
CPSC 221                                            Sorting                                                                        Page 1 

Hassan Khosravi 
January – April  2015 

 

CPSC 221 
Basic Algorithms and Data Structures 

Sorting 
 
 

Textbook References: 
Koffman: 10.1-10.4, 10.7-10.10 

EPP 3rd edition: 9.5 
EPP 4th edition: 11.5 

 



CPSC 221                                            Sorting                                                                        Page 2 

Learning Goals 
•  Describe and apply various sorting algorithms: 

•  Insertion Sort, Selection Sort, MergeSort, and 
QuickSort, Bubble Sort, Heapsort 

•  Compare and contrast the tradeoffs of these algorithms. 

•  State differences in performance for large files versus 
small files on various sorting algorithms. 

•  Analyze the complexity of these sorting algorithms. 

•  Manipulate data using various sorting algorithms 
(irrespective of any implementation). 



CPSC 221                                            Sorting                                                                        Page 3 

Abstract Data Types 

Data Structures 

Stack Queue 

Array Circular 
Array 

Linked list 

Tools 

Asymptotic analysis 

CPSC 221 Journey  

Priority Queue 

Binary Heap 

Recursion, induction 
Loop invariants 

Algorithms 

Sorting 



CPSC 221                                            Sorting                                                                        Page 4 

•  Computational complexity 
•  Average case behaviour: Why do we care?   
•  Worst/best case behaviour: Why do we care? 

•  Stability: stable sorting algorithms maintain the 
relative order of records with equal keys. 

 

•  Memory Usage: How much extra memory is used? 

Categorizing Sorting Algorithms 

Tyrion Lannister 

Cersei Lannister 

Daenerys Targaryen 

Jaime Lannister 

Sort by l name  Cersei Lannister 

Jaime Lannister 

Tyrion Lannister 

Daenerys Targaryen 
Break ties with f name 



CPSC 221                                            Sorting                                                                        Page 5 

Selection Sort 
•  Sorts an array by repeatedly finding the smallest 

element of the unsorted tail region and moving it 
to the front.  



CPSC 221                                            Sorting                                                                        Page 6 

•  Find the smallest and swap it with the first element 
 

 
•  Find the next smallest. It is already in the correct place 
 
 
•  Find the next smallest and swap it with first element of unsorted 

portion 
 
 
•  Repeat  

 
 
•  When the unsorted portion is of length 1, we are done 

5	  	   9	  	   17	  	   11	  	   12	  	  

5	  	   9	  	   17	  	   11	  	   12	  	  

5	  	   9	  	   11	  	   17	  	   12	  	  

5	  	   9	  	   11	  	   12	  	   17	  	  

5	  	   9	  	   11	  	   12	  	   17	  	  

Selection Sort 



CPSC 221                                            Sorting                                                                        Page 7 

Selection Sort 
/* !
 Purpose: Find the position of the minimum value !
          in part of an array !
 Param:  data - integer array to be sorted !
         from - starting index !
         to   - ending index !
 returns  - index of minimum value between from and to !
 */!
!
int min_position(int data[], int from, int to) !
{ !
    int min_pos = from; !
    int i; !
    for (i = from + 1; i <= to; i++) !
        if (data[i] < data[min_pos]) !
           min_pos = i; !
    return min_pos; !
} 



CPSC 221                                            Sorting                                                                        Page 8 

Selection Sort 
/* !
 Purpose: sorts elements of an array of integers using !
          selection sort !
 Param:  data - integer array to be sorted !
         size - size of the array !
 */!
!
void selection_sort(int data[], int size) !
{ !
    int next; // The next position to be set to minimum!
    for (next = 0; next < size - 1; next++) !
    { !
        int min_pos = min_position(data, next, size-1); !
        if (min_pos != next) !
            swap(data[min_pos], data[next]); !
    } !
} 



CPSC 221                                            Sorting                                                                        Page 9 

In-Class Exercise 
•  Write out all the steps that selection sort 

takes to sort the following sequence: 
 

91 5 11 90 6 16 31 88 



CPSC 221                                            Sorting                                                                        Page 10 

In-Class Exercise 
•  Write out all of the steps that selection sort 

takes to sort the following sequence: 
 

91 5 11 90 6 16 31 88 

5 91 11 90 6 16 31 88 

5 6 11 90 91 16 31 88 

5 6 11 90 91 16 31 88 

5 6 11 16 91 90 31 88 

5 6 11 16 31 90 91 88 

5 6 11 16 31 88 91 90 

5 6 11 16 31 88 90 91 



CPSC 221                                            Sorting                                                                        Page 11 

Clicker Question 

•  What is the time complexity of selection sort in 
the best and worst case.  

