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CPSC 221: A journey filled with data 
structures, complexity, and algorithms 

•  We’ve talked about ADT  
– Stacks & Queues  

•  We’ve talked about arrays and Linked Lists 
– And how to implement Stacks & Queues with them 

•  But if we have different implementations of an 
algorithm/ADT, how can we compare them? 
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Learning Goals 
•  Define which program operations we measure in an 

algorithm in order to approximate its efficiency. 
•  Define “input size” and determine the effect (in terms of 

performance) that input size has on an algorithm. 
•  Give examples of common practical limits of problem 

size for each complexity class. 
•  Give examples of tractable, intractable problems. 
•  Given code, write a formula which measures the number 

of steps executed as a function of the size of the input 
(N). 

Continued… 
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Learning Goals 
•  Compute the worst-case asymptotic complexity of an 

algorithm (i.e., the worst possible running time based on 
the size of the input (N)). 

•  Categorize an algorithm into one of the common 
complexity classes. 

•  Explain the differences between best-, worst-, and 
average-case analysis. 

•  Describe why best-case analysis is rarely relevant and 
how worst-case analysis may never be encountered in 
practice. 

•  Given two or more algorithms, rank them in terms of 
their time and space complexity. Continued… 
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Learning Goals 
•  Define big-O, big-Omega, and big-Theta:  O(•), Ω(•), Θ(•) 
•  Explain intuition behind their definitions. 
•  Prove one function is big-O/Omega/Theta of another 

function. 
•  Simplify algebraic expressions using the rules of 

asymptotic analysis. 
•  List common asymptotic complexity orders, and how they 

compare. 
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A Task to Solve and Analyze 
•  Find a student’s name in a class given her student 

ID 
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Efficiency 
•  Complexity theory addresses the issue of how efficient an 

algorithm is, and in particular, how well an algorithm scales as the 
problem size increases. 

•  Some measure of efficiency is needed to compare one algorithm to 
another (assuming that both algorithms are correct and produce the 
same answers).  Suggest some ways of how to measure efficiency. 
–  Time (How long does it take to run?) 
–  Space (How much memory does it take?) 
–  Other attributes? 

•  Expensive operations, e.g.  I/O 
•  Elegance, Cleverness 
•  Energy, Power 
•  Ease of programming, legal issues, etc. 
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Analyzing Runtime 
How long does this take? 
 
 
 

old2 = 1; !
old1 = 1; !
for (i=3; i<n; i++) { !
    result = old2+old1; !
    old1 = old2; !
    old2 = result; !
} !
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Analyzing Runtime 
How long does this take? 
 
 
IT DEPENDS 
•  What is n? 
•  What machine? 
•  What language? 
•  What compiler? 
•  How was it programmed? 
 
 
 
 
 

old2 = 1; !
old1 = 1; !
for(i=3; i<n; i++){ !
  result = old2+old1; !
  old1 = old2; !
  old2 = result; !
} !
 

Wouldn’t be nice if didn’t  
depend on so many things? 
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Number of Operations 
•  Let us focus on one complexity measure:  the number of 

operations performed by the algorithm on an input of a given size. 
•  What is meant by “number of operations”? 

–  # instructions executed 
–  # comparisons 

•  Is the “number of operations” a precise indicator of an algorithm’s 
running time (time complexity)?  Compare a “shift register” 
instruction to a “move character” instruction, in assembly language. 
–  No, some operations are more costly than others 

•  Is it a fair indicator? 
–  Good enough 
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Analyzing Runtime 
How many operations does this 

take? 
 
IT DEPENDS 
•  What is n? 
 
 
 
 
 

old2 = 1 !
old1 = 1 !
for(i=3; i<n; i++){ !
  result = old2+old1 !
  old1 = old2 !
  old2 = result!
} !
 

•  Running time is a function of n  such as T(n) 
•  This is really nice because the runtime analysis doesn’t 

depend on hardware or subjective conditions anymore 
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Input Size 
•  What is meant by the input size n?  Provide some 

application-specific examples. 
•  Dictionary: 
•  # words 

•  Restaurant: 
•  # customers or # food choices or # employees 

•  Airline: 
•  # flights or # luggage or # costumers 

•  We want to express the number of operations performed 
as a function of the input size n.  
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Run Time as a Function of Size of Input 
•  But, which input? 

– Different inputs of same size have different run times 
 E.g., what is run time of linear search in a list? 

–  If the item is the first in the list? 
–  If it’s the last one? 
–  If it’s not in the list at all? 

 
What should we report? 
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 

Mostly 
useless 
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. 

Useful, 
pessimistic 
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Which Run Time? 

•  Average Case (Expected Time) 
•  Some problems may be intractable in the worst case, 

but tractable on average  
•  Allows discriminating among algorithms with the 

same worst case complexity 
•  Classic example: MergeSort vs QuickSort  

 

Useful, hard 
to do right 

Requires a notion of an "average" input to an algorithm 
 

Uses a probability distribution over input 
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Which Run Time? 
There are different kinds of analysis, e.g., 
•  Best Case 
•  Worst Case 
•  Average Case (Expected Time) 
•  Common Case 
•  etc. Very useful, 

but ill-defined 
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Scalability! 
•  What’s more important? 

– At n=5, plain recursion version is faster. 
– At n=35, complex version is faster. 

•  Computer science is about solving problems people 
couldn’t solve before. Therefore, the emphasis is almost 
always on solving the big versions of problems. 

