
CPSC 221 Binary Search Trees Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

Binary Search Trees

Textbook References:
Koffman: 8.1 – 8.4
EPP 3rd edition:11.5
EPP 4th edition:10.5

Borrowing many slides from Steve Wolfman

CPSC 221 Binary Search Trees Page 2

CPSC Administrative Notes
•  Written Assignment 2 extension

– Due date is changed to Friday, March 20

•  Lab 7: Starting Friday, on AVL trees

•  Midterms were handed back
– Scaled Average ~69%

•  PeerWise

CPSC 221 Binary Search Trees Page 3

Thanks for Your Feedback
•  Things that many of you commented on

– Exam was too hard/long
Pros

•  Prepares students for the final.
•  Prepare students for interviews.
•  Better indicator of students

performance (diverse spread)
•  Provides opportunity for great

students to show their
capabilities.

Cons
•  Students get low grades and

feel that the exam was unfair
–  But we can fix that by scaling!

CPSC 221 Binary Search Trees Page 4

Thanks for Your Feedback
•  Things that many of you commented on

– Too much work/better spread of assignments.
– Sometimes unclear what students need to learn.
– Too much theory, math, and proofs.
– Unclear how much C++ we should know
– Labs and assignments are disjoint from lecture!!!!
–  2 people hated my ppt background L

•  You can always submit anonymous feedback
through my website.

CPSC 221 Binary Search Trees Page 5

PeerWise Claims
•  Generating a question requires students to think carefully

about the topics of the course and how they relate to the
learning outcomes.

•  Writing questions focuses attention on the learning
outcomes and makes teaching and learning goals more
apparent to students.

•  The act of creating plausible distracters (multiple-choice
alternatives) requires students to consider misconceptions

•  Explanations require students to express their
understanding of a topic with as much clarity as possible.

•  Answering questions in a drill and practice fashion
reinforces learning, and incorporates elements of self-
assessment.

CPSC 221 Binary Search Trees Page 6

PeerWise
•  Authoring and answering questions on PeerWise

has helped me better learn and understand the
material, which is covered in CPSC 221.

A: Strongly Agree
B: Agree
C: Neutral
D: Disagree
E: Strongly Disagree

CPSC 221 Binary Search Trees Page 7

PeerWise
•  I think

A: PeerWise should be used in future offerings of
221

B: PeerWise should NOT be used in future offerings
of 221

C: Neutral

CPSC 221 Binary Search Trees Page 8

Learning Goals
•  Determine if a given tree is an instance of a

particular type (e.g. binary search tree, heap, etc.)
•  Describe and use pre-, in- and post-order traversal

algorithms
•  Describe the properties of binary trees, binary

search trees, and more general trees; Implement
iterative and recursive algorithms for navigating
them in C++

•  Compare and contrast ordered versus unordered
trees in terms of complexity and scope of
application

•  Insert and delete elements from a binary tree

CPSC 221 Binary Search Trees Page 9

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic analysis

CPSC 221 Journey

Priority Queue

Binary Heap

Recursion, induction
Loop invariants

Algorithms

Sorting

Dictionary

Binary Search
Tree

CPSC 221 Binary Search Trees Page 10

Binary Trees
•  Binary tree is either

–  empty (NULL for us), or
–  a datum, a left subtree,

and a right subtree
•  Properties

– max # of leaves:
– max # of nodes:

•  Representation:

A

B

D E

C

F

H G

J I

Data
right

pointer
left

pointer

2h

2h+1

CPSC 221 Binary Search Trees Page 11

Representation
A

right
pointer

left
pointer

A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

struct Node { !
 KTYPE key; !
 DTYPE data; !
 Node * left; !
 Node * right; !
};

CPSC 221 Binary Search Trees Page 12

There are three common types of binary tree
traversal:

Preorder: visit the current node, then its left sub-
tree, then its right sub-tree

Inorder: visit the left sub-tree, then the current
node, then the right sub-tree

Postorder: visit the left sub-tree, then the right
sub-tree, then the current node

Tree Traversal

CPSC 221 Binary Search Trees Page 13

Preorder: visit the current node, then its left sub-
tree, then its right sub-tree

Data printed using preorder traversal:

 E C A B D I F G H J

E

C I

A

B

F J

G

H

D

CPSC 221 Binary Search Trees Page 14

Preorder: visit the current node, then its left sub-tree, then its
right sub-tree

Data printed using preorder traversal:
 E C A B D I F G H J

E

C I

A

B

F J

G

H

D

void printPreorder(Node*& node) { !
 if (! node) return; !
 !
 /* first print data of node */!
 std::cout<< node->data; !
 !
 /* then recur on left sutree */!
 printPreorder(node->left); !
 !
 /* now recur on right subtree */!
 printPreorder(node->right); !
}