•  A: O(n2), O(n2)  

•  B: O(n), O(n2) 

•  C: O(n lg n), O(n lg n) 

•  D: O(n lg n), O(n2) 

•  E: O(n), O(n lg n) 



CPSC 221                                            Sorting                                                                        Page 12 

Clicker Question (answer) 
•  What is the time complexity of selection sort in 

the best and worst case.  

•  A: O(n2), O(n2)  

•  B: O(n), O(n2) 

•  C: O(n lg n), O(n lg n) 

•  D: O(n lg n), O(n2) 

•  E: O(n), O(n lg n) 



CPSC 221                                            Sorting                                                                        Page 13 

Clicker Question 
•  Is selection sort stable? 

•  A: Yes 

•  B: No 

•  C: I don’t know 



CPSC 221                                            Sorting                                                                        Page 14 

Clicker Question 
•  Is selection sort stable? 

•  A: Yes 

•  B: No 

•  C: I don’t know 

90 5 11 90 6 16 2 88 

2 5 11 90 6 16 90 88 



CPSC 221                                            Sorting                                                                        Page 15 

When is the Selection Sort algorithm used? 

•  One advantage of selection sort is that it requires 
only O(n) write operations.  If we have a system 
where write operations are extremely expensive 
and read operations are not, then selection sort 
could be ideal. One such scenario would be if we 
are sorting a file in-place on flash memory or an 
external hard drive.    

Name Best Average Worst Stable Memory 

Selection Sort O(n2) O(n2) O(n2) challenging O(1) 



CPSC 221                                            Sorting                                                                        Page 16 

Insertion Sort 

•  Given a list, take the current element and insert it 
at the appropriate position of the list, adjusting 
the list every time you insert 



CPSC 221                                            Sorting                                                                        Page 17 

•  while some elements unsorted: 
•  Using linear search, find the location in the sorted portion where the 

1st element of the unsorted portion should be inserted  
•  Move all the elements after the insertion location up one position to 

make space for the new element 

1
3 

2
1 

4
5 

7
9 

4
7 

2
2 

3
8 

7
4 

3
6 

6
6 

9
4 

2
9 

5
7 

8
1 

6
0 

1
6 

4
5 6
6 

6
0 

4
5 the fourth iteration of this loop is 

shown here 



CPSC 221                                            Sorting                                                                        Page 18 

In-class exercise 
l  Write out all of the steps that insertion sort takes 

to sort the following sequence: 29 10 14 37 13 



CPSC 221                                            Sorting                                                                        Page 19 

Insertion Sort 
/* !
 Purpose: sorts elements of an array of integers using 
insertion sort !
 !
 Param:  data  - integer array to be sorted !
        length - size of the array !
 */!
!
void insertion_sort(int data[], int length){ !
  for (int i = 1; i < length; i++){ !
    int val = data [i]; !
    int newIndex = bSearch(data, val, 0, i); !
    for (int j = i; j > newIndex; j--) !
      data [j] = data [j-1]; !
    !
    data [newIndex] = val; !
  } 
} !



CPSC 221                                            Sorting                                                                        Page 20 

Clicker question 

•  What is the time complexity of Insertion Sort in 
the best and worst case.  

•  A: O(n2), O(n2)  

•  B: O(n), O(n2) 

•  C: O(n lg n), O(n lg n) 

•  D: O(n lg n), O(n2) 

•  E: O(n), O(n lg n) 

 



CPSC 221                                            Sorting                                                                        Page 21 

Clicker question (answer) 
•  What is the time complexity of Insertion Sort in the best 

and worst case.  

