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Learning Goals 
•  Provide examples of appropriate applications for 

priority queues and heaps 

•   Determine if a given tree is an instance of a 
heap. 

•  Manipulate data in heaps 

•  Describe and apply the Heapify algorithm, and 
analyze its complexity 
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Abstract Data Types 

Data Structures 

Stack Queue 

Array Circular 
Array 

Linked list 

Tools 

Asymptotic analysis 

CPSC 221 Journey  

Priority Queue 

Binary  
Heap 
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Tree Terminology 
•  root: the single node with no parent 
•  leaf: a node with no children 
•  child: a node pointed to by me  
•  parent: the node that points to me 
•  Sibling: another child of my parent 
•  ancestor: my parent or my parent’s 
                   ancestor 
•  descendent: my child or my child’s descendent 
•  subtree: a node and its descendants 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 
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Tree Terminology 

A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

•  depth: # of edges along path from root to node 
–  depth of H? 

•  3 

•  height: # of edges along 
longest path from node to leaf 
or, for whole tree, from root 
to leaf 
•  height of tree? 
•  4 
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Tree Terminology 
•  degree: # of children of a node 

–  degree of B? 
•  3 A 

E 

B 

D F 

C 

G 

I H 

L J M K N 

•  branching factor: maximum 
degree of  any node in the tree 

 
2 for binary trees,   
5 for this weird tree 



CPSC 221                                Priority Queues and Heaps                                                         Page 7 

One More Tree Terminology Slide 

J I H 

G F E D 

C B 

A 

•  binary: branching factor of 2 (each child has at most 2 
children) 

 
•  n-ary: branching factor of n 
 
 
•  complete: “packed” binary tree; 
                  as many nodes as  
                  possible for its height 
 
•  nearly complete: complete plus some nodes on the left at 

the bottom 
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Trees and (Structural) Recursion 

A tree is either:  
–  the empty tree 
–  a root node and an ordered list of subtrees 

 
 
Trees are a recursively defined structure, so it 

makes sense to operate on them recursively. 
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Priority Queues 
•  Let’s say we have the following tasks. 

2 - Water plants 
5 - Order cleaning supplies 
1 - Clean coffee maker 
3 - Empty trash 
9 - Fix overflowing sink 
2 - Shampoo carpets 
4 - Replace light bulb 
1 - Remove pencil sharpener shavings 
We are interested in finding the task with the highest 
priority quickly. 
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Back to Queues 
•  Some applications 

–  ordering CPU jobs 
–  simulating events 
–  picking the next search site 

•  We don’t want FIFO 
–  short jobs should go first 
–  shortest (simulated time) events should go first 
– most promising sites should be searched first 
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Priority Queues 

•  A collection organized so as to permit fast access 
to and removal of the largest/smallest element 
– Prioritization is a weaker condition than ordering 
– Order of insertion is irrelevant 
– Element with the highest priority (whatever that 

means) comes out next 
• Not really a queue: not a FIFO 
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Priority Queue ADT 

•  Priority Queue operations 
–  create 
–  destroy 
–  insert 
–  deleteMin 
–  isEmpty 

•  Priority Queue property: for two elements in the 
queue, x and y, if x has a lower priority value than 
y, x will be deleted before y 

F(7) E(5)  
D(100) A(4)  

B(6) 

insert deleteMin G(9) C(3) 
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Applications of the Priority Q 
•  Hold jobs for a printer in order of length 

•   Manage limited resources such as bandwidth on a 
transmission line from a network router 

•  Simulate events (simulation time used as the 
priority) 

•  Sort numbers 

•  Anything greedy: an algorithm that makes the 
“locally best choice” at each step 
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Naïve Priority Q Data Structures 
•  Let’s use an unsorted list (could be implemented 

with either an Array or Linked List) 
•  Running time of insert ? 

a. O(1) 
b. O(lg n) 
c. O(n) 
d. O(n lg n) 
e.  Something else 
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Naïve Priority Q Data Structures 
•  Let’s use an unsorted list (could be implemented 

with either an Array or Linked List) 
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Naïve Priority Q Data Structures 
•  Let’s use an sorted list (could be implemented 

with either an Array or Linked List) 
•  Running time of insert ? 

a. O(1) 
b. O(lg n) 
c. O(n) 
d. O(n lg n) 
e.  Something else 
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The heap property
•  A node has the heap property if the priority of the 

node is as high as or higher than the priority of its 
children 

•  All leaf nodes automatically have the heap property 
•  A binary tree is a heap if all nodes in it have the 

heap property 

12 

8 3 
Red node has 
heap property 

12 

8 12 
Red node has 
heap property 

12 

8 14 
Red node does not 
have heap property 
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• Given a node that does not have the heap property, you 
can give it the heap property by exchanging its value with 
the value of the child with the higher priority 