CPSC 221 Binary Search Trees Page 15

Inorder: visit the left sub-tree, then the current
node, then the right sub-tree

Data printed using inorder traversal:

 A B C D E F G H I J

E

C I

A

B

F J

G

H

D

CPSC 221 Binary Search Trees Page 16

Inorder: visit the left sub-tree, then the current node, then
the right sub-tree

Data printed using inorder traversal:
 A B C D E F G H I J

void printInorder(Node*& node) { !
 if (! node) return; !
 !
 /* then recur on left sutree */!
 printInorder(node->left); !
 !
 /* first print data of node */!
 std::cout<< node->data; !
 !
 /* now recur on right subtree */!
 printInorder(node->right); !
}

E

C I

A

B

F J

G

H

D

CPSC 221 Binary Search Trees Page 17

Postorder: visit the left sub-tree, then the right sub-tree, then
the current node

Data printed using postorder traversal:
 B A D C H G F J I E

E

C I

A

B

F J

G

H

D

CPSC 221 Binary Search Trees Page 18

Postorder: visit the left sub-tree, then the right sub-
tree, then the current node

Data printed using postorder traversal:
 B A D C H G F J I E

void printPostorder(Node*& node) { !
 if (! node) return; !
 !
 /* then recur on left sutree */!
 printPostorder(node->left); !
 !
 /* now recur on right subtree */!
 printPostorder(node->right); !
 !
 /* first print data of node */!
 std::cout<< node->data; !
}

E

C I

A

B

F J

G

H

D

CPSC 221 Binary Search Trees Page 19

Preorder: visit the current node, then its left sub-tree,
then its right sub-tree (this is NOT a Binary Search
Tree!)

Nodes visited using
preorder traversal:

a)  5 8 9 2 4 3 0 6 1 7

b)  5 8 2 9 4 3 0 1 6 7

c)  5 8 3 2 4 0 7 9 1 6

d)  6 1 0 7 3 5 9 2 4 8

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 221 Binary Search Trees Page 20

Preorder: visit the current node, then its left sub-tree,
then its right sub-tree (this is NOT a Binary Search
Tree!)

Nodes visited using
preorder traversal:

a)  5 8 9 2 4 3 0 6 1 7

b)  5 8 2 9 4 3 0 1 6 7

c)  5 8 3 2 4 0 7 9 1 6

d)  6 1 0 7 3 5 9 2 4 8

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 221 Binary Search Trees Page 21

Inorder: visit the left sub-tree, then the current node,
then the right sub-tree (this is NOT a BST!)

Nodes visited using
inorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  5 8 3 2 4 0 7 9 1 6

c)  6 1 0 7 3 5 9 2 4 8

d)  2 9 8 4 5 0 1 6 3 7

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 221 Binary Search Trees Page 22

Inorder: visit the left sub-tree, then the current node,
then the right sub-tree (this is NOT a BST!)

Nodes visited using
inorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  5 8 3 2 4 0 7 9 1 6

c)  6 1 0 7 3 5 9 2 4 8

d)  2 9 8 4 5 0 1 6 3 7

e)  9 2 4 8 6 1 0 7 3 5

5

8 3

2

9

0 7

1

6

4

CPSC 221 Binary Search Trees Page 23

Postorder: visit the left sub-tree, then the right sub-tree,
then the current node (this is NOT a BST!)

 Nodes visited using
postorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  2 9 8 4 0 1 6 7 3 5

c)  6 1 0 7 3 5 9 2 4 8

d)  9 2 4 8 6 1 0 7 3 5

e)  2 9 8 4 5 0 1 6 3 7

5

8 3

2

9

0 7

1

6

4

CPSC 221 Binary Search Trees Page 24

Postorder: visit the left sub-tree, then the right sub-tree,
then the current node (this is NOT a BST!)

 Nodes visited using
postorder traversal:

a)  5 8 2 9 4 3 0 1 6 7

b)  2 9 8 4 0 1 6 7 3 5

c)  6 1 0 7 3 5 9 2 4 8

d)  9 2 4 8 6 1 0 7 3 5

e)  2 9 8 4 5 0 1 6 3 7

5

8 3

2

9

0 7

1

6

4

CPSC 221 Binary Search Trees Page 25

Dictionary ADT
•  Dictionary operations

–  create
–  destroy
–  insert
–  find
–  Delete

•  Stores values associated with user-specified keys

–  values may be any (homogenous) type
–  keys may be any (homogenous) comparable type

•  midterm
–  would be tastier with

brownies
•  prog-project

–  so painful… who
designed this language?