•  (In computer systems, they always talk about 
“scalability”, which is the ability of a solution to work 
when things get really big.) 
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Asymptotic Analysis 
•  Asymptotic analysis is analyzing what happens to 

the run time (or other performance metric) as the 
input size n goes to infinity. 
– The word comes from “asymptote”, which is where 

you look at the limiting behavior of a function as 
something goes to infinity. 

•  This gives a solid mathematical way to capture the 
intuition of emphasizing scalable performance. 

•  It also makes the analysis a lot simpler! 
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Big-O (Big-Oh) Notation 
• Let T(n) and f(n) be functions mapping Z+→R+. 
 

Time 
(or anything  
else we can  
measure) 

Input size 

T(n) 

f(n) 

We want to compare the “overall” runtime (or memory  
usage or …) of a piece of code against a familiar,  
simple function. 

Positive integers 
Positive real numbers 
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Big-O  Notation 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 
The function f(n) is sort of, asymptotically 
“greater than or equal to” the function T(n). 
In the “long run”, f(n) (multiplied by a 
suitable constant) will upper-bound T(n). 
 

f(n) 

c f(n) 
T(n) ∈ O(f(n)) ∃ c and n0 such that 

 T(n) ≤ c f(n) ∀n ≥ n0 

For all 
There exists 
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Big-O  Notation 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 
We do want the comparison to be valid for all 
sufficiently large inputs… but we’re willing to 
ignore behaviour on small examples.   
(Looking for “steady state”.) 

f(n) 

c f(n) 
T(n) ∈ O(f(n)) ∃ c and n0 such that 

 T(n) ≤ c f(n) ∀n ≥ n0 

For all 
There exists 
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Big-O Notation (cont.) 
•  Using Big-O notation, we might say that Algorithm A “runs 

in time Big-O of n log n”, or that Algorithm B “is an order 
n-squared algorithm”.  We mean that the number of 
operations, as a function of the input size n, is O(n log n) or 
O(n2) for these cases, respectively. 

•  Constants don’t matter in Big-O notation because we’re 
interested in the asymptotic behavior as n grows arbitrarily 
large; but, be aware that large constants can be very 
significant in an actual implementation of the algorithm. 
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Rates of Growth 
•  Suppose a computer executes 1012 ops per second: 

n = 10 100 1,000 10,000 1012 

n 10-11s 10-10s 10-9s 10-8s 1s 

n lg n 10-11s 10-9s 10-8s 10-7s 40s 

n2 10-10s 10-8s 10-6s 10-4s 1012s 

n3 10-9s 10-6s 10-3s 1s 1024s 

2n 10-9s 1018s 10289s   
 

 

104s = 2.8 hrs    1018s = 30 billion years 
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Asymptotic Analysis Hacks 

• Eliminate low order terms 
–  4n + 5 ⇒ 4n 

–  0.5 n log n - 2n + 7 ⇒ 0.5 n log n 

–  2n + n3 + 3n ⇒ 2n 

• Eliminate coefficients 
–  4n ⇒ n 

–  0.5 n log n ⇒ n log n 

– n log (n2) = 2 n log n ⇒ n log n 
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Silicon Downs 
Post #1 
 
n3 + 2n2 
 
n0.1 
 
n + 100n0.1 
 
5n5 
 
n-152n/100 
 
82lg n 
 
mn3 

Post #2 
 
100n2 + 1000 
 
log n 
 
2n + 10 log n 
 
n! 
 
1000n15 
 
3n7 + 7n 
 
2mn 

For each race, which 
“horse” is “faster”.  
Note that faster means 
smaller, not larger! 
 

All analysis are done 
asymptotically  
 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race I 

n3 + 2n2 100n2 + 1000 vs. 

a. Left 
b. Right 
c. Tied 
d. It depends 
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Race I 

n3 + 2n2 100n2 + 1000 vs. 

a. Left 
b. Right 
c. Tied 
d. It depends 
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Race II 

n0.1 log n vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race II 

n0.1 log n vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Moral of the story? neps is slower than log n for any eps > 0 
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Race III 

n + 100n0.1 2n + 10 log n vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race III 

n + 100n0.1 2n + 10 log n vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Although left seems faster, asymptotically it is a TIE 
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Race IV 

5n5 n! vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race IV 

5n5 n! vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race V 

n-152n/100 1000n15 vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race V 

n-15 2n/100 1000n15 vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Any exponential is slower than any polynomial. 
 It doesn’t even take that long here (~250 input size) 
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Race VI 

82 log2 (n) 3n7 + 7n vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

Log Rules: 
1) log(mn) = log(m) + log(n) 
2) log(m/n) = log(m) – log(n) 
3) log(mn) = n · log(m) 
4) n = 2k  à log2 n = k 
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Race VI 

82 log2(n) 3n7 + 7n vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

82lg(n) = 8lg(n
2 ) = (23)lg(n

2 ) = 233lg(n
2 ) = 2lg(n

6 ) = n6

Log Rules: 
1) log(mn) = log(m) + log(n) 
2) log(m/n) = log(m) – log(n) 
3) log(mn) = n · log(m) 
4) n = 2k  à log n = k 
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Log Aside 
logab means “the exponent that turns a into b” 
lg x means   “log2x” (the usual log in CS) 
log x means “log10x” (the common log) 
ln x means   “logex” (the natural log) 
 
•  There’s just a constant factor between the three 

main log bases, and asymptotically they behave 
equivalently.  
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Race VII 

mn3 2mn vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 
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Race VII 

mn3 2mn vs. 

a.  Left 
b.  Right 
c.  Tied 
d.  It depends 

It depends on values of m and n 
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Silicon Downs 

Post #1 
 
n3 + 2n2 
 
n0.1 
 
n + 100n0.1 
 
5n5 
 
n-152n/100 
 
82lg n 
 
mn3 

Post #2 
 
100n2 + 1000 
 
log n 
 
2n + 10 log n 
 
n! 
 
