
CPSC 221 Recursion and Iteration Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

Recursion and Iteration

Textbook References:
Koffman: Chapter 7

EPP 3rd edition: 5.1, 5.2 7.1, 7.2, 4.2, 4.3, 4.5
EPP 4th edition: 6.1, 6.2 7.1, 7.2, 5.2, 5.3, 5.5

(Borrowing many slides from Alan Hu and Steve Wolfman)

CPSC 221 Recursion and Iteration Page 2

Learning goals (Induction and Recursion)
•  Describe the relationship between recursion and induction (e.g.,

take a recursive code fragment and express it mathematically in
order to prove its correctness inductively).

•  Evaluate the effect of recursion on space complexity (e.g., explain
why a recursively defined method takes more space then an
equivalent iteratively defined method.).

•  Describe how tail recursive algorithms can require less space
complexity than non-tail recursive algorithms.

•  Recognize algorithms as being iterative or recursive.
•  Convert recursive solutions to iterative solutions and vice versa.
•  Draw a recursion tree and relate the depth to a) the number of

recursive calls and b) the size of the runtime stack. Identify and/or
produce an example of infinite recursion

CPSC 221 Recursion and Iteration Page 3

Learning goals (Loop Invariants)
•  Take a loop code fragment and express it mathematically

in order to prove its correctness inductively (specifically
describing that the induction is on the iteration variable).

•  In simpler cases, determine the loop invariant.

CPSC 221 Recursion and Iteration Page 4

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic analysis

CPSC 221 Journey

Priority Queue

Binary Heap

Recursion, induction
Loop invariants

CPSC 221 Recursion and Iteration Page 5

Thinking Recursively

•  DO NOT START WITH CODE. Instead, write the story
of the problem, in natural language.

•  Define the problem: What should be done given a

particular input?

•  Identify and solve the (usually simple) base case(s).

•  Start solving a more complex version.
–  As soon as you break the problem down in terms of any

simpler version, call the function recursively and assume it
works. Do not think about how!

CPSC 221 Recursion and Iteration Page 6

How a Computer Does Recursion

•  This is NOT a good way to “understand
recursion”!!!

CPSC 221 Recursion and Iteration Page 7

How a Computer Does Recursion

•  This is NOT a good way to “understand
recursion”!!!

•  But understanding how a computer actually
does recursion IS important to understand the
time and space complexity of recursive
programs, and how to make them run better.

CPSC 221 Recursion and Iteration Page 8

Function/Method Calls

•  A function or method call is an interruption or
aside in the execution flow of a program:

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 9

Function Calls in Daily Life

•  How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for

your help moving some stuff.
– Your buddy calls.
– The doorbell rings.

CPSC 221 Recursion and Iteration Page 10

Function Calls in Daily Life

•  How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for

you help moving some stuff.
– Your buddy calls.
– The doorbell rings.

•  You stop what you’re doing, you memorize
where you were in your task, you handle the
interruption, and then you go back to what you
were doing.

LIFO!
That’s a stack!

CPSC 221 Recursion and Iteration Page 11

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

CPSC 221 Recursion and Iteration Page 12

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 26

CPSC 221 Recursion and Iteration Page 13

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

CPSC 221 Recursion and Iteration Page 14

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 20lbs of steer manure to the garden.

CPSC 221 Recursion and Iteration Page 15

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

CPSC 221 Recursion and Iteration Page 16

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

I am listening to my buddy tell some inane story about last night.

CPSC 221 Recursion and Iteration Page 17

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

CPSC 221 Recursion and Iteration Page 18

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

I am signing for a FedEx package.

CPSC 221 Recursion and Iteration Page 19

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy is just about to get to the point where he pukes…

CPSC 221 Recursion and Iteration Page 20

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

My buddy has finally finished his story…

CPSC 221 Recursion and Iteration Page 21

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 40lbs of steer manure to the garden.

CPSC 221 Recursion and Iteration Page 22

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 60lbs of steer manure to the garden.

CPSC 221 Recursion and Iteration Page 23

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

I have moved 80lbs of steer manure to the garden.

CPSC 221 Recursion and Iteration Page 24

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 27

CPSC 221 Recursion and Iteration Page 25

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

I am reading about the delete function in Koffman p. 28

CPSC 221 Recursion and Iteration Page 26

Activation Records in Daily Life

I am working on line X of my stack.cpp file…

CPSC 221 Recursion and Iteration Page 27

Activation Records in Daily Life

I have finished my stack.cpp file! J

CPSC 221 Recursion and Iteration Page 28

Activation Records in Daily Life

CPSC 221 Recursion and Iteration Page 29

Activation Records on a Computer

•  A computer handles function/method calls in
exactly the same way! (Also, “interrupts”)

CPSC 221 Recursion and Iteration Page 30

Activation Records on a Computer
…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 31

Activation Records on a Computer

a=?, b=?, c=?, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 32

Activation Records on a Computer

a=3, b=?, c=?, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 33

Activation Records on a Computer

a=3, b=6, c=?, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 34

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=3,y=6

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 35

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=1,y=7

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 36

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=0,y=8

CPSC 221 Recursion and Iteration Page 37

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

Activation Records on a Computer

a=3, b=6, c=?, d=?

x=0,y=8

CPSC 221 Recursion and Iteration Page 38

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

Activation Records on a Computer

a=3, b=6, c=?, d=?

return 8

CPSC 221 Recursion and Iteration Page 39

Activation Records on a Computer

a=3, b=6, c=8, d=?

