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Learning goals

* Compare and contrast balanced/unbalanced trees.

* Describe and apply rotation to a BST to achieve a
balanced tree.

» Recognize balanced binary search trees (among
other tree types you recognize, €.g., heaps, general
binary trees, general BSTs).
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CPSC 221 Journey

Abstract Data Types
Algorithms Tools
Sorting —| Dictionary Stack Queue Priority Queue , Asymptotic analysis
Recursion, induction
Loop invariants
\ 4 . >\
BST Linked list | | Circular Array
Array
g AVL Binary Heap
Data Structures
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CPSC Administrative Notes

* Written Assignment 2 1s due March 20 (5pm)

e LLabs

— Currently doing lab 8, which 1s on AVL trees
— Marking lab 7, which 1s on QuickSort

— Starting lab 9, which 1s on Hashing (Friday Mar 20)

e PeerWise

— Call #3 grades are available on Connect
— Call #4 will be out soon
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The bigger picture

e http://visualgo.net/bst.html

* Insert the following values into a BST
-1,2,3,4,5,6,7,8,9, 10

* Insert the following values into an AVL
-1,2,3,4,5,6,7,8,9, 10
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Beauty 1s Only ©(log n) Deep

* Binary S
shallow:
— perfect!
— perfect!

earch Trees are fast if they’re

'y complete

'y complete except the one level fringe

(like a

neap)

— anything else?

Problems occur when one

What matters here?  subtree is much taller

than the other!
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Balance

 Balance

— height(left subtree) - height(right
subtree)

— zero everywhere = perfectly
balanced -

— small everywhere = balanced
enough

Balance between -1 and 1 everywhere
maximum height of ~1.44 lg n
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AVL Tree
Dictionary Data Structure

* Binary search tree
properties
— binary tree invariant

— search tree invariant

e Balance invariant
— balance of every node is:
-l= b =<1

— result:
e depthis ® (log n)

Note that (statically... ignoring how it updates) an AVL tree is a BST. ‘
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Testing the Balance Property

How do we track the balance?

NULLs have
height -1

FIRST calculate heights
THEN calculate balances
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An AVL Tree

3 [0 |data
0 3 height
P 5 / \ children
3 0 [\
0 1 1 0
2 9 b) 0

0 0

/ 7

Adding a node can potential change the
height of all of the nodes in that path
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Beautiful Balance (SIMPLEST version)

Insert(middle)
Insert( )
Insert(tall)

But... BSTs are under-constrained in unfortunate ways;
ours may not look like this.
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Bad Case #1 (SIMPLEST version)

Insert( ) 2
Insert(middle)
Insert(tall)

How do we fix the bad case?
How do we transition among different possible trees?
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Clicker question

* Would the following rotation be valid?

Insert( A Y
Insert(middle) B: N:S
Insert(tall) C: I don’t know

CPSC 221 Balanced BST (AVL Trees) Page 13




Single Rotation (SIMPLEST version)

* Would the following rotation be a valid?

Since this is a right child, it could legally
2 have the parent as its left child.

Insert( ) A: Yes
Insert(middle) B: No
Insert(tall) C: I don’t know
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Changing root

* What’s everything we know about nodes a and b
and subtrees X,Y, and Z7?

—b<a
-7 <b
—Y<a
—X>a

e How can we make a the root?
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N Changing root

—b<a

~7.<b (1) Change left child of a to right child of b
(2) Change arrow b> atoa 2> b

—Y<a (3) Change the root pointer

—X>a
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Before Insertion (Single Rotation)
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General Single Rotation
h+2 h+1

<— An insert made this BAD!

Why couldn t the bad insert be in X? ‘
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Time Complexity of Rotation?

¢ O(1)?

* O(lgn)?

« O(n)?

* O(nlgn)?

* O(n?)?

» All of the above?

CPSC 221 Balanced BST (AVL Trees) Page 19



Time Complexity of Rotation?

 O(1)?

* O(lgn)?

« O(n)?

* O(nlgn)?

* O(n?)?

