
CPSC 259 Pointers Page 1

CPSC 259: Data Structures and Algorithms
for Electrical Engineers

APSC 160 Review

Hassan Khosravi
Borrowing many questions from Ed Knorr

CPSC 259 Pointers Page 2

Learning Goal

•  Briefly review some key programming concepts from
APSC 160: functions, modularity, arrays

CPSC 259 Pointers Page 3

Review: Programming Languages

CPSC 259 Pointers Page 4

Question variable swap
Suppose that var1 and var2 are variables of type int.
Which of the following code segments swaps the value of
these two variables?

(a) int temp = var1;
 var1 = var2;
 var2 = temp;

(b) int temp = var1;
 var2 = var1;
 var1 = temp;

(c) var1 = var2;
 var2 = var1;

(d)  int temp1 = var1;
 int temp2 = var2;
 temp1 = temp2;
 var2 = var1;

CPSC 259 Pointers Page 5

Question variable swap (answer)
Suppose that var1 and var2 are variables of type int.
Which of the following code segments swaps the value of
these two variables?

(a) int temp = var1;
 var1 = var2;
 var2 = temp;

(b) int temp = var1;
 var2 = var1;
 var1 = temp;

(c) var1 = var2;
 var2 = var1;

(d)  int temp1 = var1;
 int temp2 = var2;
 temp1 = temp2;
 var2 = var1;

CPSC 259 Pointers Page 6

Question operator precedence
Assume that the following variable declarations have been
made:

 int a = 16;
 int b = 4;
 double c = 1.5;

What value is assigned to the variable d by the following
statement?

 double d = c + a * b;

(a) 65.0
(b)  65.5
(c)  65
(d)  66

CPSC 259 Pointers Page 7

Question operator precedence (answer)
Assume that the following variable declarations have been
made:

 int a = 16;
 int b = 4;
 double c = 1.5;

What value is assigned to the variable d by the following
statement?

 double d = c + a * b;

(a) 65.0
(b)  65.5
(c)  65
(d)  66

double d = 1.5 + (16 * 4);

CPSC 259 Pointers Page 8

Question variables and operators
Assume that the following variable declarations have been
made:

 int a = 16;
 int b = 4;
 double c = 1.5;

What value is assigned to the variable d by the following
statement?

 double d = b / a;

(a) 1
(b)  0
(c)  0.25
(d)  4

CPSC 259 Pointers Page 9

Question variables and operators (answer)
Assume that the following variable declarations have been made:

 int a = 16;
 int b = 4;
 double c = 1.5;

What value is assigned to the variable d by the following statement?

 double d = b / a;

(a) 1
(b)  0.0
(c)  0.25
(d)  4

CPSC 259 Pointers Page 10

Question Boolean logic
Suppose that variable “t” is a variable that has a value
which evaluates to true and “f” is a variable that has a
value which evaluates to false. Which one of the following
expressions evaluates to false?

((a) t && !f
(b) !t && f
(c) t || f
(d) !(t && f)
(e) t || (!f && !t)

CPSC 259 Pointers Page 11

Question Boolean logic (answer)
Suppose that variable “t” is a variable that has a value
which evaluates to true and “f” is a variable that has a
value which evaluates to false. Which one of the following
expressions evaluates to false?

((a) t && !f
(b) !t && f
(c) t || f
(d) !(t && f)
(e) t || (!f && !t)

Reminder:	
	 &&	 	 	 	 	 	 means	 	 “and”	
	 	 ||	 	 	 	 	 	 	 means	 “or”	
	 	 	 !	 	 	 	 	 	 	 	 	 means	 “not”	
	
!	 is	 evaluated	 before	 ||	 and	 &&	

CPSC 259 Pointers Page 12

Question poor indentation
Consider the following poorly indented code segment:
What are the values of a, b and r after this code segment
has executed?