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 40

Activation Records on a Computer

a=3, b=6, c=8, d=9

…
int a, b, c, d;
a = 3;
b = 6;
c = foo(a,b);
d = 9;
…

int foo(int x, int y) {
 while (x>0) {

 y++;
 x >>= 1;

 }
 return y;
}

CPSC 221 Recursion and Iteration Page 41

Recursion is handled the same way!

n=4

CPSC 221 Recursion and Iteration Page 42

Recursion is handled the same way!

n=4

CPSC 221 Recursion and Iteration Page 43

Recursion is handled the same way!

n=4

CPSC 221 Recursion and Iteration Page 44

Recursion is handled the same way!

n=4

n=3

CPSC 221 Recursion and Iteration Page 45

Recursion is handled the same way!

n=4

n=3

CPSC 221 Recursion and Iteration Page 46

Recursion is handled the same way!

n=4

n=3

CPSC 221 Recursion and Iteration Page 47

Recursion is handled the same way!

n=4

n=3

n=2

CPSC 221 Recursion and Iteration Page 48

Recursion is handled the same way!

n=4

n=3

n=2

CPSC 221 Recursion and Iteration Page 49

Recursion is handled the same way!

n=4

n=3

return 1

CPSC 221 Recursion and Iteration Page 50

Recursion is handled the same way!

n=4

n=3, result=1+…

CPSC 221 Recursion and Iteration Page 51

Recursion is handled the same way!

n=4

n=3, result=1+…

n=1

CPSC 221 Recursion and Iteration Page 52

Recursion is handled the same way!

n=4

n=3, result=1+…

return 1

CPSC 221 Recursion and Iteration Page 53

Recursion is handled the same way!

n=4

n=3, result=1+1

CPSC 221 Recursion and Iteration Page 54

Recursion is handled the same way!

n=4

return 2

CPSC 221 Recursion and Iteration Page 55

Recursion is handled the same way!

n=4, result=2+…

CPSC 221 Recursion and Iteration Page 56

Recursion is handled the same way!

n=4, result=2+…

CPSC 221 Recursion and Iteration Page 57

Recursion is handled the same way!

n=4, result=2+…

n=2

CPSC 221 Recursion and Iteration Page 58

Recursion is handled the same way!

n=4, result=2+…

n=2

CPSC 221 Recursion and Iteration Page 59

Recursion is handled the same way!

n=4, result=2+…

return 1

CPSC 221 Recursion and Iteration Page 60

Recursion is handled the same way!

n=4, result=2+1

CPSC 221 Recursion and Iteration Page 61

Recursion is handled the same way!

return 3

CPSC 221 Recursion and Iteration Page 62

Recursion is handled the same way!

As I said before, do NOT try to think about recursion this way!

CPSC 221 Recursion and Iteration Page 63

Recursion is handled the same way!

main
fib(4)
main

fib(3)
fib(4)
main

fib(2)
fib(3)
fib(4)
main

fib(3)
fib(4)
main

fib(1)
fib(3)
fib(4)
main

fib(3)
fib(4)
main

fib(4)
main

fib(2)
fib(4)
main

fib(4)
main main

The call (or “run-time”) stack

CPSC 221 Recursion and Iteration Page 64

Efficiency	 and	 the	 Call	 Stack	
•  The height of the call stack tells us the maximum

memory we use storing the stack.

•  The number of calls that go through the call stack tells
us something about time usage. (The # of calls
multiplied by worst-case time per call bounds the
asymptotic complexity.)

main
fib(4)
main

fib(3)
fib(4)
main

fib(2)
fib(3)
fib(4)
main

fib(3)
fib(4)
main

fib(1)
fib(3)
fib(4)
main

fib(3)
fib(4)
main

fib(4)
main

fib(2)
fib(4)
main

fib(4)
main main

height =
4 frames

When calculating memory usage, we must consider stack space! But only
 the non-tail-calls count. see later slides on tail recursion and tail calls.

CPSC 221 Recursion and Iteration Page 65

Aside: Activation Records and Computer
Security

•  Have you heard about “buffer overrun”
attacks?

•  Suppose, when talking to your buddy, he
manages to make you forget what you were in
the middle of doing before his call?

•  Suppose a function messes up the return
address in the call stack?

CPSC 221 Recursion and Iteration Page 66

Aside: Computer Security

n=4, result=2+…

n=2

CPSC 221 Recursion and Iteration Page 67

Aside: Computer Security

n=4, result=2+…

n=2

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

CPSC 221 Recursion and Iteration Page 68

Aside: Computer Security

n=4, result=2+…

n=2

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

CPSC 221 Recursion and Iteration Page 69

Aside: Computer Security

n=4, result=2+…

return 1

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

CPSC 221 Recursion and Iteration Page 70

Aside: Computer Security

n=4, result=2+…

Evil attacker code:
install backdoor
install rootkit
install Sony DRM software
…

CPSC 221 Recursion and Iteration Page 71

Thinking Recursively

•  DO NOT START WITH CODE. Instead, write the story
of the problem, in natural language.

•  Define the problem: What should be done given a

particular input?

•  Identify and solve the (usually simple) base case(s).

•  Start solving a more complex version.
–  As soon as you break the problem down in terms of any

simpler version, call the function recursively and assume it
works. Do not think about how!

CPSC 221 Recursion and Iteration Page 72

Random String Permutations

Problem: Permute a string so that every
reordering of the string is equally likely.
You may use a function randrange(n),
which selects a number [0,n) uniformly at
random.

CPSC 221 Recursion and Iteration Page 73

Random String Permutations
Understanding the Problem

•  A	 string	 is:	
– an	 empty	 string	 or	 a	 le8er	 plus	 the	 rest	 of	 the	
string.	

	

•  We	 want	 every	 le8er	 to	 have	 an	 equal	
chance	 to	 end	 up	 first.	 	 We	 want	 all	
permutaBons	 of	 the	 rest	 of	 the	 string	 to	 be	
equally	 likely	 to	 go	 aDer.	

•  	 And..	 there’s	 only	 one	 empty	 string.	

