m . Since n can still be arbitrary large,
there is no loss of generality.

 T(n)<= 2mT(n/2m) + mcn (extrapolating for m)
 <= nT(1) + cn lg n (for 2m = n or m = lg n)

•  T(n) ∈ O(n lg n)

T(1) <= b if n <= 1
T(n) <= 2T(n/2) + cn if n > 1	

CPSC 259 Sorting Page 45

When is the Mergesort algorithm used?
•  External sorting is a term for a class of sorting algorithms

that can handle massive amounts of data. External sorting
is required when the data being sorted do not fit into the
main memory of a computing device (usually RAM) and
instead they must reside in the slower external memory
(usually a hard drive). Mergesort is suitable for external
sorting.

•  Mergesort is also highly parallelizable
Name	 Best	 Average	 Worst	 Stability	 Memory	

Selec2on	Sort	 O(n2)	 O(n2)	 O(n2)	 challenging	 O(1)	
Inser2on	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	
Mergesort	 O(n	lg	n)	 O(n	lg	n)	 O(n	lg	n)	 Yes	 O(n)	

CPSC 259 Sorting Page 46

Quicksort
•  In practice, one of the fastest sorting algorithms is

Quicksort, developed in 1961 by Hoare.
•  Comparison-based: examines elements by

comparing them to other elements
•  Divide-and-conquer: divides into “halves” (that

may be very unequal) and recursively sorts

CPSC 259 Sorting Page 47

Quicksort algorithm
•  Pick a pivot
•  Reorder the list such that all elements < pivot are

on the left, while all elements >= pivot are on the
right

•  Recursively sort each side

Are we missing a base case?

CPSC 259 Sorting Page 48

Partitioning

•  The act of splitting up an array according to the pivot is
called partitioning

•  Consider the following:

•  This algorithm will terminate -- each iteration places at
least one element, the pivot, in its final spot

•  Two cool facts about partitioning
–  Runs in linear time with no extra memory
–  Reduces problem size beautifully

-4 1 -3 2 3 5 4 7

left partition right partition
pivot

48

CPSC 259 Sorting Page 49

Quicksort example
•  http://visualgo.net/sorting.html

–  Initialize array with
•  25, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48

CPSC 259 Sorting Page 50

qSort code
/* !
 Purpose: sorts elements of an array of integers using Quicksort !
 !
 Param: a - integer array to be sorted !
 lo - the start of the sequence to be sorted. !
 hi - the end of the sequence to be sorted. !
 */!
!
void qSort(int a[], int lo, int hi){ !
 int pivotElement; !
 !
 if(lo < hi){ !
 pivotElement = pivot(a, lo, hi); !
 qSort(a, lo, pivotElement-1); !
 qSort(a, pivotElement+1, hi); !
 } !
}	

CPSC 259 Sorting Page 51

QuickSort Visually

P	

P	 P	P	

P	 P	 P	 P	

Sorted!	

CPSC 259 Sorting Page 52

Partitioning example

CPSC 259 Sorting Page 53

Partitioning
/* !
 Purpose: find and return the index of pivot element such that all items !
 left of partition are smaller and right of partition are bigger !
 !
 Param: x - integer array to be sorted !
 lo - the start of the sequence to be sorted. !
 hi - the end of the sequence to be sorted. !
*/ !
int pivot(int* x, int lo, int hi){ !
 int j; !
 int i = lo; !
 int pivotElement = x[lo]; !
 for(j = lo+1 ; j <= hi ; j++){ !
 if(x[j] <= pivotElement){ !
 i++; !
 swap(&x[j], &x[i]); !
 } !
 } !
 swap(&x[i], &x[lo]); !
 return i; !
}	

CPSC 259 Sorting Page 54

In-class example
•  Use QuickSort with the left most array entry selected as

the pivot element to sort the following elements. Show all
steps.

33	 64	 65	 75	 25	 66	 94	 7	 10	 57	
10	 25	 7	 33	 64	 66	 94	 65	 75	 57	

7	 10	 25	 33	 57	 64	 66	 65	 75	 94	
7	 10	 25	 33	 57	 64	 94	 65	 75	 66	

7	 10	 25	 33	 57	 64	 65	 66	 75	 94	

7	 10	 25	 33	 64	 66	 94	 65	 75	 57	

CPSC 259 Sorting Page 55

QuickSort practice question

2 -4 6 1 5 -3 3 7

CPSC 259 Sorting Page 56

Clicker question
•  Here is an array which has just been partitioned by the first

step of Quicksort:
 3, 0, 2, 4, 5, 8, 7, 6, 9
Which of these elements could be the pivot?

•  a. 3
•  b. 4
•  c. 5
•  d. 6
•  e. (b) or (c)

CPSC 259 Sorting Page 57

Clicker question (answer)
•  Here is an array which has just been partitioned by the first

step of Quicksort:
 3, 0, 2, 4, 5, 8, 7, 6, 9
Which of these elements could be the pivot?