•  wolf
–  the perfect mix of oomph

and Scrabble value

insert

find(wolf)

•  brownies
 - tasty

•  wolf
 - the perfect mix of oomph
 and Scrabble value

CPSC 221 Binary Search Trees Page 26

Search/Set ADT
•  Dictionary operations

–  create
–  destroy
–  insert
–  find
–  Delete

•  Stores keys

–  keys may be any (homogenous) comparable
–  quickly tests for membership

•  Berner
•  Whippet
•  Alsatian
•  Sarplaninac
•  Beardie
•  Sarloos
•  Malamute
•  Poodle

insert

find(Wolf)

•  Min Pin

NOT FOUND

CPSC 221 Binary Search Trees Page 27

A Modest Few Uses
•  Arrays and “Associative” Arrays
•  Sets
•  Dictionaries
•  Router tables
•  Page tables
•  Symbol tables
•  C++ Structures

CPSC 221 Binary Search Trees Page 28

Naïve Implementations

•  Linked list
– Unsorted
– Sorted

•  Array
– Unsorted
– Sorted

insert
delete

+
find

find

worst one… yet so close!

O(1) O(n) O(n)

delete
after
find

O(1)
O(n) O(n) O(n) O(1)

O(1) O(n) O(n) O(1)
O(n) O(lg n) O(n) O(n)

CPSC 221 Binary Search Trees Page 29

Binary Search into Binary Search Trees

/* Search an array, recursively, for a given search key. */!
int search(int array[], int key, int low_index, int high_index){ !
 int mid = (low_index + high_index) / 2; !
 !
 if (high_index < low_index) return -1;!
 if (array[mid] > key) return search(array, key, low_index, mid-1); !
 else if (array[mid] < key) /* search right half of array */!
 return search(array, key, mid + 1, high_index); !
 else return mid; !
}

CPSC 221 Binary Search Trees Page 30

Binary Search Tree

4

12 10 6 2

11 5

8

14

13

7 9

•  Binary tree property
–  each node has ≤ 2 children
–  result:

•  operations are simple
•  Search tree property

–  all keys in left subtree
smaller than root’s key

–  all keys in right subtree
larger than root’s key

– result:
•  easy to find any given key

CPSC 221 Binary Search Trees Page 31

Example and Counter-Example

3

11 7 1

8 4

5

4

18 10 6 2

11 5

8

20

21 BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

CPSC 221 Binary Search Trees Page 32

Finding a Node

20 9 2

15 5

10

30 7 17

runtime:
a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e. None of these

CPSC 221 Binary Search Trees Page 33

Node *& find(Comparable key, Node *& root) { !
 if (root == NULL) !
 return root; !
 else if (key < root->key) !
 return find(key, root->left); !
 else if (key > root->key) !
 return find(key, root->right); !
 else!
 return root; !
}

Finding a Node

20 9 2

15 5

10

30 7 17

What does find 20 return?

What does find 8 return?

CPSC 221 Binary Search Trees Page 34

Iterative Find

Node * find(Comparable key, !
 Node * root) { !
 while (root != NULL && !
 root->key != key) { !
 if (key < root->key) !
 root = root->left; !
 else!
 root = root->right; !
 } !
 !
 return root; !
}

20 9 2

15 5

10

30 7 17

(It’s trickier to get the ref return to work here.)

CPSC 221 Binary Search Trees Page 35

Insert

20 9 2

15 5

10

30 7 17

Runtime?

// Precondition: key is not!
// already in the tree!!
void insert(Comparable key, !
 Node * root) { !
 Node *& target(find(key,root)); !
 assert(target == NULL); !
 !
 target = new Node(key); !
} !

Funky game we can play with the *& version.

insert(8)
insert (11)
insert(31)

CPSC 221 Binary Search Trees Page 36

Digression: Value vs. Reference Parameters
•  Value parameters (Object foo)

–  copies parameter
–  no side effects

•  Reference parameters (Object & foo)
–  shares parameter
–  can affect actual value
–  use when the value needs to be changed

•  Const reference parameters (Object const & foo)
–  shares parameter
–  cannot affect actual value
–  use when the value is too big to be passed-by-value

CPSC 221 Binary Search Trees Page 37

BuildTree for BSTs
•  Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted

into an initially empty BST:
–  in order

–  in reverse order

– median first, then left median, right median, etc.
so: 5, 3, 8, 2, 4, 7, 9, 1, 6

CPSC 221 Binary Search Trees Page 38

What makes a balanced BST efficient
for searching?