1000n15 
 
3n7 + 7n 
 
2mn 

Winner 
 
O(n2)  
 
O(log n) 
 
TIE O(n) 
 
O(n5) 
 
O(n15) 
 
O(n6) 
 
IT DEPENDS 
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The fix sheet and what we care about most 

•  The fix sheet (typical growth rates in order) 
–  constant:  O(1) 
–  logarithmic:  O(log n)  (logkn, log n2 ∈ O(log n)) 
–  poly-log:  O(logk n)  (k is a constant >1) 
–  Sub-linear:  O(nc)              (c is a constant, 0 < c < 1) 
–  linear:   O(n) 
–  (log-linear):  O(n log n)  (usually called “n log n”) 
–  (superlinear):  O(n1+c)            (c is a constant, 0 < c < 1) 
–  quadratic:  O(n2) 
–  cubic:   O(n3) 
–  polynomial:  O(nk)   (k is a constant) 
–  exponential:  O(cn)   (c is a constant > 1) Intractable! 

Tractable 
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Name-drop your friends 
–  constant:  O(1) 
–  Logarithmic: O(log n)  
–  poly-log:  O(logk n) 
–  Sub-linear:  O(nc) 
–  linear:   O(n) 
–  (log-linear):  O(n log n)   
–  (superlinear):  O(n1+c) 
–  quadratic:  O(n2) 
–  cubic:   O(n3) 
–  polynomial:  O(nk)    
–  exponential:  O(cn)    

 
Casually name-drop the appropriate 
terms in order to sound bracingly cool to 
colleagues: “Oh, linear search? I hear it’s 
sub-linear on quantum computers, 
though.  Wild, eh?” 
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USE those cheat sheets! 

•  Which is faster, n3 or n3 log n? 
 
 
 
•  Which is faster, n3 or n3.01/log n? 
(Split it up and use the “dominance” relationships.) 
 

n3 *1      vs. n3 *log n               

n3 *1      vs. n3 *  n0.01/ log n              
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Which of the following functions is likely to grow the 
fastest, meaning that the algorithm is likely to take the 
most steps, as the input size, n, grows sufficiently 
large? 
 
 

 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E. They would all be about the same. 

Clicker Question 
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Which of the following functions is likely to grow the 
fastest, meaning that the algorithm is likely to take the 
most steps, as the input size, n, grows sufficiently 
large? 
 
 

 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E. They would all be about the same. 

Clicker Question (answer) 
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Suppose we have 4 programs, A-D, that run 
algorithms of the time complexities given. Which 
program will finish first, when executing the 
programs on input size n=10?  
 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E.  Impossible to tell 

Clicker Question 



CPSC 221             Asymptotic Analysis                                                     Page 50 

Suppose we have 4 programs, A-D, that run 
algorithms of the time complexities given. Which 
program will finish first, when executing the 
programs on input size n=10?  
 

A. O(n) 
B. O( sqrt (n) ) 
C. O (log n) 
D. O (n log n) 
E.  Impossible to tell 

Clicker Question (Answer) 
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Which of the following statements about complexity 
is true?  Choose the best answer 
 

A.  The set of functions in O(n4) have a fairly slow growth rate 
 

B.  O(n) doesn‘t grow very quickly 
 

C.  Big-O functions with the fastest growth rate represent the 
fastest algorithms, most of the time 
 
D.  Asymptotic complexity deals with relatively small input 
sizes 

Clicker Question 
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Which of the following statements about complexity 
is true?  Choose the best answer 
 

A.  The set of functions in O(n4) have a fairly slow growth rate 
 

B.  O(n) doesn‘t grow very quickly 
 

C.  Big-O functions with the fastest growth rate represent the 
fastest algorithms, most of the time 
 
D.  Asymptotic complexity deals with relatively small input 
sizes 

Clicker Question (answer) 
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Order Notation – Big-O 
•  T(n) ∈ O(f(n)) if there are constants c > 0 and 

n0 such that T(n) ≤ c f(n) for all n ≥ n0 

•  Why the ∈ ? 
  (Many people write T(n)=O(f(n)), 
  but this is sloppy.  The ∈ shows you why 
  you should never write O(f(n))=T(n), 
  with the big-O on the left-hand side.) 
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How to formalize winning? 
•  How to formally say that there’s some crossover 

point, after which one function is bigger than the 
other? 

•  How to formally say that you don’t care about a 
constant factor between the two functions? 



CPSC 221             Asymptotic Analysis                                                     Page 55 

Order Notation – Big-O 
•  T(n) ∈ O(f(n)) if there are constants c > 0 and 

n0 such that T(n) ≤ c f(n) for all n ≥ n0 

•  Intuitively, what does this all mean? 
 
The function f(n) is sort of, asymptotically 

“greater than or equal to” the function T(n). 
In the “long run”, f(n) (multiplied by a suitable 

constant) will upper-bound T(n). 
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Proving a Big-O 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 

f(n) 

c f(n) 
T(n) ∈ O(f(n)) ∃ c and n0 such that 

 T(n) ≤ c f(n) ∀n ≥ n0 

For all 
There exists 

•  How do you prove a         property? 