•  a. 3
•  b. 4
•  c. 5
•  d. 6
•  e. (b) or (c)

CPSC 259 Sorting Page 58

Worst-case Running Time
•  The worst case for quick-sort occurs when the pivot is the

unique minimum or maximum element
•  One of L and R has size n - 1 and the other has size 0
•  The running time is proportional to the sum

n + (n - 1) + … + 2 + 1

Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

€

n + (n −1)+L + 2+1=
n(n +1)
2

=
n2

2
+
n
2

...	

CPSC 259 Sorting Page 59

Best-case Running Time
•  The best case for quick-sort occurs when the pivot is the middle

element
•  Both of L and G have size n/2

–  The height of the quick-sort tree is O(lg n)
–  The amount or work done at the nodes of the same depth is O(n)

– The running time is O(n lg n)

depth time

0 n

1 n/2

… …

Log(n) 1

CPSC 259 Sorting Page 60

MergeSort vs. QuickSort
•  QuickSort in practice tends to run faster than MergeSort,

but its worst-case complexity is O(n2).
•  That worst-case behaviour can usually be avoided by

using more clever ways of finding the pivot (not just
using the first element).
–  Randomized algorithms can be used to prove that the average

case for Quicksort is O(n lg n)

CPSC 259 Sorting Page 61

QuickSort: Average Case (Intuition)
•  Clearly pivot choice is important

–  It has a direct impact on the performance of the sort
–  Hence, Quicksort is fragile, or at least “attackable”

•  So how do we pick a good pivot?
–  Let’s assume that pivot choice is random
–  Half the time the pivot will be in the center half of the array. Thus

at worst the split will be n/4 and 3n/4

•  The depth of the tree with “good splits” will still O(lg n);
therefore running time will be O(n lg n).

CPSC 259 Sorting Page 62

Comparison of different sorting algorithms

•  Quicksort algorithm is one of the best sorting algorithms
and is widely used, and is also highly parallelizable.

•  Quicksort is usually done in place with O(lg n) stack
space.

Name	 Best	 Average	 Worst	 Stability	 Memory	

Selec2on	Sort	 O(n2)	 O(n2)	 O(n2)	 challenging	
	

O(1)	

Inser2on	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	
Mergesort	 O(n	lg	n)	 O(n	lg	n)	 O(n	lg	n)	 Yes	 O(n)	
Quicksort	 O(n	lg	n)	 O(n	lg	n)	 O(n2)	 Challenging	 O(lg	n)	

CPSC 259 Sorting Page 63

Bubble Sort
•  Bubble sort, works by repeatedly comparing each pair of

adjacent items and swapping them if they are in the
wrong order.

•  See http://visualgo.net/sorting.html for more examples

CPSC 259 Sorting Page 64

In-class exercise
Write out all the steps that bubble sort takes to sort the
following sequence: (5 1 4 2 8)
First Pass:
(5 1 4 2 8) à (1 5 4 2 8), Swap since 5 > 1
(1 5 4 2 8) à (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) à (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) à (1 4 2 5 8),
Second Pass:
(1 4 2 5 8) à (1 4 2 5 8)
(1 4 2 5 8) à (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) à (1 2 4 5 8)

Third Pass:
(1 2 4 5 8) à (1 2 4 5 8)
(1 2 4 5 8) à (1 2 4 5 8)

Fourth Pass: /* could be avoided */
(1 2 4 5 8) à (1 2 4 5 8)

CPSC 259 Sorting Page 65

Bubble Sort
•  Consider the following implementation for Bubble sort.
/* !
 Purpose: sorts elements of an array of integers using bubble sort !
 !
 Param: x - integer array to be sorted !
 n - size of the array !
 */!
void bubbleSort(int x[], int n){ !
 int i, j, flag = 1; // set flag to 1 to start first pass!
 for(i = 1; (i <= n) && flag; i++){ !
 flag = 0; !
 for (j=0; j < (n -1); j++){ !
 if (x[j+1] < x[j]) { !
 swap(&x[j], &x[j+1]); !
 flag = 1; // indicates that a swap occurred. !
 } !
 } !
 } !
 return; !
}	

CPSC 259 Sorting Page 66

Clicker question
•  What is the time complexity of Bubble Sort in the best and

worst case.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 67

Clicker question (answer)
•  What is the time complexity of Bubble Sort in the best and

worst case.
•  A: O(n2), O(n2)
•  B: O(n), O(n2)
•  C: O(n lg n), O(n lg n)
•  D: O(n lg n), O(n2)
•  E: O(n), O(n lg n)

CPSC 259 Sorting Page 68

Comparison of different sorting algorithms

Name	 Best	 Average	 Worst	 Stability	 Memory	

Selec2on	Sort	 O(n2)	 O(n2)	 O(n2)	 Challenging	 O(1)	
Inser2on	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	
Mergesort	 O(n	lg	n)	 O(n	lg	n)	 O(n	lg	n)	 Yes	 O(n)	
Quicksort	 O(n	lg	n)	 O(n	lg	n)	 O(n2)	 Challenging	 O(lg	n)	
Bubble	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	

•  Bubble sort is a simple algorithm that can be used
efficiently on a list of any length that is nearly sorted.

•  Rarely used in practice.