CPSC 221 Recursion and Iteration Page 74

Random String Permutations
Algorithm

PERMUTE(s):
 if s is empty, just return s

 else:
 use randRange to choose a random first letter
 permute the rest of the string (minus that random letter)
 return a string that starts with the random letter
 and continues with the permuted rest of the string

CPSC 221 Recursion and Iteration Page 75

ConverBng	 Algorithm	 to	 Psudocode	

PERMUTE(s):	 	
	
	 	 if	 s	 is	 empty,	 just	 return	 s	
	
	 	 else:	
	
	 	 	 	 choose	 random	 le8er	
	
	 	 	 	 permute	 the	 rest	
	
	 	 	 	 return	 random	 le8er	 +	 rest	

CPSC 221 Recursion and Iteration Page 76

Random String Permutations (Code)
string permute(string str) { !
 // if s is empty!
 if (str.size() == 0) !
 return str; // just return s!
!
 else { !
 int index = choose_random_index(str); !
 char c = str[index]; !
 !
 string rest = str.erase(index, 1); !
 string rest_permuted = permute(rest); !
 !
 return c + rest_permuted; !
 } !
} g++ -std=c++11 permute.cc

CPSC 221 Recursion and Iteration Page 77

Limits of the Call Stack
int fib(int n) { !
 if (n == 1) return 1; !
 else if (n == 2) return 1; !
 else return fib(n-1) + fib(n-2); !
} !
cout << fib(0) << endl;

What will happen?
a. Returns 1 immediately.
b. Runs forever (infinite recursion)
c. Stops running when n “wraps around” to positive values.
d. Bombs when the computer runs out of stack space.
e. None of these.

CPSC 221 Recursion and Iteration Page 78

Function Calls in Daily Life

•  How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for

your help moving some stuff.
– Your buddy calls.
– The doorbell rings.

CPSC 221 Recursion and Iteration Page 79

Tail Calls in Daily Life
•  How do you handle interruptions in daily life?
– You’re at home, working on CPSC221 project.
– You stop to look up something in the book.
– Your roommate/spouse/partner/parent/etc. asks for your

help moving some stuff.
– Your buddy calls.
– The doorbell rings.

•  If new task happens just as you finish previous task,
there’s no need for new activation record.

•  These are called tail calls.

CPSC 221 Recursion and Iteration Page 80

Managing the Call Stack: Tail Recursion

•  This is clearly infinite recursion. The call stack will
get as deep as it can get and then bomb, right?

A: Yes this will result in a stack overflow
B: No, this will magically not result in a stack overflow
C: It depends
D: None of the above

void endlesslyGreet(){ !
 cout << "Hello, world!" << endl; !
 endlesslyGreet(); !
} !

CPSC 221 Recursion and Iteration Page 81

Why Tail Calls Matter

•  Since a tail call doesn’t need to generate a new
activation record on the stack, a good compiler
won’t make the computer do that.

•  Therefore, tail call doesn’t increase depth of
call stack.

•  Therefore, the program uses less space if you
can set it up to use a tail call.

CPSC 221 Recursion and Iteration Page 82

Managing the Call Stack: Tail Recursion

•  This is clearly infinite recursion. The call stack
will get as deep as it can get and then bomb, right?

But... why? What work is the call stack doing?
There’s nothing to remember on the stack!

void endlesslyGreet(){ !
 cout << "Hello, world!" << endl; !
 endlesslyGreet(); !
} !

Try compiling it with at least –O2 optimization and running.
It won’t give a stack overflow!

CPSC 221 Recursion and Iteration Page 83

Tail Recursion
(should	 be	 CPSC	 110	 review!)

•  A function is “tail recursive” if for every recursive
call in the function, that call is the absolute last
thing the function needs to do before returning.

•  In that case, why bother pushing a new stack
frame? There’s nothing to remember. Just re-use
the old frame.

•  That’s what most compilers will do.

CPSC 221 Recursion and Iteration Page 84

CPSC 221 Administrative Notes
•  Programming project

•  Due Mon, March 2nd
•  Make sure that it is work in progress

–  Assignment 1 will be returned today
•  We’ll make a post on Piazza regarding who marked

which question
•  If you have any concerns, talk to the responsible TA

first
•  If you’re still unhappy with your mark, you can make

a formal appeal and I’ll remark your entire assignment

CPSC 221 Recursion and Iteration Page 85

Midterm Logistics
•  This Wednesday, Feb 25, from 6pm to (approx) 8pm.
•  Our section is in HENN 201+202
•  Two-stage exam: individual and group!

–  Individual portion is 70 minutes. Normal midterm rules apply.
No collaboration of any kind permitted!

–  Group portion is 40 minutes, starting after individual portion
ends. Groups of 3-4 students do ONE exam together. (Do not
tear it apart!)

–  Your mark is max of your individual score or a weighted
average with your group exam score. (Group part can only help
you.)

•  Exam is open-book (3 books max), and open-notes (up to
3” binder of A4 or US-Letter size paper).

CPSC 221 Recursion and Iteration Page 86

Three more things
•  Midterm: Form study groups

– Collaborate on Piazza
– Answer to your peers post

•  Compilers and optimization by default

•  Hows PeerWise?

CPSC 221 Recursion and Iteration Page 87

So, Where Were We?
•  Recognize algorithms as being iterative or recursive.
•  Draw a recursion tree and relate the depth to a) the

number of recursive calls and b) the size of the runtime
stack. Identify and/or produce an example of infinite
recursion

•  Evaluate the effect of recursion on space complexity
(e.g., explain why a recursively defined method takes
more space then an equivalent iteratively defined
method.).

•  Describe how tail recursive algorithms can require less
space complexity than non-tail recursive algorithms.

CPSC 221 Recursion and Iteration Page 88

Tail Recursion
A function is “tail recursive” if for every

recursive call in the function, that call is the
absolute last thing the function needs to do
before returning.

In that case, why bother pushing a new stack
frame? There’s nothing to remember. Just
re-use the old frame.

That’s what most compilers will do.

88

Note: KW textbook is WRONG on definition of tail recursion!
They say it’s based on the last line, and the example they give is
NOT tail recursive!

CPSC 221 Recursion and Iteration Page 89

Tail Recursive?

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

!
int fib(int n) { !
 if (n <= 2) return 1; !
 else return fib(n-1) + fib(n-2); !
}

CPSC 221 Recursion and Iteration Page 90

Tail Recursive?

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

!
int fib(int n) { !
 if (n <= 2) return 1; !
 else return fib(n-1) + fib(n-2); !
}

CPSC 221 Recursion and Iteration Page 91

Tail Recursive?

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

int factorial (int n) { !
 if (n == 0) return 1; !
 else return n * factorial(n – 1); !
} !

CPSC 221 Recursion and Iteration Page 92

Tail Recursive?

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

int factorial (int n) { !
 if (n == 0) return 1; !
 else return n * factorial(n – 1); !
} !

