CPSC 221

Basic Algorithms and Data Structures

Balanced BST (AVL Trees)

Textbook References:
Koffman:11.1, 11.2

Hassan Khosravi

January - April 2015

(Borrowing many slides from Alan Hu and Steve Wolfman)

CPSC 221

Balanced BST (AVL Trees)

Page 1

Learning goals

* Compare and contrast balanced/unbalanced trees.

* Describe and apply rotation to a BST to achieve a
balanced tree.

» Recognize balanced binary search trees (among
other tree types you recognize, €.g., heaps, general
binary trees, general BSTs).

CPSC 221 Balanced BST (AVL Trees) Page 2

CPSC 221 Journey

Abstract Data Types
Algorithms Tools
Sorting —| Dictionary Stack Queue Priority Queue , Asymptotic analysis
Recursion, induction
Loop invariants
\ 4 . >\
BST Linked list | | Circular Array
Array
g AVL Binary Heap
Data Structures
CPSC 221 Balanced BST (AVL Trees) Page 3

CPSC Administrative Notes

* Written Assignment 2 1s due March 20 (5pm)

e LLabs

— Currently doing lab 8, which 1s on AVL trees
— Marking lab 7, which 1s on QuickSort

— Starting lab 9, which 1s on Hashing (Friday Mar 20)

e PeerWise

— Call #3 grades are available on Connect
— Call #4 will be out soon

CPSC 221 Balanced BST (AVL Trees) Page 4

The bigger picture

e http://visualgo.net/bst.html

* Insert the following values into a BST
-1,2,3,4,5,6,7,8,9, 10

* Insert the following values into an AVL
-1,2,3,4,5,6,7,8,9, 10

CPSC 221 Balanced BST (AVL Trees) Page 5

Beauty 1s Only ©(log n) Deep

* Binary S
shallow:
— perfect!
— perfect!

earch Trees are fast if they’re

'y complete

'y complete except the one level fringe

(like a

neap)

— anything else?

Problems occur when one

What matters here? subtree is much taller

than the other!

CPSC 221

Balanced BST (AVL Trees)

Page 6

Balance

 Balance

— height(left subtree) - height(right
subtree)

— zero everywhere = perfectly
balanced -

— small everywhere = balanced
enough

Balance between -1 and 1 everywhere
maximum height of ~1.44 lg n

CPSC 221 Balanced BST (AVL Trees) Page 7

AVL Tree
Dictionary Data Structure

* Binary search tree
properties
— binary tree invariant

— search tree invariant

e Balance invariant
— balance of every node is:
-l= b =<1

— result:
e depthis ® (log n)

Note that (statically... ignoring how it updates) an AVL tree is a BST. ‘

CPSC 221 Balanced BST (AVL Trees) Page 8 |

Testing the Balance Property

How do we track the balance?

NULLs have
height -1

FIRST calculate heights
THEN calculate balances

CPSC 221 Balanced BST (AVL Trees) Page 9 |

An AVL Tree

3 [0 |data
0 3 height
P 5 / \ children
3 0 [\
0 1 1 0
2 9 b) 0

0 0

/ 7

Adding a node can potential change the
height of all of the nodes in that path

CPSC 221

Balanced BST (AVL Trees) Page 10

Beautiful Balance (SIMPLEST version)

Insert(middle)
Insert()
Insert(tall)

But... BSTs are under-constrained in unfortunate ways;
ours may not look like this.

CPSC 221 Balanced BST (AVL Trees) Page 11

Bad Case #1 (SIMPLEST version)

Insert() 2
Insert(middle)
Insert(tall)

How do we fix the bad case?
How do we transition among different possible trees?

CPSC 221 Balanced BST (AVL Trees) Page 12

Clicker question

* Would the following rotation be valid?

Insert(A Y
Insert(middle) B: N:S
Insert(tall) C: I don’t know

CPSC 221 Balanced BST (AVL Trees) Page 13

Single Rotation (SIMPLEST version)

* Would the following rotation be a valid?

Since this is a right child, it could legally
2 have the parent as its left child.

Insert() A: Yes
Insert(middle) B: No
Insert(tall) C: I don’t know

CPSC 221 Balanced BST (AVL Trees) Page 14 |

Changing root

* What’s everything we know about nodes a and b
and subtrees X,Y, and Z7?

—b<a
-7 <b
—Y<a
—X>a

e How can we make a the root?

CPSC 221 Balanced BST (AVL Trees) Page 15

N Changing root

—b<a

~7.<b (1) Change left child of a to right child of b
(2) Change arrow b> atoa 2> b

—Y<a (3) Change the root pointer

—X>a

CPSC 221 Balanced BST (AVL Trees) Page 16

Before Insertion (Single Rotation)

CPSC 221 Balanced BST (AVL Trees) Page 17

General Single Rotation
h+2 h+1

<— An insert made this BAD!

Why couldn t the bad insert be in X? ‘

CPSC 221 Balanced BST (AVL Trees) Page 18

Time Complexity of Rotation?

¢ O(1)?

* O(lgn)?

« O(n)?

* O(nlgn)?

* O(n?)?

» All of the above?

CPSC 221 Balanced BST (AVL Trees) Page 19

Time Complexity of Rotation?

 O(1)?

* O(lgn)?

« O(n)?

* O(nlgn)?

* O(n?)?

» All of the above?