(a) a	 =	 0	 ,	 	 b=	 6	 ,	 	 r	 =	 2	
(b) a	 =	 0	 ,	 	 b=	 6	 ,	 	 r	 =	 1	
(c) a	 =	 -‐5	 ,	 	 b=	 6	 ,	 	 r	 =	 undefined	
(d) a	 =	 -‐5	 ,	 	 b=	 6	 ,	 	 r	 =	 2	
(e) None	 of	 the	 above	

 int r; !
 int a = -5; !
 int b = 6; !
 if(a < 0 || b > 0) !
 r = 1; !
 else!
 r = 2; !
 a = 0;	

CPSC 259 Pointers Page 13

Question poor indentation

(a) a	 =	 0	 ,	 	 b=	 6	 ,	 	 r	 =	 2	
(b) a	 =	 0	 ,	 	 b=	 6	 ,	 	 r	 =	 1	
(c) a	 =	 -‐5	 ,	 	 b=	 6	 ,	 	 r	 =	 undefined	
(d) a	 =	 -‐5	 ,	 	 b=	 6	 ,	 	 r	 =	 2	
(e) None	 of	 the	 above	

 int r; !
 int a = -5; !
 int b = 6; !
 if(a < 0 || b > 0) !
 r = 1; !
 else!
 r = 2; !
 a = 0;	

Consider the following poorly indented code segment:
What are the values of a, b and r after this code segment
has executed?

CPSC 259 Pointers Page 14

Question looping
Consider the following code segment: What values do i and
j have after this code segment has executed?

(a) i	 =	 4	 ,	 j	 =	 5	 	
(b) i	 =	 5	 ,	 j	 =	 5	 	
(c) 	 	 i	 =	 4	 ,	 j	 =	 6	
(d) i	 =	 5	 ,	 j	 =	 6	
(e) None	 of	 the	 above	

 int i = 1; !
 int j = 0; !
 !
 while(i < 5 && j < 4){ !
 j = j + i; !
 i++; !
 } !
 printf("i = %d, j = %d", i,j); !
	

CPSC 259 Pointers Page 15

Question looping (answer)
Consider the following code segment: What values do i and
j have after this code segment has executed?

(c) 	 	 i	 =	 4	 ,	 j	 =	 6	

i j statement
1 0 T

1
2

T
3

3
T

6
4

F

 int i = 1; !
 int j = 0; !
 !
 while(i < 5 && j < 4){ !
 j = j + i; !
 i++; !
 } !
 printf("i = %d, j = %d", i,j); !
	

CPSC 259 Pointers Page 16

How many times is the printf statement executed in the
following C code?

 int x = 1;
 while (x < 15/4) {

 printf ("x = %d\n", x);
 x++;
 }

A.  never
B.  once
C.  twice
D.  three times
E.  four or more times (or infinite loop)

Question looping

CPSC 259 Pointers Page 17

How many times is the printf statement executed in the
following C code?

 int x = 1;
 while (x < 15/4) {

 printf ("x = %d\n", x);
 x++;
 }

A.  never
B.  once
C.  twice
D.  three times
E.  four or more times (or infinite loop)

Question looping (answer)

x output
1

1
2

2
3

3

CPSC 259 Pointers Page 18

Question nested looping
Consider the following code segment: What values do
count1 and count2 have after this code segment has
executed?

(a) count1=3,count2=8	
(b) count1=3,count2=10	
(c) count1=2,count2=8
(d) count1=2,count2=9
(e) None	 of	 the	 above	

 int i; !
 int j; !
 !
 int count1 = 0; !
 int count2 = 0; !
 !
 for(i = 0; i < 3; i++) { !
 count1++; !
 for(j = 1; j < 4; j++) !
 count2++; !
 }	

CPSC 259 Pointers Page 19

Question nested looping (answer)
Consider the following code segment: What values do
count1 and count2 have after this code segment has
executed?

first loop happens 3 times

 second loop happens 3 times

(e) None of the above
Answer: count1= 3 count2=9

 int i; !
 int j; !
 !
 int count1 = 0; !
 int count2 = 0; !
 !
 for(i = 0; i < 3; i++) { !
 count1++; !
 for(j = 1; j < 4; j++) !
 count2++; !
 }	

CPSC 259 Pointers Page 20

Review: Modular Programming
•  Imagine a 10,000-line program that consists only of one

function: main.
–  Extremely difficult to debug.
–  Extremely difficult to re-use any part of the code.