CPSC 221 Recursion and Iteration Page 93

Tail Recursive?

int fact_acc (int n, int acc) { !
 if (n == 0) return acc; !
 else return fact_acc(n-1, acc * n); !
}

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

CPSC 221 Recursion and Iteration Page 94

Tail Recursive?

int fact_acc (int n, int acc) { !
 if (n == 0) return acc; !
 else return fact_acc(n-1, acc * n); !
}

Is this function tail recursive?

a. Yes.
b. No.
c. Not enough information.

CPSC 221 Recursion and Iteration Page 95

Recursion vs. Iteration

Which one can do more? Recursion or iteration?

A: Recursion
B: Iteration
C: As powerful as each other
D: I don’t know!

CPSC 221 Recursion and Iteration Page 96

Simulating a Loop with Recursion

Anything we can do with iteration, we can do with recursion.

int i = 0; !
while (i < n){ !
 doFoo(i); !
 i++; !
}

!
void recDoFoo(int i, int n){ !
 if (i < n) { !
 doFoo(i); !
 recDoFoo(i + 1, n); !
 } !
} !

 recDoFoo(0, n);

CPSC 221 Recursion and Iteration Page 97

Recursion vs. Iteration
•  Which one can do more? Recursion or iteration?
•  So, since iteration is just a special case of

recursion (when it’s tail recursive), recursion can
do more.

•  But… If you have a stack (or can implement one
somehow), iteration with a stack can do anything
recursion can!
– This can be a little tricky.
– Better to let the computer do it for you!

CPSC 221 Recursion and Iteration Page 98

Simulating Recursion with a Stack
•  What does a recursive call do?
– Saves current values of local variables and where

execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

•  What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

•  We can do on a stack what the computer does for
us on the system stack…

CPSC 221 Recursion and Iteration Page 99

Simulating Recursion with a Stack
int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Anything we can do with
recursion, we can do with
iteration w/ a stack.

CPSC 221 Recursion and Iteration Page 100

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done
2

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 101

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=2

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 102

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

Done

n=2

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 103

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=2

2

Middle

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 104

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=2

2

Middle

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 105

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=2

2

Middle

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 106

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=1

2

Middle

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 107

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=1

2

Middle

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 108

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=1

2

Middle

1

Middle

0

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 109

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=1

2

Middle

1

Middle

0

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 110

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=0

2

Middle

1

Middle

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 111

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=0, pc=Middle

2

Middle

1

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 112

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

n=0, pc=Middle

2

Middle

1

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 113

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

result=1, oldn=1,
n=0, pc=Middle

2

Middle

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 114

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

2

Middle

Simulating Recursion with a Stack

result=1, oldn=1,
n=0, pc=Middle

CPSC 221 Recursion and Iteration Page 115

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

result=1, oldn=1,
n=0, pc=Middle

2

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 116

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

result=1, oldn=1,
n=0, pc=Middle

2

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 117

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

result=1, oldn=1,
n=0, pc=Middle

2

1

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 118

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

result=1, oldn=2,
n=0, pc=Middle

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 119

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

Done

result=2, oldn=2,
n=0, pc=Middle

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 120

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

2

result=2, oldn=2,
n=0, pc=Done

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 121

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

2

result=2, oldn=2,
n=0, pc=Done

Simulating Recursion with a Stack

CPSC 221 Recursion and Iteration Page 122

int factorial (int n) {
 if (n == 0) return 1;
 else
 return n *
 factorial(n – 1);

}

push(Done); push(n); pc=Start;
while (1) {
 if (pc==Done) break;
 if (pc==Start) {
 n=pop();
 if (n == 0) {
 pc=pop(); push(1); continue;
 } else {
 push(n); //save old n
 push(Middle);push(n-1);pc=Start;
 continue;
 }
 } else { //pc==Middle
 result=pop(); oldn=pop();
 result=oldn*result;
 pc=pop(); push(result);
 }
} // result is on top of stack

2

result=2, oldn=2,
n=0, pc=Done

Simulating Recursion with a Stack

This is not something we expect
you to do in full generality in
CPSC 221.

CPSC 221 Recursion and Iteration Page 123

Simulating Recursion with a Stack
•  Cut the function at each call or return, into little pieces

of code. Give each piece a name.
•  Create a variable pc, which will hold the name of the

piece of code to run.
•  Put all the pieces in a big loop. At the top of the loop,

choose which piece to run based on pc.
•  At each recursive call, push local variables, push name

of code to run after return, push arguments, set pc to
Start.

•  At Start, pop function arguments.
•  At other labels, pop return value, pop local variables.
•  At return, pop “return address” into pc, push return

value.
This is not something we expect you to do in full generality in CPSC 221.

CPSC 221 Recursion and Iteration Page 124

Recursion vs. Iteration

Which one is more efficient or powerful?
Recursion or iteration?

It’s probably easier to shoot yourself in the foot
without noticing when you use recursion, and the
call stack may carry around a bit more (a
constant factor more) memory than you really
need to store, but otherwise…

Neither is more efficient.

CPSC 221 Recursion and Iteration Page 125

Simulating Recursion with a Stack
•  What does a recursive call do?
– Saves current values of local variables and

where execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

•  What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

•  We can do on a stack what the computer
does for us on the system stack…

CPSC 221 Recursion and Iteration Page 126

Simulating Tail Recursion w/o Stack
•  What does a recursive call do?
– Saves current values of local variables and

where execution is in the code.
– Assigns parameters their passed in value.
– Starts executing at start of function again.

•  What does a return do?
– Goes back to most recent call.
– Restores most recent values of variables.
– Gives return value back to caller.

•  Why use a stack if you don’t have to do any
saving or restoring???

CPSC 221 Recursion and Iteration Page 127

Tail Recursion into Iteration

int fact(int n) { !
 return fact_acc(n, 1); !
} !
!
int fact_acc (int n, int acc) { !
 if (n == 0) return acc; !
 else!
 return fact_acc(n – 1, acc * n); !
} !