•  How do you prove a                  property? ……∀∃

∃...
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Proving a “There exists” Property 

How do you prove “There exists a good 
restaurant in Vancouver”? 

 
How do you prove a property like 
 

∃c c = 3c+1[ ]
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Proving a                 Property 

How do you prove “There exists a restaurant in 
Vancouver, where all items on the menu are 
less than $10”? 

 
How do you prove a property like 
 

[ ]102 −≤∀∃ xcxc

……∀∃
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Proving a Big-O 

Formally, to prove T(n) ∈ O(f(n)), you must 
show: 

 
 
So, we have to come up with specific values of 

c and n0 that “work”, where “work” means 
that for any n>n0 that someone picks, the 
formula holds: 

 
 

[ ])()( ncfnT ≤

[ ])()(,0 00 ncfnTnnnc ≤>∀>∃
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Prove n log n ∈ O(n2) 
•  Guess or figure out values of c and n0 that will 

work. 

 
•  This is fairly trivial:  log n <= n (for n>1) 
   c=1 and n0 = 1 works! 
 
 

 n log n ≤ cn2 

 log n ≤ cn 
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Aside:  Writing Proofs 
•  In lecture, my goal is to give you intuition. 

–  I will just sketch the main points, but not fill in all details. 
•  When you write a proof (homework, exam, 

reports, papers), be sure to write it out formally! 
– Standard format makes it much easier to write! 

• Class website has links to notes with standard 
tricks, examples 

• Textbook has good examples of proofs, too. 
• Copy the style, structure, and format of these 

proofs. 
– On exams and homeworks, you’ll get more credit. 
–  In real life, people will believe you more. 
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To Prove n log n ∈ O(n2) 
Proof: 
By the definition of big-O, we must find values of c and n0 

such that for all n ≥ n0, n log n ≤ cn2. 
Consider c=1 and n0 = 1. 
For all n ≥ 1, log n ≤ n. 
Therefore, log n ≤ cn, since c=1. 
Multiplying both sides by n (and since n ≥ n0= 1), we have       
        n log n ≤ cn2. 
Therefore, n log n ∈ O(n2). 
 

(This is more detail than you’ll use in the future, but 
until you learn what you can skip, fill in the details.) 
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Example 
•    Prove  T(n) =  n3 + 20 n +1 ∈ O(n3) 

–  n3 + 20 n +1 ≤ cn3       for n>n0 

–  1 + 20/n2 + 1/n3 ≤ c à holds for c=22 and  n0 = 1 
•   Prove T(n) =  n3 + 20 n +1 ∈ O(n4) 

–  n3 + 20 n +1 ≤ cn4       for n>n0 

–  1/n + 20/n3 + 1/n4 ≤ c à holds for c=22 and  n0= 1 
 

•  Prove T(n) =  n3 + 20 n +1  ∈ O(n2) 
–  n3 + 20 n +1 ≤ cn2       for n>n0 

–  n + 20/n + 1/n2 ≤ c à You cannot find such  c or n0 
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Computing Big-O  
•  If T(n) is a polynomial of degree d   
•   (i.e., T(n) = a0 + a1n + a2n2 + … + ad nd),  

•  then its Big-O estimate is simply the largest term 
without its coefficient, that is, T(n) ∈ O(nd). 

•  If T1(n) ∈ O(f(n)) and T2(n) ∈ O(g(n)), then  
– T1 (n)  + T2(n) ∈ O( max(f(n), g(n)) ). 
•  T1(n) = 4 n3/2 + 9  
•  T2(n) = 30 n lg n + 17n 
•  T(n) = T1(n) + T2(n) ∈ O( max(n3/2, n log n)  = O(n3/2) 



CPSC 221             Asymptotic Analysis                                                     Page 65 

•  Compute Big-O with witnesses c and n0 for  
•  T(n) = 25n2 - 50n + 110. 

 
 
 
 

 

 

25n2 - 50n + 110  ≤   25n2 + 50n + 110 ≤  cn2 

25 + 50/n + 110/n2 ≤  c 
T(n) ∈ O(n2)     c=27, n0 =110  

We are interested in the “tightest” 
Big-O estimate and not necessarily 
the smallest c and n0 

More Example 

Triangle inequality 
|a+b| ≤ |a| + |b| 
 
(substitute –b with b) 
 |a-b| ≤ |a| + |-b| ≤ |a| + |b| 
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•  Example   Compute Big-O with witnesses c and n0 for T(n) = 106. 

 

 

•  Example Compute Big-O with witnesses c and n0 for T(n) = log (n!). 

106≤  c 
T(n) ∈ O(1)   c=106, n0 = whatever  

log (n!) = log(1*2..*n)  
             =log(1) + log(2) + … + log(n) 
            ≤ log(n) + log(n) + …  + log(n)   
            ≤ n log(n) <= cn log(n) 
 
T(n) ∈ O(n log(n))            c=10, n0 = 10  

Log Rules: 
1) log(mn) = log(m) + log(n) 
2) log(m/n) = log(m) – log(n) 
3) log(mn) = n · log(m) 

More Example 
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Proving a Big-O 

Time 
(or anything  
else we can  
measure) 

Input size n0 

T(n) 

f(n) 

c f(n) 
T(n) ∈ O(f(n)) ∃ c and n0 such that 

 T(n) ≤ c f(n) ∀n ≥ n0 
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Big-Omega (Ω) notation 
•  Just as Big-O provides an upper bound, there exists Big-Omega (Ω) 

notation to estimate the lower bound of an algorithm, meaning that, in 
the worst case, the algorithm takes at least so many steps: 

