CPSC 221 Basic Algorithms and Data Structures

Balanced BST (AVL Trees)

Textbook References: Koffman:11.1, 11.2

Hassan Khosravi January – April 2015

(Borrowing many slides from Alan Hu and Steve Wolfman)

Learning goals

- Compare and contrast balanced/unbalanced trees.
- Describe and apply rotation to a BST to achieve a balanced tree.
- Recognize balanced binary search trees (among other tree types you recognize, e.g., heaps, general binary trees, general BSTs).

CPSC 221 Journey

CPSC 221

CPSC Administrative Notes

• Written Assignment 2 is due March 20 (5pm)

• Labs

- Currently doing lab 8, which is on AVL trees
- Marking lab 7, which is on QuickSort
- Starting lab 9, which is on Hashing (Friday Mar 20)

PeerWise

- Call #3 grades are available on Connect
- Call #4 will be out soon

The bigger picture

http://visualgo.net/bst.html

- Insert the following values into a BST
 - -1, 2, 3, 4, 5, 6, 7, 8, 9, 10

- Insert the following values into an AVL
 - -1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Beauty is Only Θ(log n) Deep

- Binary Search Trees are fast if they're shallow:
 - perfectly complete
 - perfectly complete except the one level fringe (like a heap)
 - anything else?

What matters here?

Problems occur when one subtree is much taller than the other!

Balance

- Balance
 - height(left subtree) height(right subtree)
 - zero everywhere ⇒ perfectly balanced
 - small everywhere ⇒ balanced enough

Balance between -1 and 1 everywhere maximum height of ~1.44 lg n

AVL Tree Dictionary Data Structure

- Binary search tree properties
 - binary tree invariant
 - search tree invariant
- Balance invariant
 - balance of every node is:

$$-1 \le b \le 1$$

- result:
 - depth is Θ (log n)

Note that (statically... ignoring how it updates) an AVL tree is a BST.

Testing the Balance Property

How do we track the balance?

NULLs have height -1

FIRST calculate heights
THEN calculate balances

An AVL Tree

Adding a node can potential change the height of all of the nodes in that path

Beautiful Balance (SIMPLEST version)

Insert(middle)

Insert(small)

Insert(tall)

But... BSTs are under-constrained in unfortunate ways; ours may not look like this.

Bad Case #1 (SIMPLEST version)

Insert(small)

Insert(middle)

Insert(tall)

How do we fix the bad case?

How do we transition among different possible trees?

Clicker question

• Would the following rotation be valid?

Single Rotation (SIMPLEST version)

• Would the following rotation be a valid?

Changing root

• What's everything we know about nodes **a** and **b** and subtrees X,Y, and Z?

• How can we make a the root?

- $-b \le a$
- -Z < b
- $-\mathbf{Y} < \mathbf{a}$
- -X>a

- (1) Change left child of a to right child of b
- (2) Change arrow $b \rightarrow a$ to $a \rightarrow b$
- (3) Change the root pointer

Before Insertion (Single Rotation)

General Single Rotation

Why couldn't the bad insert be in X?

Time Complexity of Rotation?

- $\Theta(1)$?
- $\Theta(\lg n)$?
- $\Theta(n)$?
- $\Theta(n \lg n)$?
- $\Theta(n^2)$?
- All of the above?

Time Complexity of Rotation?

- $\Theta(1)$?
- $\Theta(\lg n)$?
- $\Theta(n)$?
- $\Theta(n \lg n)$?
- $\Theta(n^2)$?
- All of the above?

Example: Easy Insert

Insert(3)

Hard Insert (Bad Case #1)

Single Rotation

General Single Rotation

- After rotation, subtree's height same as before insert!
- Height of all ancestors unchanged. Why does it matter?

Bad Case #2 (SIMPLEST version)

Insert(small)

Insert(tall)

Insert(middle)

Try to balance this tree

Double Rotation (SIMPLEST version)

Insert(small)

Insert(tall)

Insert(middle)

When Single Rotation Doesn't Help

- After rotation, still unbalanced!
- What can you do?

When Single Rotation Doesn't Help

- After rotation, still unbalanced!
- The problem is Y is too heavy, so rotate stuff out of Y!

• First, do a single rotation farther down, to split up the big subtree.

• First, do a single rotation farther down, to split up the big subtree.

• Now, we can do the originally planned rotation, and not have too much height shift over...

• Now, we can do the originally planned rotation, and not have too much height shift over...

General Double Rotation

- Height of subtree still the same as it was before insert!
- Height of all ancestors unchanged.

Insert Algorithm

- Find spot for the new value
- Hang new node
- Search back up for imbalance
- If there is an imbalance:
 - case #1: Perform single rotation and exit

– case #2: Perform double rotation and exit

Mirrored cases also possible

Hard Insert (Bad Case #2)

Insert(18)

Single Rotation (oops!)

Double Rotation (Step #1)

Double Rotation (Step #2)

AVL Algorithm Revisited

- Recursive
- Search downward for spot
- 2. Insert node
- 3. Unwind stack, correcting heights
 - a. If imbalance #1, single rotate
 - b. If imbalance #2,
 double rotate

- Iterative
- Search downward for spot, stacking parent nodes
- 2. Insert node
- Unwind stack,correcting heights
 - a. If imbalance #1,
 single rotate and
 exit
 - b. If imbalance #2,
 double rotate and
 exit

Single Rotation Code

(1) Change left child of temp to right child of root

(2) Change arrow root \rightarrow temp to temp \rightarrow root

(3) Change the root pointer

root

Height of Null tree is -1

Double Rotation Code

```
void DoubleRotateLeft(Node *& root) {
  RotateRight(root->right);
  RotateLeft(root);
}
```


Double Rotation Completed

```
void DoubleRotateLeft(Node *& root) {
  RotateRight(root->right);
  RotateLeft(root);
}
```


Exercise

- Insert the following values into an AVL
 - -73, 80, 21, 22, 3, 14, 1, 55, 23, 56, 60

• Check all the steps http://visualgo.net/bst.html

What Does AVL Stand for?

- Automatically Virtually Leveled
- Architecture for inVisible Leveling (the "in" is inVisible)
- All Very Low
- Articulating Various Lines
- Amortizing? Very Lousy!
- Absolut Vodka Logarithms
- Amazingly Vexing Letters

Adelson-Velskii Landis

Learning goals revisited

- Compare and contrast balanced/unbalanced trees.
- Describe and apply rotation to a BST to achieve a balanced tree.
- Recognize balanced binary search trees (among other tree types you recognize, e.g., heaps, general binary trees, general BSTs).