CPSC 221 Recursion and Iteration Page 128

Tail Recursion into Iteration – Step 1
int fact(int n) { !
 return fact_acc(n, 1); !
} !
!
int fact_acc (int n, int acc) { !
 if (n == 0) return acc; !
 else { !
 //return fact_acc(n – 1, acc * n);!
 acc = acc * n; !
 n = n-1; !
 } !
}

Assign parameters
their passed-in values

CPSC 221 Recursion and Iteration Page 129

Tail Recursion into Iteration – Step 1
int fact(int n) { !
 return fact_acc(n, 1); !
} !
!
int fact_acc (int n, int acc) { !
!
 if (n == 0) return acc; !
 else { !
 //return fact_acc(n – 1, acc * n);!
 acc = acc * n; !
 n = n-1; !
 } !
!
}

Assign parameters
their passed-in values

CPSC 221 Recursion and Iteration Page 130

Tail Recursion into Iteration – Step 2
int fact(int n) { !
 return fact_acc(n, 1); !
} !
!
int fact_acc (int n, int acc) { !
 while (1) { !
 if (n == 0) return acc; !
 else { !
 //return fact_acc(n – 1, acc * n);!
 acc = acc * n; !
 n = n-1; !
 } !
 } !
}

Start executing at
beginning of function.

CPSC 221 Recursion and Iteration Page 131

Tail Recursion into Iteration – Step 3
int fact_acc (int n, int acc) { !
 while (n != 0) { !
 //if (n == 0) return acc; !
 //else {!
 //return fact_acc(n – 1, acc * n);!
 acc = acc * n; !
 n = n-1; !
 //}!
 } !
 return acc; !
}

Clean up your code
to look nicer.

CPSC 221 Recursion and Iteration Page 132

Tail Recursion into Iteration – Step 3
int fact_acc (int n, int acc) { !
 while (n != 0) { !
 acc = acc * n; !
 n = n-1; !
 } !
 return acc; !
}

Clean up your code
to look nicer.

For 221, you should be able to look at a simple
tail-recursive function and convert it to be iterative.

CPSC 221 Recursion and Iteration Page 133

Let’s get back to proofs
•  See the similarity between a recursive function

and a proof by induction.
•  Prove recursive functions correct using induction.
•  Prove loops correct using loop invariants.
•  Appreciate how a proof can help you understand

complicated code.

CPSC 221 Recursion and Iteration Page 134

Induction and Recursion,
Twins Separated at Birth?

Base case
 Prove for some small

value(s).

Inductive Step
 Otherwise, break a larger

case down into smaller
ones that we assume work
(the Induction Hypothesis).

Base case
 Calculate for some small

value(s).

Recursion
Otherwise, break the problem

down in terms of itself
(smaller versions) and
then call this function to
solve the smaller versions,
assuming it will work.

Induction Recursion

CPSC 221 Recursion and Iteration Page 135

Thinking Recursively (Old Slide)

As soon as you break the problem down in terms of
any simpler version, call the function recursively
and assume it works. Do not think about how!

This is the secret to thinking recursively!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) each recursive call really is simpler/smaller, and

(3) you make sure all calls will eventually hit base case(s).

CPSC 221 Recursion and Iteration Page 136

Thinking Inductively

As soon as you break the problem down in terms of
any simpler version, use the inductive hypothesis
and assume it works. Do not think about how!

This is also the secret to doing a proof by induction!

Your solution will work as long as:

(1) you’ve broken down the problem right

(2) inductive assumption on cases that really are simpler/smaller,

(3) you make sure you’ve covered all base case(s).

CPSC 221 Recursion and Iteration Page 137

Induction and Recursion
•  They even have the same pitfalls!
•  When is it hard to do a proof by induction?

– When you can’t figure out how to break the problem
down

– When you miss a base case
•  When is it hard to solve a problem with recursion?

– When you can’t figure out how to break the problem
down

– When you miss a base case

CPSC 221 Recursion and Iteration Page 138

Proving a Recursive Function
Correct with Induction is EASY

Just follow your code’s lead and use induction.

Your base case(s)? Your code’s base case(s).

How do you break down the inductive step?

However your code breaks the problem down into
smaller cases.

What do you assume? That the recursive calls just

work (for smaller input sizes as parameters, which
better be how your recursive code works!).

CPSC 221 Recursion and Iteration Page 139

Proving a Recursive Function
Correct with Induction is EASY

// Precondition: n >= 0.!
// Postcondition: returns n!!
int factorial(int n) !
{ !
 if (n == 0) !
 return 1; !
!
!
 !
 !
 !
 !
 else!
 return n*factorial(n-1); !
} !

Prove: factorial(n) = n!
Base case: n = 0.
Our code returns 1 when n =

0, and 0! = 1 by definition.
ü

Inductive step: For any
k > 0, our code returns
k*factorial(k-1). By IH,
factorial(k-1) = (k-1)!
and k! = k*(k-1)! by
definition.

CPSC 221 Recursion and Iteration Page 140

Random String Permutations Algorithm
(old example)

PERMUTE(s):
 if s is empty, just return s

 else:
 use randRange to choose a random first letter
 permute the rest of the string (minus that random letter)
 return a string that starts with the random letter
 and continues with the permuted rest of the string

CPSC 221 Recursion and Iteration Page 141

Random String Permutations (Code)
string permute(string str) { !
 // if s is empty!
 if (str.size() == 0) !
 return str; // just return s!
!
 else { !
 int index = choose_random_index(str); !
 char c = str[index]; !
 !
 string rest = str.erase(index, 1); !
 string rest_permuted = permute(rest); !
 !
 return c + rest_permuted; !
 } !
}

CPSC 221 Recursion and Iteration Page 142

Proving A Recursive Algorithm Works
•  Problem: Prove that our algorithm for randomly

permuting a string gives an equal chance of returning
every permutation (assuming randrange(n) works as
advertised).

CPSC 221 Recursion and Iteration Page 143

Proving A Recursive Algorithm Works
•  Base case: an empty string cannot be permuted; so

returning the empty string is correct.

•  Induction hypothesis: Assume that our call to
permute(str) works (uniformly randomly permutes str).

•  Inductive step: We choose the first letter uniformly at
random from across the string. To get a random
permutation, we need only randomly permute the
remaining letters. When we call permute(substr), it does
exactly that.

CPSC 221 Recursion and Iteration Page 144

CPSC 221 Administrative Notes
•  How was midterm?