B: O(n), O(n2) 

•  Best case 

•  Worst case  

•  Average case   

 

a1 a2 a3 a4 a5 

1= n ∈O(n)
i=1

n

∑

i = n(n+1) / 2 ∈O(n2 )
i=1

n

∑

i / 2 = n(n+1) / 4∈O(n2 )
i=1

n

∑



CPSC 221                                            Sorting                                                                        Page 22 

Clicker Question 
•  Suppose we are sorting an array of ten integers 

using a sorting algorithm. After four iterations of 
the algorithm's main loop, the array elements are 
ordered as shown here: 

         1  2  3  4  5  0  6  7  8  9 
 

A. The algorithm might be either selection sort or insertion sort. 

B. The algorithm might be selection sort, but could not be insertion sort. 

C. The algorithm might be insertion sort, but could not be selection sort. 

D. The algorithm is neither selection sort nor insertion sort. 



CPSC 221                                            Sorting                                                                        Page 23 

Clicker Question (answer) 
•  Suppose we are sorting an array of ten integers 

using a sorting algorithm. After four iterations of 
the algorithm's main loop, the array elements are 
ordered as shown here: 

         1  2  3  4  5  0  6  7  8  9 
 

A. The algorithm might be either selection sort or insertion sort. 

B. The algorithm might be selection sort, but could not be insertion sort. 

C. The algorithm might be insertion sort, but could not be selection sort. 

D. The algorithm is neither selection sort nor insertion sort. 



CPSC 221                                            Sorting                                                                        Page 24 

Selection Sort vs. Insertion Sort 

Source 



CPSC 221                                            Sorting                                                                        Page 25 

When is the Insertion Sort algorithm used? 

•  Insertion Sort is the algorithm of choice either 
when the data is nearly sorted (because it is 
adaptive) or when the problem size is small 
(because it has low overhead). 

Name Best Average Worst Stable Memory 

Selection Sort O(n2) O(n2) O(n2) challenging O(1) 

Insertion Sort O(n) O(n2) O(n2) Yes O(1) 



CPSC 221                                            Sorting                                                                        Page 26 

MergeSort  
•  MergeSort is an example of a divide-and-conquer 

algorithm that recursively splits the problem into 
branches, and later combines them to form the solution. 

•  Key Steps in MergeSort: 

1.  Split the array into two halves. 

2.  Recursively sort each half. 

3.  Merge the two (sorted) halves together to produce a 
bigger, sorted array. 
•  Note:  The time to merge two sorted sub-arrays of sizes m 

and n is linear:  O(m + n). 



CPSC 221                                            Sorting                                                                        Page 27 

Mergesort  



CPSC 221                                            Sorting                                                                        Page 28 

MergeSort 

void msort(int x[], int lo, int hi, int tmp[]) { !
  if (lo >= hi) return; !
  int mid = (lo+hi)/2; !
  msort(x, lo, mid, tmp); !
  msort(x, mid+1, hi, tmp); !
  merge(x, lo, mid, hi, tmp); !
} !
!
void mergesort(int x[], int n) { !
  int *tmp = new int[n]; !
  msort(x, 0, n-1, tmp); !
  delete[] tmp; !
} 



CPSC 221                                            Sorting                                                                        Page 29 

Merging two sorted arrays 
•  Divide an array in half and sort each half 

                                                      
 

•  Merge the two sorted arrays into a single sorted array 



CPSC 221                                            Sorting                                                                        Page 30 

Merge by Jon Bentley 
/* !
 Purpose:  Merges two adjacent ranges in an array !
 !
 param     x   - the array with the elements to merge !
          low  - the start of the first range !
          mid  - the end of the first range !
          hi   - end of the second range !
          tmp[]- temp memory used for sorting !
 */!
void merge(int x[], int lo, int mid, int hi, int tmp[]) { !
    int a = lo, b = mid+1, k; !
    for( k = lo; k <= hi; k++ ) !
        if( a <= mid && ( b > hi || x[a] < x[b] ) ) !
            tmp[k] = x[a++]; /* store x[a] then a++ */!
        else!
            tmp[k] = x[b++]; /* store x[b] then b++ */  !
    for( k = lo; k <= hi; k++ ) !
        x[k] = tmp[k]; !
} 

Elegant & brilliant… 
 but not how I’d write it. 