T(n) ∈ Ω(f(n)) if ∃ d and n0 such that 
 d f(n) ≤  T(n) ∀ n ≥ n0 

Time 
(or anything  
else we can  
measure) 

Input size 
n0 

T(n) 

d f(n) 

f(n) 
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Proving Big-Ω 

•  Just like proving Big-O, but backwards… 

•  Prove T(n) =  n3 + 20 n +1 ∈ Ω(n2) 

dn2  ≤  n3 + 20n + 1 
d  ≤  n + 20/n + 1/n2    

d=10,     n0 = 20  
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Big-Theta (Θ) notation 
•  Furthermore, each algorithm has both an upper bound and a lower 

bound, and when these correspond to the same growth order 
function, the result is called Big-Theta (Θ) notation. 

Time 
(or anything  
else we can  
measure) 

Input size 
n0 

T(n) 

d f(n) 

f(n) 

n0 

c f(n) 
T(n) ∈ Θ(f(n)) if ∃ c, d and n0 such that 

 d f(n) ≤  T(n) ≤ c f(n) ∀ n ≥ n0 
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Examples 

10,000 n2 + 25 n ∈ Θ(n2) 
10-10 n2 ∈ Θ(n2) 
n log n ∈ O(n2) 
n log n ∈ Ω(n) 
n3 + 4 ∈ O(n4) but not Θ(n4) 
n3 + 4 ∈ Ω(n2) but not Θ(n2) 
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Proving Big-Θ 
•  Just prove Big-O and Big-Ω 
•  Prove T(n) =  n3 + 20 n +1∈ Θ(n3) 

dn3 ≤ n3 + 20 n +1 ≤ cn3       for n>n0 
d ≤ 1 + 20/n2 + 1/n3 ≤ c  
 
holds for d=1, c=22 ,  n0 = 105 
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Proving Big-Θ 
•  Just prove Big-O and Big-Ω 
•  Prove T(n) =  n3 + 20 n +1∈ Θ(n3) 

dn3 ≤ n3 + 20 n +1 ≤ cn3       for n>n0 
holds for d=1, c=22 ,  n0 = 105 
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Types of analysis 
•  Bound flavor 

–  upper bound (O) 
–  lower bound (Ω) 
–  asymptotically tight (Θ) 

•  Analysis case 
– worst case (adversary) 
–  average case 
–  best case 
–  “common” case 

•  Analysis quality 
–  loose bound (any true analysis) 
–  tight bound 
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“Tight” Bound 
There are at least three common usages for 

calling a bound “tight”: 
1.  Big-Theta, “asymptotically tight” 
2.  “no better bound which is asymptotically 

different” 
3.  Big-O upper bound on run time of an 

algorithm matches provable worst-case lower-
bound on any solution algorithm. 
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“Tight” Bound – Def. 1 
1.  Big-Theta, “asymptotically tight” 
 
This definition is formal and clear: 

 T(n) ∈ Θ(f(n)) if T(n) ∈ O(f(n)) and T(n) ∈ Ω (f(n)) 

but it is too rigid to capture practical intuition. 
For example, what if  
       T(n) = (n%2==0)? n*n : 1  
Is T(n) ∈ O(n2) ? 
Is T(n) ∈ Θ(n2) ? 
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“Tight” Bound – Def. 2 
•  “no better bound which is asymptotically 

different” 
•  This is the most common definition, and captures 

what people usually want to say, but it’s not 
formal. 
– E.g., given same T(n), we want T(n) ∈ O(n2) to be 

considered “tight”, but not T(n) ∈ O(n3)  
– But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a 

tighter bound? 
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“Tight” Bound – Def. 2 
•  “no better ‘reasonable’ bound which is 

asymptotically different” 
•  This is the most common definition, and captures 

what people usually want to say, but it’s not 
formal. 

“Reasonable” is defined subjectively, but it basically means a simple 
combination of normal, common functions, i.e., anything on our list 
of common asymptotic complexity categories (e.g., log n, n, nk, 2n, 
n!, etc.).  There should be no lower-order terms, and no unnecessary 
coefficients. 

This is the definition we’ll use in CPSC 221 unless stated otherwise. 
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“Tight” Bound – Def. 3 
•  Big-O upper bound on run time of an algorithm 

matches provable lower-bound on any 
algorithm. 

•  The definition used in more advanced, 
theoretical computer science: 
–  Upper bound is on a specific algorithm. 
–  Lower bound is on the problem in general. 
–  If the two match, you can’t get an asymptotically 

better algorithm. 
•  This is beyond this course, for the most part. 

–  (Examples:  Searching and Sorting…) 
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Bounding Searching and Sorting 
•  Searching an unsorted list using comparisons 

takes Ω(n) time (lower bound) 
– Linear search takes O(n) time (matching upper bound) 

•  Sorting a list using comparisons takes Ω(n lg n) 
time (lower bound) 
– Mergesort takes  O(n lg n) time (matching upper 

bound) 
– More on this later! 
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Analyzing Code 

•  But how can we obtain T(n) from an algorithm/
code 

 
•  C++ operations  - constant time 
•  consecutive stmts  - sum of times 
•  conditionals   - max of branches, condition 
•  loops    - sum of iterations 
•  function calls  - cost of function body 
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Analyzing Code 

•  Step 1: What’s the input size n? 
•  Step 2: What kind of analysis should we perform?  