•  Connect

•  Lab #4
•  PeerWise #2,
•  Assignment #1 à see assignment follow-up on Piazza

•  Programming Assignments

–  Milestone being marked
–  Final handin due on Monday

CPSC 221 Recursion and Iteration Page 145

So, Where were we
•  Describe the relationship between recursion and induction (e.g.,

take a recursive code fragment and express it mathematically in
order to prove its correctness inductively).

•  Evaluate the effect of recursion on space complexity (e.g., explain
why a recursively defined method takes more space then an
equivalent iteratively defined method.).

•  Describe how tail recursive algorithms can require less space
complexity than non-tail recursive algorithms.

•  Recognize algorithms as being iterative or recursive.
•  Convert recursive solutions to iterative solutions and vice versa.
•  Draw a recursion tree and relate the depth to a) the number of

recursive calls and b) the size of the runtime stack. Identify and/or
produce an example of infinite recursion

CPSC 221 Recursion and Iteration Page 146

Today
•  Take a loop code fragment and express it mathematically

in order to prove its correctness inductively (specifically
describing that the induction is on the iteration variable).

•  In simpler cases, determine the loop invariant.

CPSC 221 Recursion and Iteration Page 147

Recurrence Relations
•  See examples from asymptotic analysis slides
•  Additional Problem: Prove binary search takes

O(lg n) time.
 // Search array[left..right] for target.!

// Return its index or the index where it should go.!
int bSearch(int array[], int target, int left, int right) !
{ !
 if (right < left) return left; !
!
 int mid = (left + right) / 2; !
 if (target <= array[mid]) !
 return bSearch(array, target, left, mid-1); !
 else!
 return bSearch(array, target, mid+1, right); !
}

CPSC 221 Recursion and Iteration Page 148

Recurrence Relations
// Search array[left..right] for target.!
// Return its index or the index where it should go.!
int bSearch(int array[], int target, int left, int right) !
{ !
 if (right < left) return left; !
!
 int mid = (left + right) / 2; !
 if (target <= array[mid]) !
 return bSearch(array, target, left, mid-1); !
 else!
 return bSearch(array, target, mid+1, right); !
}

O(1)

O(1)
O(1)

~T(n/2)

~T(n/2)

Note: Let n be # of elements considered in the array (right – left + 1).

For n=0: T(0) = 1
For n>0: T(n) = T(⎣n/2⎦) + 1

CPSC 221 Recursion and Iteration Page 149

Binary Search Problem

T(n)= T(n/2) + 1 Sub in T(n/2) = T(n/4)+1
 = (T(n/4) + 1) + 1 Sub in T(n/4) = T(n/8)+1
 = T(n/4) + 2
 = T(n/8) + 3 Sub in T(n/8) = T(n/16)+1
 = T(n/16) + 4
 = T(n/(2i)) + i let n/2i = 1 so n = 2i à i = lg n
 = T(n/2lg n) + lg n
 = T(1) + lg n = lg n + 1 T(n) ∈ O(lg n)

To guess the answer we simplify
Change ⎣n/2⎦ to n/2, so change base case to T(1) (We’ll never reach
0 by dividing by 2!)

For n=0: T(0) = 1
For n>0: T(n) = T(⎣n/2⎦) + 1

For n=1: T(1) = 1
For n>1: T(n) = T(n/2) + 1

CPSC 221 Recursion and Iteration Page 150

Binary Search Problem
To prove that T(n) ∈ O(lg n), we use induction:

Base cases
T(0) = 1 à but lg 0 is undefined
T(1) = T(0) + 1 = 2 à but lg 1 is 0
T(2) = T(1) + 1 = 3 à T(2)≤ c lg2 à 3 ≤ c

Let c = 3, n0 = 2.
Base cases: T(2) = 3 = 3 lg 2 ü
Base cases: T(3) = 3 ≤ 3 lg 3 ü

For n=0: T(0) = 1
For n>0: T(n) = T(⎣n/2⎦) + 1

CPSC 221 Recursion and Iteration Page 151

Binary Search Problem

•  Induction hyp: for all 2 ≤ k < n,
–  T(k) ≤ 3 lg k

•  Inductive step, n > 3, in two cases
–  (odd & even)

T(n) = T((n-1)/2) + 1 n ≥ 5, so (n-1)/2 ≥ 2, IH applies
 ≤ 3 lg((n-1)/2) + 1
 = 3 lg(n-1) – 3 lg 2 + 1
 = 3 lg(n-1) – 3 + 1
 = 3 lg(n-1) – 2
 ≤ 3 lg n ü

T(0) = 1, T(1) = 2, T(2) = 3, T(3) = 3
For n>3: T(n) = T(⎣n/2⎦) + 1

CPSC 221 Recursion and Iteration Page 152

Binary Search Problem

•  Induction hyp: for all 2 ≤ k < n,
–  T(k) ≤ 3 lg k

•  Inductive step, n > 3, in two cases
–  (odd & even)

T(n) = T(n/2) + 1 n ≥ 4, so n/2 ≥ 2, IH applies
 ≤ 3 lg(n/2) + 1
 = 3 lg n – 3 lg 2 + 1
 = 3 lg n – 3 + 1
 = 3 lg n – 2
 ≤ 3 lg n ü

T(0) = 1, T(1) = 2, T(2) = 3, T(3) = 3
For n>3: T(n) = T(⎣n/2⎦) + 1

CPSC 221 Recursion and Iteration Page 153

Proof of Iterative Programs?
•  We’ve seen that iteration is just a special case of

recursion.
•  Therefore, we should be able to prove that loops

work, using the same general technique.
•  Because loops are a special case (and are easier to

analyze, so the theory was developed earlier),
there is different terminology, but it’s still
induction.

CPSC 221 Recursion and Iteration Page 154

Loop Invariants
•  We do this by stating and proving “invariants”,

properties that are always true (don’t vary) at particular
points in the program.

•  One way of thinking of a loop is that at the start of each
iteration, the invariant holds, but then the loop breaks it
as it computes, and then spends the rest of the iteration
fixing it up.