•  Modularity: A design principle used to manage the
complexity of larger systems / programs.
–  Used in many engineering disciplines.
–  In software development, modularity can be implemented using

functions.
•  We break our program into smaller modules (functions).

CPSC 259 Pointers Page 21

Return	
value	

Function	 Input stream	
data	

Output stream	
data	

Information to function	
can come from	

parameters or an input	
stream	

Parameters	

Information from
function can come	
through a return	

value or an output	
stream	

Functions review

CPSC 259 Pointers Page 22

Review: Function Parameters
•  Actual parameter

–  Value(s) or variable(s) specified by the function caller

•  Formal parameter
–  Variables found in the signature/header of the function itself

•  Formal parameters must match with actual parameters
in order, number, and data type.

CPSC 259 Pointers Page 23

What Happens When a Function is Called
1.  Copy parameter values/addresses (if any) from the

caller to the function, regardless of the variable
names.

2.  Execute the function. The function ends when we
reach any return statement.

3.  Pass back the answer (if any) via the return statement.
4.  Destroy all local variables in the function (i.e.,

release/free memory).
–  (We’ll start fresh if this function is ever called again.)

5.  Return to the caller.
6.  Finish the rest of the calling statement (after replacing

the function call with the return value (if any)).

CPSC 259 Pointers Page 24

Review: Function (cont.)

/* Function to compute the maximum of two integers. !
 PARAM: a – one of the two integers !
 PARAM: b – the other of the two integers !
 PRE: NONE (no other assumptions) !
 POST: NONE (no side effects) !
 RETURN: The larger of the two integers !
 */!
int compute_max(int a, int b){ !
 if (a > b) !
 return a; !
 return b; !
}	

CPSC 259 Pointers Page 25

Question function
Consider the following code segment: Fill in the blanks
below to show what is output to the screen when this
program runs?

void myFunc(int a, int b){ !
 a = a + 4; !
 b = b - 4; !
 printf("In myFunc a = %d b = %d\n", a, b); !
} !
!

int main(){ !
 int a = 5; !
 int b = 7; !
 myFunc(a, b); !
 printf("In main a = %d b = %d\n", a, b); !
 return 0; !
} !
!
	

 In myFunc a = ___ b = ____
 In main a =___ b = ____

CPSC 259 Pointers Page 26

Review: Function Parameters (cont.)
•  Parameters may be passed/copied by value (“call-by-

value”).
–  The value of the actual parameter is copied to the formal

parameter when the function is called. For example, if
my_radius is 2.0, then 2.0 is copied:

 double compute_area(double radius); /* prototype */!
 answer = compute_area(my_radius); /* function call */

–  The actual parameters and formal parameters are different
variables in memory, even if they are named the same.

–  If you change the value of the formal parameter, this does not
affect the value of the actual parameter back in the caller’s
memory!

CPSC 259 Pointers Page 27

Question function (answer)
Consider the following code segment: Fill in the blanks
below to show what is output to the screen when this
program runs?

void myFunc(int a, int b){ !
 a = a + 4; !
 b = b - 4; !
 printf("In myFunc a = %d b = %d\n", a, b); !
} !
!

int main(void){ !
 int a = 5; !
 int b = 7; !
 myFunc(a, b); !
 printf("In main a = %d b = %d\n", a, b); !
 return 0; !
} !
!
	

 In myFunc a = _9_ b = __3_
 In main a =_5_ b = _7__

CPSC 259 Pointers Page 28

Review: Arrays

•  An array is a collection of similar data elements. These data
elements have the same data type.