• This is sometimes called Percolate-up(sifting up) 
• Notice that the child may have lost the heap 

property 

14 

8 12 
Red node has 
heap property 

12 

8 14 
Red node does not 
have heap property 

Percolate-up



CPSC 221                                Priority Queues and Heaps                                                         Page 24 

Binary Heap Priority Q Data Structure 

20 14 12 9 11 

8 10 6 7 

5 4 

2 
•  Heap-order property 

–  parent’s key is less 
than or equal to 
children’s keys 

–  result: minimum is 
always at the top 

•  Structure property 
–  “nearly complete tree” 

WARNING: this has NO SIMILARITY to the “heap” you hear about 
when people say “objects you create with new go on the heap”. 24 

depth is always O(log n); 
 next open location always known 
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It is important to realize that two binary heaps can 
contain the same data but the data may appear in 
different positions in the heap: 

2 
5 7 

5 7 8 

2 
5 5 

7 7 8 

Both of the minimum binary heaps above contain the 
same data: 
2, 5, 5, 7, 7, and 8.  Even though both heaps satisfy all 
the properties necessary of a minimum binary heap, the 
data is stored in different positions in the tree. 
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(There’s also a maximum binary heap, where “parent ≤ 
each child” simply changes to “parent ≥ each child”.) 

7 
5 7 

4 3 4 

2 
5 7 

5 7 8 

Min-heap Max-heap 

Min-heap and Max-heap 
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Constructing a heap I (Naïve approach) 
•  A tree consisting of a single node is automatically 

a heap 
•  We construct a heap by adding nodes one at a time: 

–  Add the node just to the right of the rightmost node in 
the deepest level 

–  If the deepest level is full, start a new level 

•  Examples: 

Add a new 
node here 

Add a new 
node here 
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Constructing a heap II (Naïve approach) 
•  Each time we add a node, we may destroy the heap 

property of its parent node. To fix this, we percolate-up 
•  But each time we percolate-up, the value of the topmost 

node in the sift may increase, and this may destroy the 
heap property of its parent node 

•  We repeat the percolate-up process, moving up in the 
tree, until either: 
– we reach nodes whose values don’t need to be 

swapped (because the parent is still larger than both 
children),  or 

–   we reach the root 
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Constructing a heap III (Naïve approach) 

8 8 

10 

10 

8 

10 

8 5 

10 

8 5 

12 

10 

12 5 

8 

12 

10 5 

8 

1 2 3 

4 
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Other children are not affected 

• The node containing 8 is not affected because its parent 
gets larger, not smaller 

• The node containing 5 is not affected because its parent 
gets larger, not smaller 

• The node containing 8 is still not affected because, 
although its parent got smaller, its parent is still greater 
than it was originally 

12 

10 5 

8 14 

12 

14 5 

8 10 

14 

12 5 

8 10 
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A sample heap 
•  Here’s a sample binary tree after it has been heapified 

•  Notice that heapified does not mean sorted 
•  Re-heaping does not change the shape of the 

binary tree; this binary tree is still a nearly 
complete binary tree. 

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 
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Clicker Question 
•  Is the following binary tree a maximum binary 

heap? 

 
 

– A: It is a maximum binary heap 
– B: It is not a maximum binary heap 
– C: I don’t know 

19 

18 14 

23 

5 21 

16 

6 9 

15 

25 

17 22 
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Clicker Question 
•  Is the following binary tree a maximum binary 

heap? 

 
 

– A: It is a maximum binary heap 
– B: It is not a maximum binary heap 
– C: I don’t know 

19 

18 14 

23 

5 21 

16 

6 9 

15 

25 

17 22 
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In-class exercise 

•  Build a binary Max-heap using the following 
numbers, assuming numbers arrive one at a time, 
so you don’t have the whole list to start with). 
–  2,7,26,25,19,17,1,90,3,36 

25 

3 2 

26 7 1 

90 

17 36 

19 
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Mapping into an array 

•  Because of the heap's shape, node values can 
be stored in an array  

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 

25 22 17 19 22 14 15 18 14 21 3 9 11 
  0     1    2     3    4     5    6     7     8    9    10   11   12 
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Mapping into an array 

19 

14 18 

22 

3 21 

14 

11 9 

15 

25 

17 22 

25 22 17 19 22 14 15 18 14 21 3 9 11 
  0     1    2     3    4     5    6     7     8    9    10   11   12 