– Worst-case?  Best-case?  Average-case? 
•  Step 3: How much does each line cost?  (Are lines 

the right unit?) 

find(key, array) !
    for i = 1 to length(array) do!
        if array[i] == key !
            return i !
    !
    return -1 



CPSC 221             Asymptotic Analysis                                                     Page 83 

Analyzing Code 

•  Step 4: What’s T(n) in its raw form? 
•  Step 5: Simplify T(n) and convert to order 

notation.  (Also, which order notation: O, Θ, Ω?) 
•  Step 6: Prove the asymptotic bound by finding 

constants c and n0 such that  
–  for all n ≥ n0, T(n) ≤ cn. 

find(key, array) !
    for i = 1 to length(array) do!
        if array[i] == key !
            return i !
    !
    return -1 
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Example 1 

•  This example is pretty straightforward. Each loop 
goes n times, and a constant amount of work is 
done on the inside. 

for i = 1 to n do !
   for j = 1 to n do !
      sum = sum + 1 ] n times ] n times 

T (n) = (1+ 2)
j=1

n

∑
i=1

n

∑ = (1+ 2n)
i=1

n

∑ = n+ 2n2 =O(n2 )

1 
1 
1 
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Example 1 (simpler version) 

•  Count the number of times sum = sum + 1 occurs  
 

for i = 1 to n do !
   for j = 1 to n do !
      sum = sum + 1 ] n times ] n times 

T (n) = 1
j=1

n

∑
i=1

n

∑ = n
i=1

n

∑ = n2 =O(n2 )

1 
1 
1 
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Example 2 
i = 1 !
   while i < n do!
      for j = i to n do!
         sum = sum + 1 !
      i++ 

Time complexity: 
a.  O(n) 
b.  O(n lg n) 
c.  O(n2) 
d.  O(n2 lg n) 
e.  None of these 
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Example 2 (Pure Math Approach)  
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Example 2 (Pure Math Approach)  

(                   )             (              ) 
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Example 2 (Pure Math Approach)  

(                   )             (              ) 
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Example 2 (Pure Math Approach)  

Yay!!! 

3 

3 
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Example 2 (Simplified Math Approach) 
i = 1 !
   while i < n do!
      for j = i to n do!
         sum = sum + 1 !
      i++ 

T (n) = 1
j=i

n

∑
i=1

n−1

∑

T (n) = (n− i+1) = n+ n−1+...+ 2
i=1

n−1

∑

The second sigma is n-i+1 

T (n) = n(n+1) / 2 ∈Θ(n2 ) i =
i=1

n

∑ n(n+1)
2

Count this line 
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Example 2 Pretty Pictures Approach 
i = 1     takes “1” step 
while i < n do    i varies 1 to n-1 
  for j = i to n do   j varies i to n 
    sum = sum + 1   takes “1” step 
  i++     takes “1” step 

* * * * * * * * * * 
  * * * * * * * * * 
    * * * * * * * * 
      * * * * * * * 
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

•  Imagine drawing one point for each 
time the “sum=sum+1” line  gets 
executed. In the first iteration of the 
outer loop, you’d draw n points.  In 
the second, n-1.  Then n-2, n-3, and 
so on down to (about) 1.  Let’s draw 
that picture… 
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Example 2 Pretty Pictures Approach 

•  It is a triangle and its area is proportional to 
runtime 

n rows 

T (n) = Base×Height
2 = n2

2 ∈Θ(n2 )

* * * * * * * * * * 
  * * * * * * * * * 
    * * * * * * * * 
      * * * * * * * 
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

n columns 
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Example 2 (Faster/Slower Code Approach) 

i = 1     takes “1” step 
while i < n do    i varies 1 to n-1 
  for j = i to n do   j varies i to n 
    sum = sum + 1   takes “1” step 
  i++     takes “1” step 
 

•  This code is “too hard” to deal with.  So, let’s find just an 
upper bound. 
–  In which case we get to change the code so in any way 

that makes it run no faster (even if it runs slower). 
–  We’ll let j go from 1 to n rather than i to n.  Since i ≥ 1, 

this is no less work than the code was already doing… 
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Example 2 (Faster/Slower Code Approach) 

i = 1     takes “1” step 
while i < n do    i varies 1 to n-1 

  for j = 1 to n do   j varies i to n 
    sum = sum + 1   takes “1” step 
  i++     takes “1” step 
 
•  But this is just an upper bound O(n2), since we made the code 

run slower. 

 
•  Could it actually run faster? 
 

        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
* * * * * * * 
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Example 2 (Faster/Slower Code Approach) 

i = 1     takes “1” step 
while i < n do    i varies 1 to n-1 
  for j = i to n do   j varies i to n 
    sum = sum + 1   takes “1” step 
  i++     takes “1” step 

•  Let’s do a lower-bound, in which case we can make the code 
run faster if we want.  
–  Let’s make j start at n-1. Does the code run faster? Is that helpful? 

 
 

 

Runs faster but you get Ω(n) which is not what we want  
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

* 
* 
* 
* 
* 
* 
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Example 2 (Faster/Slower Code Approach) 
i = 1     takes “1” step 
while i < n do    i varies 1 to n-1 
  for j = i to n do   j varies i to n 
    sum = sum + 1   takes “1” step 
  i++     takes “1” step 

•  Let’s do a lower-bound, in which case we can make the code 
run faster if we want.  
–  Let’s make j start at n/2. Does the code run faster? Is that helpful? 
 Hard to argue that it is faster. Every inner loop now runs n/2 times 

        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

              * * * 
              * * * 
              * * * 
              * * * 
              * * * 
              * * * 
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Example 2(Faster /Slower Code Approach) 

i = 1     takes “1” step 
while i < n/2 +1 do        goes n/2 times 
  for j = n/2 +1 to n do  goes n/2 times 
    sum = sum + 1   takes “1” step 
  i++     takes “1” step 

•  Let’s change the bounds on both i and j to make both loops 
faster. 