•  Compare to the simplest induction you learned, where
you assume the case for n and prove for n+1. Now, we
assume a statement is true before each loop iteration,
and prove it is still true after the loop iteration.

CPSC 221 Recursion and Iteration Page 155

Invariants in Daily Life
•  Suppose you have a bunch of house guests

who are all well-behaved, so they always put
things that they use back the way they found
them.
– When you leave the house, you have put

everything just the way you like (toilet seat
position, books on the table, milk in the fridge,
etc.)

•  Where are they after your guests leave?
– Does it matter how many guests were there, or

how often they used your stuff?

CPSC 221 Recursion and Iteration Page 156

More Interesting Examples
•  When the police search for a fugitive, they:

1.  establish a perimeter that contains the suspect,
2.  maintain the invariant “The suspect is within the

search perimeter.” as they gradually shrink the
perimeter.

•  The same approach is used for fighting wildfires:
1.  establish a perimeter that contains all burning areas,
2.  maintain the invariant “All burning areas are within

the perimeter.” as they gradually shrink the
perimeter.

The approach works regardless of how long it takes.

CPSC 221 Recursion and Iteration Page 157

Proving a Loop Invariant
Induction variable: number of times through the loop.

Base case: Prove the invariant is true before the first loop
guard test.

Induction hypothesis: Assume the invariant holds just
before some (unspecified) iteration’s loop guard test.

Inductive step: Prove the invariant holds at the end of that
iteration (just before the next loop guard test).

Termination: Make sure the loop will eventually end!

CPSC 221 Recursion and Iteration Page 158

Loop Invariants: The Easy Way
•  Convert for-loops to while-loops.

– Easiest to reason about while-loops.
•  Write your loop invariant to be true at the exact

same time as you check the loop condition.
– This is at the top/bottom of the loop body.

•  Base Case: prove that your loop invariant holds
when you first arrive at the loop.

int i=1; // initialization stuff!
while (condition) { !
 loop body; !
}

CPSC 221 Recursion and Iteration Page 159

Loop Invariants: The Easy Way
•  Induction:

– Assume the loop invariant holds at top of loop.
– Prove that loop invariant holds at bottom of loop..

•  Termination:
– You may need to make a completely separate

argument that the loop will eventually terminate.
– Usually, this is by showing that some progress is

always made each time you go through the loop.
int i=1; // initialization stuff!
while (condition) { !
 loop body; !
}

CPSC 221 Recursion and Iteration Page 160

Insertion Sort
•  Given a list, take the current element and insert it

at the appropriate position of the list, adjusting the
list every time you insert

CPSC 221 Recursion and Iteration Page 161

Insertion Sort
•  while some elements unsorted:

–  Using linear/binary search, find the location in the sorted portion
where the 1st element of the unsorted portion should be inserted

–  Move all the elements after the insertion location up one position to
make space for the new element

1
3

2
1

4
5

7
9

4
7

2
2

3
8

7
4

3
6

6
6

9
4

2
9

5
7

8
1

6
0

1
6

4
5 6
6

6
0

4
5 the fourth iteration of this loop is

shown here

CPSC 221 Recursion and Iteration Page 162

Insertion Sort

•  Rewrite as while loop!

for (int i = 1; i < length; i++){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 }

CPSC 221 Recursion and Iteration Page 163

Insertion Sort

•  Now, we need to come up with a good invariant
–  Invariant: the elements in array[0 . . i −1] consist of

the elements originally in array[0 . . i −1] but in sorted
order.

 int i = 1; !
 while (i < length){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 i++; !
 }

CPSC 221 Recursion and Iteration Page 164

Insertion Sort

•  So, what’s the base case?
– Base Case: When the code first reaches the loop

invariant i=1, so array[0..0] is trivially sorted.

 int i = 1; !
 while (i < length){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 i++; !
 }

CPSC 221 Recursion and Iteration Page 165

Insertion Sort

•  Proof of inductive case is just like before.
–  Inductive Hypothesis: We assume array[0..i-1] is

sorted at the top of the loop, and i<length.

 int i = 1; !
 while (i < length){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 i++; !
 }

CPSC 221 Recursion and Iteration Page 166

Insertion Sort

•  Inductive Step: bSearch finds the correct index to put
array[i], we shift elements array[newindex…i-1] so
array[0..i] is sorted.
–  so loop invariant holds again at the bottom of the loop.

 int i = 1; !
 while (i < length){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 i++; !
 }

CPSC 221 Recursion and Iteration Page 167

Insertion Sort

•  Termination: The outer loop ends when i==length,
which is eventually reached as i is increased in
every iteration.
–  Invariant says array[0..i-1] is sorted, so

array[0..length-1] is sorted.

 int i = 1; !
 while (i < length){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 i++; !
 }

CPSC 221 Recursion and Iteration Page 168

Insertion Sort (in-class exercise)

•  Prove by induction that the inner loop operates
correctly.
– Talk about what the invariant means when the loop

ends.

 int i = 1; !
 while (i < length){ !
 int val = array[i]; !
 int newIndex = bSearch(array, val, 0, i); !
 for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !
 !
 array[newIndex] = val; !
 i++; !
 }

CPSC 221 Recursion and Iteration Page 169

Insertion Sort (in-class exercise)

•  Invariant: The elements in array[0..j-1] + array[j+1..i]
consist of the elements that were originally in
array[0..i-1]

•  Base Case: At the start of the first iteration, j==i,
so array[0..j-1] is exactly the original array[0..i-1].

for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !

a1 a2 a3 … ai-1

CPSC 221 Recursion and Iteration Page 170

Insertion Sort (in-class exercise)

•  Inductive Hypothesis: we assume the invariant holds at
the top of the loop after j iteration.

•  Inductive Step: The invariant doesn’t care about array[j],
so we can overwrite it with array[j-1]. So after j--, the
invariant holds once again for the new j.

for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !

a1 a2 … aj-1 aj aj+1 … ai-1

a1 a2 … aj-1 aj aj+1 … ai-1

a1 a2 … aj-1 aj aj+1 … ai-1

a1 a2 … aj-1 aj aj+1 … ai-1

CPSC 221 Recursion and Iteration Page 171

Insertion Sort (in-class exercise)

•  Termination: Since new index is an integer
between 0 and j, loop terminates.