» All of the above?
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Example: Easy Insert

Insert(3)
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Hard Insert (Bad Case #1)

Insert(33)
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Single Rotation

CPSC 221 Balanced BST (AVL Trees) Page 23



General Single Rotation
h+2 h+1

<— An insert made this BAD!

« After rotation, subtree’s height same as before insert!
» Height of all ancestors unchanged. | Why does it matter? ‘
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Bad Case #2 (SIMPLEST version)

Insert( ) 2
Insert(tall)
Insert(middle)

Iry to balance this tree
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Double Rotation

(SIMPLEST version)
Insert( )
Insert(tall)
Insert(middle)
p, 2
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When Single Rotation Doesn’t Help

o After rotation, still unbalanced!

 What can you do?
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When Single Rotation Doesn’t Help

o After rotation, still unbalanced!

* The problem 1s Y 1s too heavy, so rotate stuff out of Y!
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Double Rotation Part 1

h+2

__________________________

h-1?
 First, do a single rotation farther down, to split up the
big subtree.
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Double Rotation Part 1

h-1?
 First, do a single rotation farther down, to split up the
big subtree.

CPSC 221 Balanced BST (AVL Trees) Page 30



Double Rotation Part 2

h-1?
 Now, we can do the originally planned rotation, and not
have too much height shift over...
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Double Rotation Part 2

h-1?
 Now, we can do the originally planned rotation, and not
have too much height shift over...
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General Double Rotation

h+2

\ / \

; \ ’ \

PR R ?
h-1:

» Height of subtree still the same as it was before insert!

» Height of all ancestors unchanged.
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Insert Algorithm

Find spot for the new value

Hang new node

* Search back up for imbalance

If there 1s an imbalance:

— case #1: Perform single rotation and exit

K

— case #2: Perform double rotation and exit

7

— Mirrored cases also possible
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Hard Insert (Bad Case #2)

Insert(18)
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Single Rotation (oops!)

This doesn t work!!! ‘
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Double Rotation (Step #1)

Look familiar?
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Double Rotation (Step #2)
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AVL Algorithm Revisited

* Recursive  [terative
1. Search downward for 1. Search downward for
spot spot, stacking
2. Insert node parent nodes
3. Unwind stack, 2. Insert node
correcting heights 3. Unwind stack,
a. If imbalance #1, correcting heights
single rotate a. If imbalance #1,
b. If imbalance #2, single rotate and
double rotate exit

b. If imbalance #2,
double rotate and

exit
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Single Rotation Code

root

(1) Change left child of temp to right child of root
(2) Change arrow root—> temp to temp 2 root

(3) Change the root pointer temp

void RotateLeft(Node *& root) {
Node * temp = root—>right;
root—>right = temp—>left; /*x 1 *x/
temp—>left = root; /*x 2 */
root—>height = max(height(root->right),
height(root—>left)) + 1;
temp—->height = max(height(temp—>right),
height(temp—>left)) + 1;

root = temp; /* 3 x/ Height of Null
s tree is -1
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Double Rotation Code

void DoubleRotateLeft(Node *& root) {
RotateRight(root->right);
RotateLeft(root);

}

First Rotation
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Double Rotation Completed

void DoubleRotatelLeft(Node *& root) {
RotateRight(root—>right);
RotatelLeft(root);

}

First Rotation Second Rotation
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Exercise

* Insert the following values into an AVL
— 73,80, 21, 22, 3, 14, 1, 55, 23, 56, 60

* Check all the steps http://visualgo.net/bst.html
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What Does AVL Stand for?

* Automatically Virtually Leveled

» Architecture for inVisible Leveling (the “in” is
Visible)

* All Very Low
 Articulating Various Lines
* Amortizing? Very Lousy!

* Absolut Vodka Logarithms
* Amazingly Vexing Letters

Adelson-Velskii Landis
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Learning goals revisited

* Compare and contrast balanced/unbalanced trees.

* Describe and apply rotation to a BST to achieve a
balanced tree.

» Recognize balanced binary search trees (among
other tree types you recognize, €.g., heaps, general
binary trees, general BSTs).
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