•  The elements of the array are stored in consecutive memory
locations and are referenced by an index (also known as the
subscript). Declaring an array means specifying three
things:
– The data type: what kind of values it can store (int, char, float)
– Name: to identify the array
– The size: the maximum number of values that the array can hold

•  Arrays are declared using the following syntax.
 type name[size];

1st
element

2nd
element

3rd
element

4th
element

5th

element
6th

element
7th

element
8th

element
9th

element
10th

element

marks[0]	 	 	 	 	 marks[1]	 	 	 	 marks[2]	 	 	 	 marks[3]	 	 	 	 marks[4]	 	 	 marks[5]	 	 	 marks[6]	 	 	 marks[7]	 	 	 marks[8]	 	 	 	 marks[9]	

CPSC 259 Pointers Page 29

Elements of an array
– Accessing elements of an array

• You can use a loop

• Storing values in an array
Initialize the elements

 Inputting Values Assigning Values

int marks[]={90, 82, 78, 95, 88};

 int i, marks[10]; !
 for(i=0;i<10;i++) !
 marks[i] = -1;	

int i, marks[10]; !
for(i=0;i<10;i++) !
 scanf(“%d”,&marks[i]);	

for(i=0;i<10;i++) !
 arr2[i] = arr1[i];	

CPSC 259 Pointers Page 30

Question 1‐D array
Consider the following code segment. What is the value of
sum after this code segment has executed?

(a) sum = 30	
(b) sum = 60	
(c) sum = 32	
(d) sum = 14	
(e) None	 of	 the	 above	

 int data[] = { 2, 4, 8, 16, 32, 64 }; !
 int sum = 0; !
 int index = 1; !
 !
 while(index < 4){ !
 sum += data[index]; !
 index++; !
 }	

CPSC 259 Pointers Page 31

Question 1‐D array (answer)
Consider the following code segment: What is the value of
sum after this code segment has executed?

(a) sum = 30	
(b) sum = 60	
(c) sum = 32	
(d) sum = 14	
(e) None	 of	 the	 above	

Answer: 28

 int data[] = { 2, 4, 8, 16, 32, 64 }; !
 int sum = 0; !
 int index = 1; !
 !
 while(index < 4){ !
 sum += data[index]; !
 index++; !
 }	

CPSC 259 Pointers Page 32

Question 1‐D array
Consider the following code function:

(a)  	 It	 returns	 true	 if	 someVal	 is	 found	 in	 the	 first	 numEls	 entries	 of	
the	 array	 data	 and	 false	 otherwise	 	

(b)  If	 someVal	 is	 contained	 in	 the	 first	 numEls	 entries	 of	 the	 array	
data,	 it	 returns	 the	 value	 someVal,	 otherwise	 it	 returns	 -‐1.	

(c)  	 If	 someVal	 is	 contained	 in	 the	 first	 numEls	 entries	 of	 the	 array	
data,	 it	 returns	 the	 index	 of	 the	 last	 slot	 at	 which	 someVal	 is	
found,	 otherwise	 it	 returns	 -‐1.	 	 	

(d)  	 If	 someVal	 is	 contained	 in	 the	 first	 numEls	 entries	 of	 the	 array	
data,	 it	 returns	 the	 index	 of	 the	 first	 slot	 at	 which	 someVal	 is	
found,	 otherwise	 it	 returns	 -‐1.	

int doSomething(int data[], int numEls, int someVal){ !
 int index, found = -1; !
 for(index = 0; index < numEls; index++) !
 if(data[index] == someVal) !
 found = index; !
 return found; !
}	

CPSC 259 Pointers Page 33

Question 1‐D array

	
	
	
	
	
	
	
	
	
(c)	 If	 someVal	 is	 contained	 in	 the	 first	 numEls	 entries	 of	 the	 array	
data,	 it	 returns	 the	 index	 of	 the	 last	 slot	 at	 which	 someVal	 is	 found,	
otherwise	 it	 returns	 -1.	 	 	

data numEls someVal found index data[index]

12,12,89 3 12 -1 0
0 12
1 12

89

int doSomething(int data[], int numEls, int someVal){ !
 int index, found = -1; !
 for(index = 0; index < numEls; index++) !
 if(data[index] == someVal) !
 found = index; !
 return found; !
}	

CPSC 259 Pointers Page 34

Question functions with 1‐D array
Consider the following code segment: Fill in the blanks
below to show what is output to the screen when this
program runs?