Left child = 2*node + 1 
right child= 2*node + 2 
parent = floor((node-1)/2) 
nextfree = length 
root = 0 



CPSC 221                                Priority Queues and Heaps                                                         Page 37 

Adding an item to a heap  
•  If a new item is added to the heap, use ReheapUp 

(percolate-up ) to maintain a heap. 
/* This function performs the Reheapup operation on an array, 
to establish heap properties (for a subtree). !
 !
 PARAM: data   – integer array containing the heap !
             top    – position of the root !
             bottom - position of the added element !
 */!
void ReheapUp( int * data, int top, int bottom ){ !
    if (bottom > top) { !
        int parent = getparent(bottom); !
        if (data[parent] < data[bottom]) { !
            swap( &data[parent], &data[bottom]); !
            ReheapUp(data, top, parent); !
        } !
    } !
} 
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• For the max-heap below draw the recursion tree of 
ReheapUp(data, 0, 12), where 25 is stored in data[0] !

19 

14 18 

22 

3 21 

14 

26 9 

15 

25 

17 22 

ReheapUp(data, 0, 12) 

ReheapUp(data, 0, 5) 

ReheapUp(data, 0, 2) 

In-class exercise 

ReheapUp(data, 0, 0) 
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Example (min-heap) 

20 14 12 9 11 

8 10 6 7 

5 4 

2 

3 20 14 12 9 11 

8 3 6 7 

5 4 

2 

10 

20 14 12 9 11 

8 5 6 7 

3 4 

2 

10 20 14 12 9 11 

8 5 6 7 

3 4 

2 

10 
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Removing the root 
•  So we know how to add new elements to our 

heap. 
•  We also know that root is the element with the 

highest priority. 

•  But what should we do once root is removed? 
– Which element should replace root? 
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One possibility 

20 14 12 9 11 

8 10 6 7 

5 4 

? 

20 14 12 9 11 

8 10 6 7 

5 ? 

4 

20 14 12 9 11 

8 10 ? 7 

5 6 

4 

20 14 20 9 11 

8 10 12 7 

5 6 

4 
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Removing the root 
•  Notice that the largest number is now in the root 
•  Suppose we discard the root: 

•  How can we fix the binary tree so it is once again 
a nearly complete binary tree? 

•  Solution: remove the rightmost leaf at the deepest 
level and use it for the new root 

19 

14 18 

22 

3 21 

14 

11 9 

15 

17 22 

11 
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The percolate-down method  
•  Our tree is now a nearly complete binary tree, but no 

longer a heap 
•  However, only the root lacks the heap property 

•  We can percolate-down the root 
•  After doing this, one and only one of its children 

may have lost the heap property 

19 

14 18 

22 

3 21 

14 

9 

15 

17 22 

11 



CPSC 221                                Priority Queues and Heaps                                                         Page 44 

The percolate-down method  

•  Now the left child of the root (still the number 11) 
lacks the heap property 

•  We can The percolate-down method this node 
•  After doing this, one and only one of its children 

may have lost the heap property 

19 

14 18 

22 

3 21 

14 

9 

15 

17 11 

22 
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The percolate-down method  
•  Now the right child of the left child of the root (still the 

number 11) lacks the heap property: 

•  We can percolate-down this node 
•  After doing this, one and only one of its children may have 

lost the heap property —but it doesn’t, because it’s a leaf 

19 

14 18 

11 

3 21 

14 

9 

15 

17 22 

22 
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The percolate-down method  
•  Our tree is once again a heap, because every node 

in it has the heap property 

–  Once again, the largest (or a largest) value is in the root 

19 

14 18 

21 

3 11 

14 

9 

15 

17 22 

22 
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In-class exercise 
•  Build a binary Max-heap using the following numbers 

–  2,7,26,25,19,17,1,90,3,36 

 
–  Now remove max and reheap 

25 

3 2 

26 7 1 

90 

17 36 

19 

25 

3 2 

19 7 1 

36 

17 26 
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•  Use ReheapDown (percolate-down) to remove an item 
from a max heap 

Removing an item from a heap  

/* This function performs the ReheapDown operation on an 
array, to establish heap properties (for a subtree). !
 !

 PARAM:     data   – integer array containing the heap !
            top    – position of the root !
            bottom – position of the final elements in heap !
*/ !
void ReheapDown( int * data, int top, int bottom){ !
    if (!isLeaf(top, bottom)){ /* top is not a leaf */!
        int maxChild = getMaxChild(top) /* position of the !
        child having largest data value */!
        !

        if ( data[top] < data[maxChild] ){ !
            swap( &data[top], &data[maxChild]) !
            ReheapDown( data, maxChild, bottom); !
        } !
    } !
} !
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• For the max heap below draw the recursion tree of 
ReheapDown(data, 0, 10). !