CPSC 221                                            Sorting                                                                        Page 31 

3 -4 7 5 9 6 2 1 

In-class exercise 
•  Write out all the steps that MergeSort takes to sort the 

following sequence: 



CPSC 221                                            Sorting                                                                        Page 32 

3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

3 -4 7 5 9 6 2 1 

-4 3 5 7 6 9 1 2 

-4 3 5 7 1 2 6 9 

-4 1 2 3 5 6 7 9 

In-class exercise 
l  Write out all the steps that MergeSort takes to sort the 

following sequence: 

* 

** 



CPSC 221                                            Sorting                                                                        Page 33 

3 -4 7 5 9 6 2 1 

-4 3 

-4 3 7 5 9 6 2 1 

x: 

tmp: 

x: 

merge( x, 0, 0, 1, tmp );/* step * in previous slide*/!

-4 3 5 7 6 9 1 2 

-4 3 5 7 1 2 6 9 

x: 

tmp: 

x: 

1 2 6 9 

merge( x, 4, 5, 7, tmp ); /* step ** in previous slide*/!

merge( x, 0, 3, 7, tmp ); /* the final step */!



CPSC 221                                            Sorting                                                                        Page 34 

Clicker question 

•  MergeSort makes two recursive calls. Which 
statement is true after these recursive calls finish, 
but before the merge step? 
A. The array elements form a heap. 
B. Elements in each half of the array are sorted amongst 
themselves. 
C. Elements in the first half of the array are less than or 
equal to elements in the second half of the array. 
D. None of the above 



CPSC 221                                            Sorting                                                                        Page 35 

Clicker question 

•  MergeSort makes two recursive calls. Which 
statement is true after these recursive calls finish, 
but before the merge step? 
A. The array elements form a heap. 
B. Elements in each half of the array are sorted amongst 
themselves. 
C. Elements in the first half of the array are less than or 
equal to elements in the second half of the array. 
D. None of the above 



CPSC 221                                            Sorting                                                                        Page 36 

Analyzing the MergeSort Algorithm 

depth # instances Size of instances # read/write operations 
0 1 n   n                            à n                
1 2 n/2 2 * n/2                     à n 
2 4 n/4 4 * n/4                     àn 
… … ... 
k 2 k n/2 k  2 k  *  n/2 k                       à n 
… … … 
lg n 2 lg n à n n/2 lg n à 1 2lg n *1                      à n 

O(n) operations at each level 
We have lg n levels therefore,  
O(n lg n) 
 



CPSC 221                                            Sorting                                                                        Page 37 

MergeSort Performance Analysis 
T(1) = 1 
T(n)  = 2T(n/2) + n 

  = 4T(n/4) + 2(n/2) + n 
  = 8T(n/8) + 4(n/4) + 2(n/2) + n 
  = 8T(n/8) + n + n + n = 8T(n/8) + 3n 
  = 2iT(n/2i) + in. 

Let i = lg n 
T(n)  = nT(1) + n lg n = n + n lg n ∈ Θ(n lg n) 

We ignored floors/ceilings.  To prove performance formally, we’d use 
this as a guess and prove it with floors/ceilings by induction. 



CPSC 221                                            Sorting                                                                        Page 38 

Clicker Question 

•  Is MergeSort stable? 

•  A: Yes 

•  B: No 

•  C: I don’t know  



CPSC 221                                            Sorting                                                                        Page 39 

Clicker Question 

•  Is MergeSort stable? 

•  A: Yes 

•  B: No 

•  C: I don’t know  

prefer the “left” of the two sorted sublists on ties 



CPSC 221                                            Sorting                                                                        Page 40 

When is the MergeSort algorithm used? 
•  External sorting is a term for a class of sorting 

algorithms that can handle massive amounts of data. 
External sorting is required when the data being sorted 
do not fit into the main memory of a computing device 
(usually RAM) and instead they must reside in the 
slower external memory (usually a hard drive). 

•  MergeSort is suitable for external sorting. 
Name Best Average Worst Stability Memory 

Selection Sort O(n2) O(n2) O(n2) challenging O(1) 

Insertion Sort O(n) O(n2) O(n2) Yes O(1) 

MergeSort O(n lg n) O(n lg n) O(n lg n) Yes O(n) 



CPSC 221                                            Sorting                                                                        Page 41 

QuickSort 

•  In practice, one of the fastest sorting algorithms is 
Quicksort, developed in 1961 by C.A.R. Hoare. 