CPSC 221 Balanced BST (AVL Trees) Page 20

Example: Easy Insert

Insert(3)

CPSC 221 Balanced BST (AVL Trees) Page 21

Hard Insert (Bad Case #1)

Insert(33)

CPSC 221 Balanced BST (AVL Trees) Page 22

Single Rotation

CPSC 221 Balanced BST (AVL Trees) Page 23

General Single Rotation
h+2 h+1

<— An insert made this BAD!

« After rotation, subtree’s height same as before insert!
» Height of all ancestors unchanged. | Why does it matter? ‘

CPSC 221 Balanced BST (AVL Trees) Page 24 |

Bad Case #2 (SIMPLEST version)

Insert() 2
Insert(tall)
Insert(middle)

Iry to balance this tree

CPSC 221 Balanced BST (AVL Trees) Page 25

Double Rotation

(SIMPLEST version)
Insert()
Insert(tall)
Insert(middle)
p, 2

CPSC 221 Balanced BST (AVL Trees) Page 26

When Single Rotation Doesn’t Help

o After rotation, still unbalanced!

 What can you do?

CPSC 221 Balanced BST (AVL Trees) Page 27

When Single Rotation Doesn’t Help

o After rotation, still unbalanced!

* The problem 1s Y 1s too heavy, so rotate stuff out of Y!

CPSC 221 Balanced BST (AVL Trees) Page 28 |

Double Rotation Part 1

h+2

h-1?
 First, do a single rotation farther down, to split up the
big subtree.

CPSC 221 Balanced BST (AVL Trees) Page 29

Double Rotation Part 1

h-1?
 First, do a single rotation farther down, to split up the
big subtree.

CPSC 221 Balanced BST (AVL Trees) Page 30

Double Rotation Part 2

h-1?
 Now, we can do the originally planned rotation, and not
have too much height shift over...

CPSC 221 Balanced BST (AVL Trees) Page 31

Double Rotation Part 2

h-1?
 Now, we can do the originally planned rotation, and not
have too much height shift over...

CPSC 221 Balanced BST (AVL Trees) Page 32

General Double Rotation

h+2

\ / \

; \ ’ \

PR R ?
h-1:

» Height of subtree still the same as it was before insert!

» Height of all ancestors unchanged.

CPSC 221 Balanced BST (AVL Trees) Page 33 |

Insert Algorithm

Find spot for the new value

Hang new node

* Search back up for imbalance

If there 1s an imbalance:

— case #1: Perform single rotation and exit

K

— case #2: Perform double rotation and exit

7

— Mirrored cases also possible

CPSC 221 Balanced BST (AVL Trees)

Page 34

Hard Insert (Bad Case #2)

Insert(18)

CPSC 221 Balanced BST (AVL Trees) Page 35

Single Rotation (oops!)

This doesn t work!!! ‘

CPSC 221 Balanced BST (AVL Trees) Page 36

Double Rotation (Step #1)

Look familiar?

CPSC 221 Balanced BST (AVL Trees) Page 37

Double Rotation (Step #2)

CPSC 221 Balanced BST (AVL Trees) Page 38

AVL Algorithm Revisited

* Recursive [terative
1. Search downward for 1. Search downward for
spot spot, stacking
2. Insert node parent nodes
3. Unwind stack, 2. Insert node
correcting heights 3. Unwind stack,
a. If imbalance #1, correcting heights
single rotate a. If imbalance #1,
b. If imbalance #2, single rotate and
double rotate exit

b. If imbalance #2,
double rotate and

exit

CPSC 221 Balanced BST (AVL Trees) Page 39

Single Rotation Code

root

(1) Change left child of temp to right child of root
(2) Change arrow root—> temp to temp 2 root

(3) Change the root pointer temp

void RotateLeft(Node *& root) {
Node * temp = root—>right;
root—>right = temp—>left; /*x 1 *x/
temp—>left = root; /*x 2 */
root—>height = max(height(root->right),
height(root—>left)) + 1;
temp—->height = max(height(temp—>right),
height(temp—>left)) + 1;

root = temp; /* 3 x/ Height of Null
s tree is -1

CPSC 221 Balanced BST (AVL Trees) Page 40 |

Double Rotation Code

void DoubleRotateLeft(Node *& root) {
RotateRight(root->right);
RotateLeft(root);

}

First Rotation

CPSC 221 Balanced BST (AVL Trees) Page 41

Double Rotation Completed

void DoubleRotatelLeft(Node *& root) {
RotateRight(root—>right);
RotatelLeft(root);

}

First Rotation Second Rotation

CPSC 221 Balanced BST (AVL Trees) Page 42

Exercise

* Insert the following values into an AVL
— 73,80, 21, 22, 3, 14, 1, 55, 23, 56, 60

* Check all the steps http://visualgo.net/bst.html

CPSC 221 Balanced BST (AVL Trees) Page 43 |

What Does AVL Stand for?

* Automatically Virtually Leveled

» Architecture for inVisible Leveling (the “in” is
Visible)

* All Very Low
 Articulating Various Lines
* Amortizing? Very Lousy!

* Absolut Vodka Logarithms
* Amazingly Vexing Letters

Adelson-Velskii Landis

CPSC 221 Balanced BST (AVL Trees) Page 44

Learning goals revisited

* Compare and contrast balanced/unbalanced trees.

* Describe and apply rotation to a BST to achieve a
balanced tree.

» Recognize balanced binary search trees (among
other tree types you recognize, €.g., heaps, general
binary trees, general BSTs).

CPSC 221 Balanced BST (AVL Trees) Page 45