19 

14 18 

22 

3 21 

14 15 

9 

17 22 

ReheapDown(data, 0, 10) 

ReheapDown(data, 1, 10) 

ReheapDown(data, 4, 10) 

ReheapDown(data, 9, 10) 

In-class exercise 
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CPSC 221 Administrative Notes  
•  Lab3: Grades are finalized 
•  Lab5: Feb 10 – Feb13, Feb 23 (Binary Heaps) 

•  No labs Feb 24, Feb 25, Feb 26 

•  Written Assignment #1 
– Due Friday, Feb 13, at 5pm 

•  Midterm: Wed 25 6:00 pm 
– Make-up Wed 25 9:30pm 

•  Final: APR 22 2015 12:00 PM        
 

•  PeerWise: 
–   Make sure you enter your question on PeerWise 
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So, Where Were We? 
•  Talked about priority queues and why unsorted or 

sorted lists are not a suitable data structures for 
implementing them. 

•  Talked about the heap property and Binary Heaps. 

•  Talked about how you can add a node and remove 
a node from a Binary Heap. 
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When performing either a ReheapUp or ReheapDown 
operation, the number of operations depends on the depth of 
the tree.  Notice that we traverse only one path or branch of 
the tree.  Recall that a nearly complete binary tree of height h 
has between 2h and 2h+1-1 nodes: 

D 
F J 

H K L M 

D 
F J 

H 

We can now determine the height of a heap in terms of the number of 
nodes n in the heap.  The height is lg n. 
The time complexity of the ReheapUp and ReheapDown operations is 
therefore O(lg n). 

Time Complexity 
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Building a Heap (Naïve) 
– Adding the elements one add a time with a reheapUp 

• See http://visualgo.net/heap.html 
/* This function builds a heap from an array. !
 !
 PARAM:     data   – integer array (no order is assumed) !
            top    - position of the root !
            bottom – position of the final elements in heap !
  */!
void Build_heap( int * data, int top, int bottom ) !
{ !
    int index = 0; !
     while (index <= bottom){ !
        ReheapUp(data, top, index); !
        index ++; !
    } !
} !
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•  Complexity analysis:  
–  we add each of n nodes and each node has to be sifted up, 

possibly as far as the root 
–  Since the binary tree is a nearly complete binary tree, sifting up 

a single node takes O(lg n) time 
–  Since we do this N times, Heapify1 takes N*O(lg n) time, that 

is, O(n lg n) time 

8 8 

10 

10 

8 

10 

8 5 

10 

8 5 

12 

10 

12 5 

8 

12 

10 5 

8 
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Heapify method  
• See http://visualgo.net/heap.html 

/* This function builds a heap from an array. !
 !
 PARAM:  data  – integer array (no order is assumed) !
            top    - position of the root !
            bottom – position of the final elements in heap !
!
 */!
void Heapify( int * data, int top, int bottom ) !
{ !
    int  index = position of last parent node in entire tree; !
    while (index => top){ !
    /* go backwards from the last parent */!
        ReheapDown( data, index, bottom ); !
        index --; !
    } !
} 
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Example:  Convert the following array to a min-heap: 

8 9 7 3 2 5 0 1 

8 

9 

3 2 

7 

5 0 

1 

To do so, picture the array as a nearly complete binary tree: 

In-class exercise 
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8 

9 

1 2 

7 

5 0 

3 

8 

9 

1 2 

0 

5 7 

3 

8 

1 

3 2 

0 

5 7 

9 

0 

1 

3 2 

5 

8 7 

9 
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Time complexity of Heapify 
•  We can determine the time complexity of the Heapify function by 

looking at the total number of times the comparison and swap 
operations occur while building the heap.  Let us consider the 
worst case, which is  

–  when the last level in the heap is full, and all of the nodes with high 
priorities are in the leafs. 

•  We will colour all the paths from each node, starting with the 
lowest parent and working up to the root, each going down to a 
leaf node.  The number of edges on the path from each node to a 
leaf node represents an upper bound on the number of comparison 
and swap operations that will occur while applying the 
ReheapDown operation to that node.  By summing the total length 
of these paths, we will determine the time complexity of the 
Heapify function.  
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In the worse possible case how many swaps are going to take place? 

Relate the number of swaps first to the number of edges and then 
nodes.  

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Note that no edge is coloured more than once.  Hence the work 
done by the Heapify function to build the heap can be measured in 
terms of the number of coloured edges. 