T (n) = 1
j=1

n/2

∑
i=1

n/2

∑ = (n / 2)
i=1

n/2

∑ = n2 / 4∈Ω(n2 )
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 

 * * * 
 * * * 
 * * * 
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Note Pretty Pictures and Faster/Slower 
are the Same(ish) Picture  

•  Both the overestimate (upper-bound) and the 
underestimate (lower-bound) are proportional to n2 

* * * * * * * * * * 
  * * * * * * * * * 
    * * * * * * * * 
      * * * * * * * 
        * * * * * * 
          * * * * * 
            * * * * 
              * * * 
                * * 
                  * 
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Example 2.5 
for (i=1; i <= n; i++) !
   for (j=1; j <= n; j=j*2) !
       sum = sum + 1 !

Time complexity: 
a.  O(n) 
b.  O(n lg n) 
c.  O(n2) 
d.  O(n2 lg n) 
e.  None of these 
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Example 2.5 
for (i=1; i <= n; i++) !
   for (j=1; j <= n; j=j*2) !
       sum = sum + 1 !

T (n) = 1
j=0

lgn!" #$

∑
i=1

n

∑ = lgn
i=0

n

∑ = (n+1)lgn ∈O(n lgn)

Asymptotically flooring doesn’t matter  

j= 1, 2, 4, 8, 16, 32, …   x <= n < 2x 

= 20, 21, 22,...2k 2k <= 2lg n < 2k+1 

k <= lg n< k+1 k = lgn!" #$
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Example 3 
i = 1 !
   while i < n do !
     for j = 1 to i do!
        sum = sum + 1 !
     i += i 

Time complexity: 
a.  O(n) 
b.  O(n lg n) 
c.  O(n2) 
d.  O(n2 lg n) 
e.  None of these 



CPSC 221             Asymptotic Analysis                                                     Page 103 

Example 3 
i = 1 !
   while i < n do !
     for j = 1 to i do!
        sum = sum + 1 !
     i += i 

i = 1, 2, 4, 8, 16, 32, …   
x <= n-1 < 2x 

= 20, 21, 22,...2k 2k <= 2lg n-1 < 2k+1 

k <= lg n-1< k+1 

k = lgn−1"# $%
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Example 3 
i = 1 !
 while i < n do !
   for j = 1 to i do !
      sum = sum + 1 !
   i += i 

Outer loop 
iteration 

i j Inner loop 
iteration 

0 1 1-1 1 

1 2 1-2 2 

2 4 1-4 4 

3 8 1-8 8 

… … … … 

k 2k 1-2k 2k 

lg n-1 2 lgn-1 1-2 lgn-1 2 lgn-1 

T (n) = 1
j=1

2i

∑
i=1

lgn−1

∑ = 2i
i=1

lgn−1

∑ = 2lg(n−1)+1 −1∈Ο(n)

2i =
i=0

k

∑ 2k+1 −1



CPSC 221             Asymptotic Analysis                                                     Page 105 

Example 3 (another approach) 
i = 1 !
   while i < n do !
     for j = 1 to i do!
        sum = sum + 1 !
     i += i 

i= 1, 2, 4, 8, 16, 32, …   

T (n) =1+ 2+ 4+...x

T (n) = 2i
i=1

?

∑

x <= n-1 < 2x 

= 20 + 21 + 22 +...2k 2k <= 2lg n-1 < 2k+1 

k <= lg n-1< k+1 

k = lgn−1"# $%
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Example 3 (another approach) 
i = 1 !
   while i < n do !
     for j = 1 to i do!
        sum = sum + 1 !
     i += i 

Count this line 

T (n) = 2i
i=1

lg(n−1)

∑

T (n) = 2i
i=1

lg(n−1)

∑ = 2lg(n−1)+1 − 2 ∈Ο(n)
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Example 4 
•  Conditional 
 if C then S1 else S2 

 
 
 

                            or 
 
•  Loops 
 while C do S 

O(c) + max ( O(s1), O(s2) )  

O(c) +  O(s1) + O(s2)   

max(O(c), O(s)) * # iterations 
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Example 5 
•  Recursion almost always yields a recurrence 

– Recursive max: 

– Recurrence relation  

T(1) <= b                if n <= 1 
T(n) <= c + T(n - 1)     if n > 1 

int maxRecurse(int nums[], int n){ !
  if (n== 1) !
      return nums[0]; !
!
  return max(maxRecurse(nums, n-1), nums[n-1]); !
} 
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Example 5 

•  Analysis 
–  T(n) <= c + c + T(n - 2)  (substitution) 
–  T(n) <= c + c + c + T(n – 3)(substitution) 
–  T(n) <= kc + T(n – k) (extrapolating 0 < k ≤ n) 

–  T(n) <= (n – 1)c + T(1) (for k = n – 1) 
–  T(n)  = (n – 1)c + b  

•  T(n) ∈ O(n) 

T(1) <= b                if n <= 1 
T(n) <= c + T(n - 1)     if n > 1 
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Example 6 
•  Mergesort algorithm 