Answer:	 	 __	 	 __	 	 __	 	

#define SIZE 3 !
void process(int data[]); !
int main(void){ !
 int data[SIZE] = { 5, -1, 2 }; !
 int index; !
 process(data); !
 for(index = 0; index < SIZE; index++) !
 printf("%d ", data[index]); !
 return 0; !
} !
!
void process(int data[]){int index; !
 for(index = 0; index < SIZE; index++) !
 data[index] = 0; !
}	

CPSC 259 Pointers Page 35

Review: Function Parameters (cont.)
•  Sometimes, parameters are passed/copied by reference

(“call-by-reference”).
 double getMaximum(double data[], int size);/* prototype */!
 answer = getMaximum(myArray, length); /* function call */

–  The address (rather than the value) of the actual parameter is
copied to the formal parameter when the function is called.

–  If you change the value of an element in an array using the
formal parameter in the function, this changes the value
(contents) of that memory location in the caller.

We’ll	 talk	 more	 about	 this	 when	 we	 get	 to	 pointers	

CPSC 259 Pointers Page 36

Question functions with 1‐D array (answer)
Consider the following code segment: Fill in the blanks
below to show what is output to the screen when this
program runs?

Answer:	 	 0	 0	 0	

#define SIZE 3 !
void process(int data[]); !
int main(void){ !
 int data[SIZE] = { 5, -1, 2 }; !
 int index; !
 process(data); !
 for(index = 0; index < SIZE; index++) !
 printf("%d ", data[index]); !
 return 0; !
} !
!
void process(int data[]){int index; !
 for(index = 0; index < SIZE; index++) !
 data[index] = 0; !
}	

CPSC 259 Pointers Page 37

Question finding min
Below are lines of code, ordered by length, that when
rearranged can produce a snippet of code that, upon execution,
will result in the variable “min” containing the minimum value
in the array “x”. Assume that all variables are declared as “int”
and that array “x” contains SIZE elements of type int.

} !
i++; !
i = 1; !
min = x[0]; !
min = x[i]; !
if (x[i] < min) !
while (i < SIZE) !
{	

CPSC 259 Pointers Page 38

Question finding min (answer)
Below are lines of code, ordered by length, that when
rearranged can produce a snippet of code that, upon execution,
will result in the variable “min” containing the minimum value
in the array “x”. Assume that all variables are declared as “int”
and that array “x” contains SIZE elements of type int.

} !
i++; !
i = 1; !
min = x[0]; !
min = x[i]; !
if (x[i] < min) !
while (i < SIZE) !
{	

min = x[0]; !
i = 1; !
while (i < SIZE) !
{ !
 if (x[i] < min) !
 min = x[i]; !
 i++; !
}	

CPSC 259 Pointers Page 39

Two dimensional arrays
•  A two dimensional array is specified using two subscripts

where one subscript denotes row and the other denotes
column.

dataType arrayName[rSize][cSize];

 int marks[3][4];

•  C stores a two dimensional array similar to a one

dimensional array.

Fi

rs
t D

im
en

si
on

Second Dimension

	 	 	 	 (0,0)	 	 	 	 	 (0,	 1)	 	 	 	 	 (0,2)	 	 	 	 	 	 (0,3)	 	 	 	 	 	 (1,0)	 	 	 	 	 	 (1,1)	 	 	 	 	 	 (1,2)	 	 	 	 	 	 (1,3)	 	 	 	 	 	 (2,0)	 	 	 	 	 (2,1)	 	 	 	 	 (2,2)	 	 	 	 	 	 	 (2,3)	

CPSC 259 Pointers Page 40

Question algorithm
Consider the following pseudocode :

Suppose this program was modified to output the average of all the
positive integers and the number of positive integers that exceeded the
average. The simplest change to the program would:
(a) Not require an array or an additional loop.
(b) Require an array but no additional loop.
(c) Not require an array but am additional loop would be required.
(d) Require an array and at least one additional loop.
(e) None of the above

 read a number while less then 100 integers read & the last number read is not negative do output the last number read read another number end of the while loop

CPSC 259 Pointers Page 41

Question algorithm (answer)

(d) Require an array and at least one additional loop.

 one loop to read all values and find avg

 one loop to compare each value with avg

{
{

 read a number while less then 100 integers read & the last number read is not negative do output the last number read read another number end of the while loop

CPSC 259 Pointers Page 42

Question algorithm
Consider the following pseudocode :