•  Comparison-based: examines elements by 
comparing them to other elements 

•  Divide-and-conquer: divides into “halves” (that 
may be very unequal) and recursively sorts 



CPSC 221                                            Sorting                                                                        Page 42 

QuickSort algorithm 
•  Pick a pivot 

•  Reorder the list such that all elements < pivot are 
on the left, while all elements >= pivot are on the 
right 

•  Recursively sort each side 

Are we missing a base case? 



CPSC 221                                            Sorting                                                                        Page 43 

Partitioning 

•  The act of splitting up an array according to the 
pivot is called partitioning 

•  Consider the following: 

-4 1 -3 2 3 5 4 7 

left partition right partition 
pivot 

43 



CPSC 221                                            Sorting                                                                        Page 44 

Quicksort example 

•  http://visualgo.net/sorting.html 
•  Initialize array with  

•  25, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48 



CPSC 221                                            Sorting                                                                        Page 45 

qSort code 
/* !
 Purpose: sorts elements of an array of integers using Quicksort !
 !
 Param:  a  - integer array to be sorted !
         lo - the start of the sequence to be sorted. !
         hi - the end of the sequence to be sorted. !
 */!
!
void qSort( int a[], int lo, int hi ){ !
    int pivotElement; !
    !
    if(lo < hi){ !
        pivotElement = pivot(a, lo, hi); !
        qSort(a, lo, pivotElement-1); !
        qSort(a, pivotElement+1, hi); !
    } !
} 



CPSC 221                                            Sorting                                                                        Page 46 

QuickSort Visually 

P 

P P P 

P P P P 

Sorted! 



CPSC 221                                            Sorting                                                                        Page 47 

Partitioning example 



CPSC 221                                            Sorting                                                                        Page 48 

Partitioning 
/* !
 Purpose: find and return the index of pivot element such that all items !
         left of partition are smaller and right of partition are bigger !
 !
 Param:  x  - integer array to be sorted !
         lo - the start of the sequence to be sorted. !
         hi - the end of the sequence to be sorted. !
*/ !
int pivot(int x[], int lo, int hi){ !
    int  p = lo; !
    int pivotElement = x[lo]; !
    !
    for(int i = lo+1 ; i <= hi; i++){ !
        if(x[i] <= pivotElement){ !
            p++; !
            swap(x[i], x[p]); !
        } !
    } !
    swap(x[p], x[lo]); !
    return p; !
} 



CPSC 221                                            Sorting                                                                        Page 49 

QuickSort Example  

2 -4 6 1 5 -3 3 7 



CPSC 221                                            Sorting                                                                        Page 50 

Clicker question 

•  Here is an array which has just been partitioned 
by the first step of QuickSort:  

           3, 0, 2, 4, 5, 8, 7, 6, 9  

Which of these elements could be the pivot?  
•  a. 3  
•  b. 4  
•  c. 5  
•  d. 6  
•  e. (b) or (c)  

 

 



CPSC 221                                            Sorting                                                                        Page 51 

Clicker question (answer) 

•  Here is an array which has just been partitioned 
by the first step of QuickSort:  

           3, 0, 2, 4, 5, 8, 7, 6, 9  

Which of these elements could be the pivot?  
•  a. 3  
•  b. 4  
•  c. 5  
•  d. 6  
•  e. (b) or (c)  

 

 



CPSC 221                                            Sorting                                                                        Page 52 

QuickSort: Complexity 

•  In our partitioning task, we compared each 
element to the pivot 
•  Thus, the total number of comparisons is N 
•  As with MergeSort, if one of the partitions is about 

half (or any constant fraction of) the size of the array, 
complexity is Θ(n lg n). 