CPSC 259 Sorting Page 69

Heapsort (revisited)

3	2	13	12	

10	6	1	8	

4	9	

5	

9	 4	 8	 1	 6	 10	 12	 13	 2	 3	 14	 20	 7	5	

7	20	14	

CPSC 259 Sorting Page 70

Heapsort (revisited)

3	2	13	12	

10	6	1	8	

4	9	

5	

7	20	14	 1	2	8	9	

10	6	3	12	

14	13	

20	

7	5	4	

Build Heap

CPSC 259 Sorting Page 71

1	2	8	9	

10	6	3	12	

14	13	

20	

7	5	4	 1	2	8	9	

7	6	3	12	

10	13	

14	

5	4	 20	 1	2	8	5	

7	6	3	9	

10	12	

13	

4	 14	 20	

1	2	4	5	

7	6	3	8	

10	9	

12	

13	 14	 20	2	4	5	

1	6	3	8	

7	9	

10	

12	 13	 14	 20	4	2	

1	6	3	5	

7	8	

9	

10	 12	 13	 14	 20	

Heapsort (revisited)

CPSC 259 Sorting Page 72

72

How long does “build” take? Worst case: O(n) J
How long do the deletions take? Worst case: O(n lg n) J

4	2	

1	6	3	5	

7	8	

9	

10	 12	 13	 14	 20	

8	 7	 5	 3	 6	 1	 2	 4	 10	 12	 13	 14	 20	9	

PQ Result

Heapsort (revisited)

CPSC 259 Sorting Page 73

Heapsort (revisited)

9	 4	 8	 1	 6	 10	 12	 13	 2	 3	 14	 20	 7	5	

1 2 3 4 5 6 7 8 9 10 11 12 0 13

13	 14	 12	 3	 6	 10	 9	 8	 2	 1	 4	 5	 7	20	

PQ

Floyd’s	Algorithm	

Heapified Takes only O(n) time!

CPSC 259 Sorting Page 74

Heapsort (revisited)

1 2 3 4 5 6 7 8 9 10 11 12 0 13

13	 14	 12	 3	 6	 10	 9	 8	 2	 1	 4	 5	 7	20	

PQ
13	 10	 12	 3	 6	 7	 9	 8	 2	 1	 4	 5	 20	14	

PQ
12	 10	 9	 3	 6	 7	 5	 8	 2	 1	 4	 14	 20	13	

PQ
9	 10	 8	 3	 6	 7	 5	 4	 2	 1	 13	 14	 20	12	

PQ

CPSC 259 Sorting Page 75

Comparison of different sorting algorithms

Name	 Best	 Average	 Worst	 Stability	 Memory	

Selec2on	Sort	 O(n2)	 O(n2)	 O(n2)	 Challenging	 O(1)	
Inser2on	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	
Mergesort	 O(n	lg	n)	 O(n	lg	n)	 O(n	lg	n)	 Yes	 O(n)	
Quicksort	 O(n	lg	n)	 O(n	lg	n)	 O(n2)	 Challenging	 O(lg	n)	
Bubble	Sort	 O(n)	 O(n2)	 O(n2)	 Yes	 O(1)	
Heapsort	 O(n	lg	n)	 O(n	lg	n)	 O(n	lg	n)	 No	 O(1)	

•  Heapsort can be seen as an efficient version of selection
sort, which works by determining the largest (or smallest)
element of the list.

CPSC 259 Sorting Page 76

Average Case Running Time

•  How long would it take the insertion sort algorithm to
sort 800,000 values

A: 14 minutes B: 28 minutes C: 56 minutes D: other

~7	min	

CPSC 259 Sorting Page 77

Average Case Running Time

•  How long would it take the insertion sort algorithm to
sort 800,000 values

•  T(n) = n2 à T(2n) = 4n2 B: 28 minutes

~7	min	

CPSC 259 Sorting Page 78

Comparison of different sorting algorithms
•  Complexity

–  Best case: Insert, Bubble < Quick, Merge, Heap < Select
–  Average case: Quick, Merge, Heap < Insert, Select, Bubble
–  Worst case: Merge, Heap < Quick, Insert, Select, Bubble

•  Usually on “real” data: Quick < Merge < Heap < I/S/B
•  On very short lists: quadratic sorts may have an

advantage (so, some quick/merge implementations
“bottom out” to these as base cases)

CPSC 259 Sorting Page 79

Comparison of different sorting algorithms
•  Stability

–  Easily Made Stable: Insert, Merge, Bubble
–  Challenging to Make Stable: Select, Quick
–  Unstable: Heap

•  Memory use:

–  Insert, Select, Heap, Bubble < Quick < Merge

CPSC 259 Sorting Page 80

Learning Goals revisited
•  Describe and apply various sorting algorithms:

•  Insertion Sort, Selection Sort, Mergesort, Quicksort, Bubble
Sort, and Heapsort

•  Compare and contrast the tradeoffs of these algorithms.
•  State differences in performance for large files versus

small files on various sorting algorithms.
•  Analyze the complexity of these sorting algorithms.
•  Manipulate data using various sorting algorithms

(irrespective of any implementation).