Suppose the program given in the above pseudo code was instead
modified to output the number of positive integers entered by the
user, and their average. The simplest change to the program would:
(a) Not require an array or an additional loop.
(b) Require an array but no additional loop.
(c) Not require an array but am additional loop would be required.
(d) Require an array and at least one additional loop.
(e) None of the above

 read a number while less then 100 integers read & the last number read is not negative do output the last number read read another number end of the while loop

CPSC 259 Pointers Page 43

Question algorithm (answer)

(a) Not require an array or an additional loop.
(b) Require an array but no additional loop.
(c) Not require an array but am additional loop would be required.
(d) Require an array and at least one additional loop.
(e) None of the above

 read a number while less then 100 integers read & the last number read is not negative do output the last number read read another number end of the while loop

CPSC 259 Pointers Page 44

Question loops and arrays
Suppose that an array called arr1 is of type int and that
the symbolic constant SIZE has been defined to represent
the size of this array. Which one of the following pieces of
code results in arr2 becoming a copy of arr1?

(a) int arr2[SIZE];
arr2 = arr1;

(b) int arr2[SIZE] = arr1;

(c) int arr2[SIZE] = { arr1 };

(d)  All of the above

(e)  None of the above

CPSC 259 Pointers Page 45

Question loops and arrays (answer)
Suppose that an array called arr1 is of type int and that
the symbolic constant SIZE has been defined to represent
the size of this array. Which one of the following pieces of
code results in arr2 becoming a copy of arr1?

(a) int arr2[SIZE];
arr2 = arr1;

(b) int arr2[SIZE] = arr1;

(c) int arr2[SIZE] = { arr1 };

(d)  All of the above

(e)  None of the above

CPSC 259 Pointers Page 46

Question Searching
N different positive integers are stored in the first N positions of an array.

The first unused position in the array is indicated by the value -1

Suppose we want to look through the array to find the position of a
positive integer “x”. To achieve this functionality we would:

(a) Not require an additional array, or a loop.

(b) Require an additional array but no loop.

(c) Not require an additional array, but at least one additional loop would
be required.

(d) Require an additional array and at least one additional loop.

(e) None of the above

12 34 89 18 21 -1

CPSC 259 Pointers Page 47

Question Searching
N different positive integers are stored in the first N positions of an array.

The first unused position in the array is indicated by the value -1

Suppose we want to look through the array to find the position of a
positive integer “x”. To achieve this functionality we would:

(a) Not require an additional array, or a loop.

(b) Require an additional array but no loop.

(c) Not require an additional array, but at least one additional loop would
be required.

(d) Require an additional array and at least one additional loop.

(e) None of the above

12 34 89 18 21 -1

CPSC 259 Pointers Page 48

Question Searching complexity
Now consider the situation where we have one array with N integers in it
and one with 2N integers. We know that the number “x” is randomly
located at some position in both arrays. (Note the position is different in
each array.) On average the ratio of the amount of time (i.e the number
of instructions executed) it takes to locate “x” in the array of size 2N
when compared to the array of size N is:

(a) The same amount of time is needed)
(b) Twice as much time is needed to find “x” in the array of size 2N)
(c) Three times as much time is needed to find “x” in the array of size 2N
(d) Four times as much time is needed to find “x” in the array of size 2N
(e) Eight times as much time is needed to find “x” in the array of size 2N

CPSC 259 Pointers Page 49

Question Searching complexity (answer)
Now consider the situation where we have one array with N integers in it
and one with 2N integers. We know that the number “x” is randomly
located at some position in both arrays. (Note the position is different in
each array.) On average the ratio of the amount of time (i.e the number
of instructions executed) it takes to locate “x” in the array of size 2N
when compared to the array of size N is:

N à

2N à

(b) Twice as much time is needed to find “x” in the array or size 2N

1
N
*1+ 1

N
*2+... 1

N
*N =

(1+ 2+...N)
N

=

N *(N +1)
2
N

=
N +1
2

1
2N

*1+ 1
2N

*2+... 1
2N

*2N =
(1+ 2+...2N)

2N
=

2N *(2N +1)
2
2N

=
2N +1
2

≈ N +1