•  In the worst case, however, we end up with a 
partition with a 1 and n-1 split 



CPSC 221                                            Sorting                                                                        Page 53 

P 

P 

P 

P 

QuickSort Visually: Worst case 



CPSC 221                                            Sorting                                                                        Page 54 

QuickSort: Worst Case 

•  In the overall worst-case, this happens at every 
step… 

•  Thus we have N comparisons in the first step 
•  N-1 comparisons in the second step 
•  N-2 comparisons in the third step 
•   : 

…or O(n2)   

€ 

n + (n −1)+L + 2+1=
n(n +1)
2

=
n2

2
+
n
2

... 



CPSC 221                                            Sorting                                                                        Page 55 

MergeSort vs. QuickSort 

•  QuickSort is also O(n lg n). But in practice, it 
tends to run faster than MergeSort. It can work 
in-place on the original array and does not 
require extra space 

•  But: its worst-case complexity is O(n2). 

•  That worst-case behaviour can usually be 
avoided by using more clever ways of finding the 
pivot (not just using the first element). 
•  Randomized algorithms can be used to prove that the 

average case for Quicksort is O(n lg n) 



CPSC 221                                            Sorting                                                                        Page 56 

QuickSort: Average Case (Intuition) 

•  Clearly pivot choice is important 
•  It has a direct impact on the performance of the sort 
•  Hence, QuickSort is fragile, or at least “attackable” 

•  So how do we pick a good pivot? 



CPSC 221                                            Sorting                                                                        Page 57 

QuickSort: Average Case (Intuition) 

•  Let’s assume that pivot choice is random 
•  Half the time the pivot will be in the centre half of the 

array 

•  Thus at worst the split will be n/4 and 3n/4 



CPSC 221                                            Sorting                                                                        Page 58 

QuickSort: Average Case (Intuition) 

•  We can apply this to the notion of a good split 
•  Every “good” split: 2 partitions of size n/4 and 3n/4 

•  Or divides N by 4/3 
•  Hence, we make up to log4/3(N) splits 

•  Expected # of partitions is at most 2 * log4/3(N) 
•  O(logN) 

•  Given N comparisons at each partitioning step, 
we have Θ(N log N) 



CPSC 221                                            Sorting                                                                        Page 59 

Comparison of different sorting 
algorithms 

•  Quicksort algorithm is one of the best sorting 
algorithms and is widely used 

Name Best Average Worst Stability Memory 

Selection Sort O(n2) O(n2) O(n2) challenging 
 

O(1) 

Insertion Sort O(n) O(n2) O(n2) Yes O(1) 

MergeSort O(n lg n) O(n lg n) O(n lg n) Yes O(n) 

QuickSort O(n lg n) O(n lg n) O(n2) Challenging O(lg n) 



CPSC 221                                            Sorting                                                                        Page 60 

Bubble Sort 
•  Bubble sort, works by repeatedly comparing 

each pair of adjacent items and swapping them if 
they are in the wrong order. 



CPSC 221                                            Sorting                                                                        Page 61 

In-class exercise 
Write out all the steps that bubble sort takes to sort 
the following sequence:             ( 5 1 4 2 8 ) 

First Pass: 
( 5 1 4 2 8 ) à ( 1 5 4 2 8 ), Swap since 5 > 1                                                                             
( 1 5 4 2 8 ) à ( 1 4 5 2 8 ), Swap since 5 > 4 
( 1 4 5 2 8 ) à ( 1 4 2 5 8 ), Swap since 5 > 2 
( 1 4 2 5 8 ) à ( 1 4 2 5 8 ),  

Second Pass: 
( 1 4 2 5 8 ) à ( 1 4 2 5 8 ) 
( 1 4 2 5 8 ) à ( 1 2 4 5 8 ), Swap since 4 > 2 
( 1 2 4 5 8 ) à ( 1 2 4 5 8 ) 

Third Pass: 
( 1 2 4 5 8 ) à ( 1 2 4 5 8 ) 
( 1 2 4 5 8 ) à ( 1 2 4 5 8 ) 
 

Fourth Pass: /* could be avoided */                                                                                                               
( 1 2 4 5 8 ) à ( 1 2 4 5 8 ) 
 

 



CPSC 221                                            Sorting                                                                        Page 62 

Bubble Sort 
•  Consider the following implementation for 

Bubble sort. /* !
 Purpose: sorts elements of an array of integers using bubble sort !
 !
 Param:  x - integer array to be sorted !
 n - size of the array !
 */!
void bubbleSort(int x[], int n){ !
  int i, j, flag = 1;    // set flag to 1 to start first pass!
  for(i = 1; (i <= n) && flag; i++){ !
    flag = 0; !
    for (j=0; j < (n -1); j++){ !
      if (x[j+1] < x[j]) { !
        swap(x[j], x[j+1]); !
        flag = 1; // indicates that a swap occurred. !
      } !
    } !
  } !
  return; !
} 



CPSC 221                                            Sorting                                                                        Page 63 

Clicker question 

•  What is the time complexity of Bubble Sort in the 
best and worst case.  