Each step we take as we search the tree reduces the
remaining search space by half.

CPSC 221 Binary Search Trees Page 39

Sample Search

Each step we take as we search the tree reduces the
remaining search space by half.

Step 1

CPSC 221 Binary Search Trees Page 40

Sample Search

Each step we take as we search the tree reduces the
remaining search space by half.

Step 2

CPSC 221 Binary Search Trees Page 41

Sample Search

Each step we take as we search the tree reduces the
remaining search space by half.

Step 3

CPSC 221 Binary Search Trees Page 42

Sample Search

Each step we take as we search the tree reduces the
remaining search space by half.

Step 4

CPSC 221 Binary Search Trees Page 43

Sample Search

Each step we take as we search the tree reduces the
remaining search space by half.

CPSC 221 Binary Search Trees Page 44

Height

The tree has low height and all paths from the root
node to other nodes are relatively short.

CPSC 221 Binary Search Trees Page 45

Unbalanced Trees

In contrast, this unbalanced tree is very high and has
long paths from the root to other nodes. It essentially
has degenerated to a linked list, which is very slow to
search through.

CPSC 221 Binary Search Trees Page 46

Unbalanced Trees

Now,with each step we take, we have only reduced the
search space by one node.

CPSC 221 Binary Search Trees Page 47

Analysis of BuildTree

•  Worst case: O(n2) as we’ve seen

•  Average case assuming all orderings equally
likely turns out to be O(n lg n).

CPSC 221 Binary Search Trees Page 48

CPSC Administrative Notes
•  Written Assignment 2 extension

– Due date is changed to Friday, March 20

•  Lab 8 is posted
–  Starting Friday, on AVL trees
– Marking lab 7 on QuickSort

CPSC 221 Binary Search Trees Page 49

The other section will be missing two lectures

•  I think we should use that time
A: To do more in class exercises while we’re
coving AVL’s, Hashing, parallel processing, and
B+ trees
B: Hear about some cool research related stuff to
data structures and algorithms, which wouldn’t
on the final.
C: To relax at home (cancel a lecture)
D: I don’t care

CPSC 221 Binary Search Trees Page 50

So, Where were we?
•  Determine if a given tree is an instance of a

particular type (e.g. binary search tree, heap, etc.)
•  Describe and use pre-, in- and post-order traversal

algorithms
•  Describe the properties of binary trees, binary

search trees, and more general trees; Implement
iterative and recursive algorithms for navigating
them in C++

CPSC 221 Binary Search Trees Page 51

Bonus: FindMin/FindMax
•  Find minimum

•  Find maximum 20 9 2

15 5

10

30 7 17

Node *& min(Node *& root) { !
 if (root->left == NULL) !
 return root; !
 else !
 return min(root->left); !
}

Node *& max(Node *& root) { !
 if (root->right == NULL) !
 return root; !
 else!
 return max(root->right); !
}

CPSC 221 Binary Search Trees Page 52

Double Bonus: Successor

Find the next larger node
in this node’s subtree.

20 9 2

15 5

10

30 7 17
// Note: If no succ, !
//returns (a useful) NULL. !
Node *& succ(Node *& root) { !
 if (root->right == NULL) !
 return root->right; !
 else!
 return min(root->right); !
}

CPSC 221 Binary Search Trees Page 53

More Double Bonus: Predecessor

Find the next smaller node
in this node’s subtree.

20 9 2

15 5

10

30 7 17 Node *& pred(Node *& root) { !
 if (root->left == NULL) !
 return root->left; !
 else!
 return max(root->left); !
}

CPSC 221 Binary Search Trees Page 54

Deletion

20 9 2

15 5

10

30 7 17

Why might deletion be harder than insertion?

CPSC 221 Binary Search Trees Page 55

Lazy Deletion
•  Instead of physically deleting nodes,

just mark them as deleted (with a
“tombstone”)
+  simpler
+ physical deletions done in

batches
+  some adds just flip deleted flag
–  small amount of extra memory

for deleted flag
– many tombstones slow finds
–  some operations may have to be

modified (e.g., min and max)

20 9 2

15 5

10

30 7 17

CPSC 221 Binary Search Trees Page 56

Lazy Deletion

20 9 2

15 5

10

30 7 17

Delete(17)
Delete(15)

20 9 2

15 5

10

30 7 17

20 9 2

15 5

10

30 7 17

Delete(5) Find(9)

20 9 2

15 5

10

30 7 17

CPSC 221 Binary Search Trees Page 57

Lazy Deletion

Find(16)

20 9 2

15 5

10

30 7 17

Insert(8)

20 9 2

15 8

10

30 7 17
Succ(5)?7
pred(5)?2

Would this work?