Time complexity of Heapify 
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Suppose H is the height of the tree, N is the number of elements in 
the tree, and E is the number of edges in the tree. 

•  How many edges are there in a nearly complete tree with N 
elements? 

 N-1 

•  Total number of coloured edges or swaps =  

          E – H = N - 1 - H = N – 1 – lg N  

         T(n) ∈ O (n)         

Hence, in the worst case, the overall time complexity of the 
Heapify algorithm is: 

  O(n) 

Time complexity of Heapify (sketch) 
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Time complexity of Heapify (Induction) 

The proof that this always works is inductive.  The inductive step 
is that both of my sub-trees have an uncoloured path (leftmost) to 
the leaves.  I colour the path thorough my right child and my left 
child provides an uncloured path that I offer to my parent 
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Alternative Approach 
•  Consider a complete heap: 

– An n element heap has height  

– An n element heap has at most           nodes of any 
height 
•  height 0 ~n/2 
•  height 1 ~n/4 
•  height lg n 1 

– Cost for node at height k is O(K) 
– Therefore, run time is 
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More Formally 
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More Formally 
•  Consider a complete heap: 

– An n element heap has height  

– An n element heap has at most           nodes of any 
height 
•  height 0 ~n/2 
•  height 1 ~n/4 
•  height lg n 1 

– Cost for node at height k is O(K) 
– Therefore, run time is 
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Motivation: In this section, we examine a sorting 
algorithm that guarantees worst case O(n lg n) time.   

We will use a binary heap to sort an array of data 

 
The Heapsort algorithm consists of 2 phases: 

1. [Heapify]   Build a heap using the elements to be sorted. 

2. [Sort]   Use the heap to sort the data. 

 

Let’s first consider the Naïve approach of building a heap 

 

The Heapsort Algorithm 
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Having built the heap, we now sort the array: 

0 

1 

3 2 

5 

8 7 

9 

0 1 5 3 2 8 7 9 

Note: In this section, we 
represent the data in both 
binary tree and array formats. 
It is important to understand 
that in practice the data is 
stored only as an array. 

More about this later when we cover sorting!!! 
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Time Complexity of Heapsort 

We need to determine the time complexity of the Heapify O(n) 
operation, and the time complexity of the subsequent sorting 
operation. 

The time complexity of the sorting operation once the heap has 
been built is fairly easy to determine.  For each element in the heap, 
we perform a single swap and a ReheapDown.  If there are N 
elements in the heap, the ReheapDown operation is O( lg n ), and 
hence the sorting operation is O( n lg n ). 

Hence, in the worst case, the overall time complexity of the 
Heapsort algorithm is: 

 
build heap from 
unsorted array 

essentially 
perform N 
RemoveMin’s 

O(n)  +  O(n lg n)  =  O(n lg n) 
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Thinking about Binary Heaps 
•  Observations 

–  finding a child/parent index is a multiply/divide by two 
–  operations jump widely through the heap 
–  deleteMins look at all (two) children of some nodes 
–  inserts only care about parents of some nodes 

•  Realities 
–  division and multiplication by powers of two are fast 
–  looking at one new piece of data sucks in a cache line 
– with huge data sets, disk accesses dominate 
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4 

9 6 5 4 

2 3 

1 

8 10 12 

7 

11 

Solution: d-Heaps 
•  Nodes have (up to) d children 
•  Still representable by array 
•  Good choices for d: 

–  optimize (non-asymptotic)  
performance based on  
ratio of inserts/removes 

– make d a power of two  
for efficiency 

–  fit one set of children in a cache line 
–  fit one set of children on a memory 

page/disk block 

3 7 2 8 5 12 11 10 6 9 1 

d-heap mnemonic: 
d is for degree! 
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Calculations in terms of d: 
–  child:  

–  parent:  

–  root:  

–  next free:  
4 

9 6 5 4 

2 3 

1 

8 10 12 

7 

11 

d-Heap calculations 

3 7 2 8 5 12 11 10 6 9 1 

d-heap mnemonic: 
d is for degree! 
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Calculations in terms of d: 
–  child: i*d+1 through i*d+d 

–  parent: floor((i-1)/d) 

–  root: 0 

–  next free: size 
4 

9 6 5 4 

2 3 

1 

8 10 12 

7 

11 

d-Heap calculations 

3 7 2 8 5 12 11 10 6 9 1 

d-heap mnemonic: 
d is for degree! 
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Learning Goals revisited 
•  Provide examples of appropriate applications for 

priority queues and heaps 

•   Determine if a given tree is an instance of a 
heap. 

•  Manipulate data in heaps 

•  Describe and apply the Heapify algorithm, and 
analyze its complexity 