•  A: O(n2), O(n2)  

•  B: O(n), O(n2) 

•  C: O(n lg n), O(n lg n) 

•  D: O(n lg n), O(n2) 

•  E: O(n), O(n lg n) 

 



CPSC 221                                            Sorting                                                                        Page 64 

Clicker question (answer) 

•  What is the time complexity of Bubble Sort in the 
best and worst case.  

•  A: O(n2), O(n2)  

•  B: O(n), O(n2) 

•  C: O(n lg n), O(n lg n) 

•  D: O(n lg n), O(n2) 

•  E: O(n), O(n lg n) 

 



CPSC 221                                            Sorting                                                                        Page 65 

Comparison of different sorting 
algorithms 

Name Best Average Worst Stability Memory 

Selection Sort O(n2) O(n2) O(n2) Challenging O(1) 

Insertion Sort O(n) O(n2) O(n2) Yes O(1) 

MergeSort O(n lg n) O(n lg n) O(n lg n) Yes O(n) 

QuickSort O(n lg n) O(n lg n) O(n2) Challenging O(lg n) 

Bubble Sort O(n) O(n2) O(n2) Yes O(1) 



CPSC 221                                            Sorting                                                                        Page 66 

Heapsort (revisited) 

3 2 13 12 

10 6 1 8 

4 9 

5 

9 4 8 1 6 10 12 13 2 3 14 20 7 5 

7 20 14 



CPSC 221                                            Sorting                                                                        Page 67 

Heapsort (revisited) 

3 2 13 12 

10 6 1 8 

4 9 

5 

7 20 14 1 2 8 9 

10 6 3 12 

14 13 

20 

7 5 4 

Build Heap 



CPSC 221                                            Sorting                                                                        Page 68 

1 2 8 9 

10 6 3 12 

14 13 

20 

7 5 4 1 2 8 9 

7 6 3 12 

10 13 

14 

5 4 20 1 2 8 5 

7 6 3 9 

10 12 

13 

4 14 20 

1 2 4 5 

7 6 3 8 

10 9 

12 

13 14 20 2 4 5 

1 6 3 8 

7 9 

10 

12 13 14 20 4 2 

1 6 3 5 

7 8 

9 

10 12 13 14 20 

Heapsort (revisited) 



CPSC 221                                            Sorting                                                                        Page 69 

69 

How long does “build” take?  Worst case: O(n) J 

How long do the deletions take?  Worst case: O(n lg n) J 

4 2 

1 6 3 5 

7 8 

9 

10 12 13 14 20 

8 7 5 3 6 1 2 4 10 12 13 14 20 9 

PQ Result 

Heapsort (revisited) 



CPSC 221                                            Sorting                                                                        Page 70 

Heapsort (revisited) 

9 4 8 1 6 10 12 13 2 3 14 20 7 5 
1 2 3 4 5 6 7 8 9 10 11 12 0 13 

13 14 12 3 6 10 9 8 2 1 4 5 7 20 

PQ 

Floyd’s Algorithm 

Takes only O(n) time! 