Insert(6)

20 9 2

15 6

10

30 7 17

CPSC 221 Binary Search Trees Page 58

Deletion - Leaf Case

20 9 2

15 5

10

30 7 17

Delete(17)

CPSC 221 Binary Search Trees Page 59

Deletion - One Child Case

20 9 2

15 5

10

30 7

Delete(15)

CPSC 221 Binary Search Trees Page 60

Deletion - Two Child Case

30 9 2

20 5

10

7

Delete(5)

CPSC 221 Binary Search Trees Page 61

Delete Code
void delete(Comparable key, Node *& root) { !
 Node *& handle(find(key, root)); !
 Node * toDelete = handle; !
 if (handle != NULL) { !
 if (handle->left == NULL) { // Leaf or one child!
 handle = handle->right; !
 } else if (handle->right == NULL) { // One child!
 handle = handle->left; !
 } else { // Two child case!
 Node *& successor(succ(handle)); !
 handle->data = successor->data; !
 toDelete = successor; !
 successor = successor->right; // Succ has <= 1 child!
 } !
 delete toDelete; !
 } !
}

CPSC 221 Binary Search Trees Page 62

Deleting (leaf case) exercise
•  Trace the code to see what the tree

would look like after executing

–  delete(5, Node *& 6) !

6
3 7

5 9

6
3 7

5 9

root

toDelete

6
3 7

9

handle

root

handle

5
toDelete

CPSC 221 Binary Search Trees Page 63

Deleting a BNode (one child) exercise

• Trace the code to see what the tree
would look like after executing
–  delete(7, Node *& 6)

6
3 7

2 5 9

6
3 7

2 5 9

root

toDelete

handle
6

3 9

2 5

toDelete

7

root handle

CPSC 221 Binary Search Trees Page 64

Deleting a BNode (both children) exercise
• Trace the code to see what the tree

would look like after executing
–  Delete(6, Node *& 6)

root
toDelete

successor
handle

6
3 9

2 5 10 7

6
3 9

2 5 10 7

root

toDelete

successor
handle 7

3 9

2 5 10

7

CPSC 221 Binary Search Trees Page 65

Deleting a BNode (both children) exercise
• Trace the code to see what the tree

would look like after executing
–  Delete(6, Node *& 6)

root
toDelete

successor
handle

root

toDelete

successor
handle

6
3 9

2 5 10 7

8

6
3 9

2 5 10 7

8

7
3 9

2 5 10

7

8

Focus on this 8

CPSC 221 Binary Search Trees Page 66

An Application of in-order traversing

6
3 7

2 5 9
Sorting values in a binary search tree

In-order = 2, 3, 5, 6, 7, 9

CPSC 221 Binary Search Trees Page 67

An Application of pre-order traversing
•  Suppose we want to transmit our tree across the country

to another programmer. Sending the in-order list would
tell them the values, but would not communicate how the
tree is built.

•  All of the tree below have the in-order walk: 1 2 3. But
only one of the trees below has the pre-order walk 1 2 3.
–  Note that we expect the tree to hold the BST property

CPSC 221 Binary Search Trees Page 68

In-class exercise
•  Ex Can you recover the binary search tree from its

pre-order traversal?
–  15, 5, 3, 12, 10, 6, 7, 13, 16, 20, 18, 23

CPSC 221 Binary Search Trees Page 69

Traverse the tree in post-order (left, right, current)

 3 2 + 5 * 1 –

Use a stack to compute the value

–

* 1

+

23

5

An Application of post-order traversing

Character
scanned Stack

3 3
2 3, 2
+ 5
5 5, 5
* 25
1 25,1
- 24

CPSC 221 Binary Search Trees Page 70

Thinking about BSTs

•  Observations
– Each operation views two new elements at a time
– Elements (even siblings) may be scattered in memory
– Binary search trees are fast if they’re shallow

•  Realities
– For large data sets, disk accesses dominate runtime
– Some deep and some shallow BSTs exist for any data

CPSC 221 Binary Search Trees Page 71

Solutions?
•  Reduce disk accesses?

•  Keep BSTs shallow?

CPSC 221 Binary Search Trees Page 72

Learning Goals revisited
•  Determine if a given tree is an instance of a

particular type (e.g. binary search tree, heap, etc.)
•  Describe and use pre-, in- and post-order traversal

algorithms
•  Describe the properties of binary trees, binary

search trees, and more general trees; Implement
iterative and recursive algorithms for navigating
them in C++

•  Compare and contrast ordered versus unordered
trees in terms of complexity and scope of
application

•  Insert and delete elements from a binary tree