•  When the loop terminates, j==newIndex.
Therefore, array[0..newIndex-1] +
array[newIndex+1..i] equals the old array[0..i-1].

for (int j = i; j > newIndex; j--) !
 array[j] = array[j-1]; !

CPSC 221 Recursion and Iteration Page 172

Back to fibs
•  Computer handles recursion on the stack.

– Sometimes you can see a clever shortcut to do it a bit
more efficiently by only storing what’s really needed
on the stack:

•  Try a few numbers to convince yourself it works

 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

CPSC 221 Recursion and Iteration Page 173

Back to fibs

•  Where does the loop invariant go, and what would
it be?
–  This is the step that requires insight…
–  Hmm… I’m replacing n by n-1 and n-2, or I’m increasing result

when n<=2 (when fib(n)=1).
–  So, it’s sort of like stuff on the stack, plus result doesn’t

change…

 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

CPSC 221 Recursion and Iteration Page 174

Back to fibs

•  Invariant: Sum of fib(i) for all i on stack, plus result
equals fib(n)

•  Base case: So now, what’s the base case?

 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

CPSC 221 Recursion and Iteration Page 175

Back to fibs

•  Invariant: Sum of fib(i) for all i on stack, plus result equals
fib(n)

•  Base case: Initially, n is only item on stack, and result=0.
fib(n)+0=fib(n).

 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

Note that for a loop invariant proof,
the base case is NOT something like n=0.
The (implicit) induction variable is the
number of times through the loop!

CPSC 221 Recursion and Iteration Page 176

Back to fibs
 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

•  Inductive step: Assume inductive hypothesis. We pop a
number n off the stack.
–  If n <=2, then fib(n)=1, so by increasing result by 1, we

maintain inductive hypothesis
–  If n>2, we push n-1 and n-2. But

fib(n)=fib(n-1)+fib(n-2) (by definition), the sum of
fib(i) for all i on the stack is unchanged.

CPSC 221 Recursion and Iteration Page 177

Back to fibs
 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

•  Termination: By reducing n each time, we’re converging
towards n=2. The loop will terminate when stack is empty.

•  When stack is empty, sum of fib(i) for all i on stack is 0.
– So, 0+result=fib(n). Therefore, result=fib(n).

CPSC 221 Recursion and Iteration Page 178

Back to fibs
 int fib(int n) !
 result = 0 !
 push(n) !
 while not isEmpty!
 n = pop() !
 if (n <= 2) result++; !
 else push(n – 1); push(n – 2) !
 return result

•  Termination: The key is that if you think of what’s on the
stack as a string of numbers, the stack contents always get
earlier in “alphabetical order”. E.g., [5] > [4,3] > [4,2,1] >
[4,2] > [4] > [3,2] > [3] >…. By reducing n each time,
we’re converging towards n=2.

•  When stack is empty, sum of fib(i) for all i on stack is 0.
– So, 0+result=fib(n). Therefore, result=fib(n).

CPSC 221 Recursion and Iteration Page 179

Avoiding Duplicate Calls
Memoization

We’re making an exponential number of calls! This
is bad. Plus, many calls are duplicates… That
means wasted work!

fib(6)

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(4)

n Fn

6
5
4
3
2
1

1

1

2

3

5

8

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

CPSC 221 Recursion and Iteration Page 180

Memoization
int memoized_fib(int n) { !
 if (ANSWERS[n] > 0) { !
 // There's a value in ANSWERS[n].!
 return ANSWERS[n]; !
 } !
 else { !
 int result; !
 if (n == 1 || n == 2) { !
 result = 1; !
 } !
 else { !
 result = memoized_fib(n-1) + memoized_fib(n-2); !
 } !
 ANSWERS[n] = result; !
 return result; !
 } !
} !

CPSC 221 Recursion and Iteration Page 181

Dynamic Programming
•  It turns out that you can often build up the table of

solutions iteratively, from the base cases up, instead of
using recursion.
– This is called “dynamic programming”. You’ll see

this a lot in CPSC 320.

•  The advantage of dynamic programming is that once you
see how the table is built up, you can often use much less
space, keeping only the parts that matter.

•  The advantage of memoization, though, is that it’s very
easy to program.

CPSC 221 Recursion and Iteration Page 182

Fixing Fib with “Dynamic Programming”

 int[] fib_solns = new int[large_enough]; !
 fib_solns[1] = 1; !
 fib_solns[2] = 1; !
 !
 int fib(int n) { !
 for (int i=3; i<=n; i++) { !
 fib_solns[i] = fib_solns[i-1] + !
 fib_solns[i-2]; !
 } !
 return fib_solns[n]; !
 }

CPSC 221 Recursion and Iteration Page 183

Fixing Fib with “Dynamic Programming”

 int[] fib_solns = new int[2]; // init to 0!
 fib_solns[0] = 1; !
 fib_solns[1] = 1; !
 !
 int fib(int n) { !
 for (int i=3; i<=n; i++) { !
 old_fib = fib_solns[0]; !
 fib_solns[0] = fib_solns[1]; !
 fib_solns[1] = fib_solns[0] + !
 old_fib; !
 } !
 return fib_solns[1]; !
 }

CPSC 221 Recursion and Iteration Page 184

Learning goals revisited
•  Describe the relationship between recursion and induction (e.g.,

take a recursive code fragment and express it mathematically in
order to prove its correctness inductively).

•  Evaluate the effect of recursion on space complexity (e.g., explain
why a recursively defined method takes more space then an
equivalent iteratively defined method.).

•  Describe how tail recursive algorithms can require less space
complexity than non-tail recursive algorithms.

•  Recognize algorithms as being iterative or recursive.
•  Convert recursive solutions to iterative solutions and vice versa.
•  Draw a recursion tree and relate the depth to a) the number of

recursive calls and b) the size of the runtime stack. Identify and/or
produce an example of infinite recursion

CPSC 221 Recursion and Iteration Page 185

Learning goals revisited
•  Take a loop code fragment and express it mathematically

in order to prove its correctness inductively (specifically
describing that the induction is on the iteration variable).

•  In simpler cases, determine the loop invariant.