CPSC 221                                            Sorting                                                                        Page 71 

Heapsort (revisited) 

1 2 3 4 5 6 7 8 9 10 11 12 0 13 

13 14 12 3 6 10 9 8 2 1 4 5 7 20 

PQ 
13 10 12 3 6 7 9 8 2 1 4 5 20 14 

PQ 
12 10 9 3 6 7 5 8 2 1 4 14 20 13 

PQ 
9 10 8 3 6 7 5 4 2 1 13 14 20 12 

PQ 



CPSC 221                                            Sorting                                                                        Page 72 

Comparison of different sorting 
algorithms 

Name Best Average Worst Stability Memory 

Selection Sort O(n2) O(n2) O(n2) Challenging O(1) 

Insertion Sort O(n) O(n2) O(n2) Yes O(1) 

MergeSort O(n lg n) O(n lg n) O(n lg n) Yes O(n) 

QuickSort O(n lg n) O(n lg n) O(n2) Challenging O(lg n) 

Bubble Sort O(n) O(n2) O(n2) Yes O(1) 

Heapsort O(n lg n) O(n lg n) O(n lg n) No O(1) 



CPSC 221                                            Sorting                                                                        Page 73 

Average Case Running Time 

•  How long would it take the insertion sort algorithm to 
sort 800,000 values 

A: 14 minutes     B: 28 minutes    C: 56 minutes       D: other 

~7 min 



CPSC 221                                            Sorting                                                                        Page 74 

Average Case Running Time 

•  How long would it take the insertion sort algorithm to 
sort 800,000 values 

•  T(n) = n2 à   T(2n) = 4n2                      B: 28 minutes 

~7 min 



CPSC 221                                            Sorting                                                                        Page 75 

Comparison of different sorting algorithms 
•  Complexity 

•  Best case: Insert < Quick, Merge, Heap < Select 
•  Average case: Quick, Merge, Heap < Insert, Select 
•  Worst case: Merge, Heap < Quick, Insert, Select 

•  Usually on “real” data: Quick < Merge < Heap < 
I/S 

•  On very short lists: quadratic sorts may have an 
advantage (so, some quick/merge 
implementations “bottom out” to these as base 
cases) 
 



CPSC 221                                            Sorting                                                                        Page 76 

Comparison of different sorting 
algorithms 

•  Stability 
•  Easily Made Stable: Insert, Merge 
•  Challenging to Make Stable: Select, Quick 
•  Unstable: Heap 

 

•  Memory use: 
•  Insert, Select, Heap < Quick < Merge 
 



CPSC 221                                            Sorting                                                                        Page 77 

Complexity of Sorting Using 
Comparisons as a Problem 

Each comparison is a “choice point” in the algorithm.  
You can do one thing if the comparison is true and 
another if false.  So, the whole algorithm is like a 
binary tree… 

… … 

sorted! z < c c < d sorted! 

a < d a < b 

x < y 

… … 

yes no 

yes no yes no 

yes no yes no 



CPSC 221                                            Sorting                                                                        Page 78 

Complexity of Sorting Using 
Comparisons as a Problem 

The algorithm spits out a (possibly different) sorted 
list at each leaf.  What’s the maximum number of 
leaves? 

… … 

sorted! z < c c < d sorted! 

a < d a < b 

x < y 

… … 

yes no 

yes no yes no 

yes no yes no 



CPSC 221                                            Sorting                                                                        Page 79 

Complexity of Sorting Using 
Comparisons as a Problem 

There are n! possible permutations of a sorted list (i.e., 
input orders for a given set of input elements).  
How deep must the tree be to distinguish those 
input orderings? 

… … 

sorted! z < c c < d sorted! 

a < d a < b 

x < y 

… … 

yes no 

yes no yes no 

yes no yes no 



CPSC 221                                            Sorting                                                                        Page 80 

Complexity of Sorting Using 
Comparisons as a Problem 

If the tree is not at least lg(n!) deep, then there’s some 
pair of orderings I could feed the algorithm which 
the algorithm does not distinguish.  So, it must not 
successfully sort one of those two orderings.  

… … 

sorted! z < c c < d sorted! 

a < d a < b 

x < y 

… … 

yes no 

yes no yes no 

yes no yes no 



CPSC 221                                            Sorting                                                                        Page 81 

Learning Goals revisited 
•  Describe and apply various sorting algorithms: 

•  Insertion Sort, Selection Sort, MergeSort, and 
QuickSort, Bubble Sort, Heapsort 

•  Compare and contrast the tradeoffs of these algorithms. 

•  State differences in performance for large files versus 
small files on various sorting algorithms. 

•  Analyze the complexity of these sorting algorithms. 

•  Manipulate data using various sorting algorithms 
(irrespective of any implementation). 