–  split list in half, sort first half, sort second half, merge 
together 

•  Recurrence relation  
T(1) <= b      if n <= 1 
T(n) <= 2T(n/2) + cn      if n > 1 
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Example 6 
•  Mergesort algorithm 

T(1) <= b      if n <= 1 
T(n) <= 2T(n/2) + cn      if n > 1 
 

Time complexity: 
a.  O(n) 
b.  O(n lg n) 
c.  O(n2) 
d.  O(n2 lg n) 
e.  None of these 
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Example 6 

•  Analysis 
 T(n)<= 2T(n/2) + cn 
     <= 2(2T(n/4) + c(n/2)) + cn (substitution) 
      = 4T(n/4) + cn + cn 

 

     <= 4(2T(n/8) + c(n/4)) + cn + cn (substitution) 
       = 8T(n/8) + cn + cn + cn 

 

      <= 2kT(n/2k) + kcn (extrapolating 1 < k ≤ n) 
      <= nT(1) + cn lg n  (for 2k = n  or k = lg n) 

•  T(n) ∈ O(n lg n) 

T(1) <= b     if n <= 1 
T(n) <= 2T(n/2) + cn      if n > 1 
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Example 7 
•  Recursive Fibonacci 

•  Recurrence relation  

•  Claim 

if (n == 0 or n == 1) !
    return 1 !
else!
    return Fib(n - 1) + Fib(n - 2) 

T(0), T(1) >= b 
T(n) >= T(n - 1) + T(n - 2) + c  if n > 1 

T(n) >= bφn-1 
Where φ = (1+√5)/2 ≈ 1.618 
Note: φ2 = φ+1    
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Example 7 
•  Claim: 

•  Proof: 
– Basis: T(0) ≥ b > bφ-1 and  T(1) ≥ b = bφ0 

–  Inductive step: Assume T(m) ≥ bφm - 1 for all m < n 

  T(n) ≥ T(n - 1) + T(n - 2) + c 
      ≥ bφn-2 + bφn-3 + c 
      ≥ bφn-3(φ + 1) + c 
      = bφn-3φ2 + c 
      ≥ bφn-1 

T(n) >= bφn-1 
φ = (1+√5)/2 ≈1.618 
Note: φ2 = φ + 1       

T(n) ∈ Ω(φn-1) 
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Example 8 
•  Problem: find a tight bound on  

– T(n) = lg(n!) 

Time complexity: 
a.  Θ(n) 
b.  Θ(n lg n) 
c.  Θ(n2) 
d.  Θ(n2 lg n) 
e.  None of these 
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Example 9 
•  Problem: find a tight bound on  

– T(n) = lg(n!) 

T (n) = lg(i)
i=1

n

∑ ≤ lg(n)
i=1

n

∑ ∈Ο(n lgn)

T (n) = lg(i)
i=1

n

∑ ≥ lg(i)>
i=n/2

n

∑ lg(n / 2)
i=n/2

n

∑

lg(n / 2) = n / 2(lgn−1)
i=n/2

n

∑ ∈Ω(n lgn)

T(n) ∈  Θ (n lg n) 
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Who Cares About Ω(lg (n!))? 

a<b<c 
a<c<b 
b<a<c 
b<c<a 
c<a<b 
c<b<a 

a<b<c 
a<c<b 
c<a<b 

b<a<c 
b<c<a 
c<b<a 

c<a<b a<b<c 
a<c<b 

c<b<a b<a<c 
b<c<a 

a<c<b 
 

a<b<c b<c<a 
 

b<a<c 

a<b b<a 

a<c c<a 

b<c c<b 

b<c c<b 

a<c c<a 

•  Let’s assume that you want to sort a,b, and c 
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Who Cares About Ω(lg (n!))? 
•  How many ways can you order n items? 

–  There are n! possible ways to order them. We could number 
them 1,2,…n! 

•  A sorting algorithm must distinguish between these n! 
choices (because any of them might be the input). 

•  So we want a binary tree with n! leaves. A binary tree 
with height h has 2h leaves. 

•  So, to distinguish which of the n! orders you were given 
requires lg(n!) comparisons, which is Ω (n log n) 

n! <= 2h 

lg (n!) <=  h 



CPSC 221             Asymptotic Analysis                                                     Page 120 

Learning Goals revisited 
•  Define which program operations we measure in an 

algorithm in order to approximate its efficiency. 
•  Define “input size” and determine the effect (in terms of 

performance) that input size has on an algorithm. 
•  Give examples of common practical limits of problem 

size for each complexity class. 
•  Give examples of tractable, intractable problems. 
•  Given code, write a formula which measures the number 

of steps executed as a function of the size of the input 
(N). 

Continued… 
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Learning Goals revisited 
•  Compute the worst-case asymptotic complexity of an 

algorithm (i.e., the worst possible running time based on 
the size of the input (N)). 

•  Categorize an algorithm into one of the common 
complexity classes. 

•  Explain the differences between best-, worst-, and 
average-case analysis. 

•  Describe why best-case analysis is rarely relevant and 
how worst-case analysis may never be encountered in 
practice. 

•  Given two or more algorithms, rank them in terms of 
their time and space complexity. Continued… 
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Learning Goals revisited 
•  Define big-O, big-Omega, and big-Theta:  O(•), Ω(•), Θ(•) 
•  Explain intuition behind their definitions. 
•  Prove one function is big-O/Omega/Theta of another 

function. 
•  Simplify algebraic expressions using the rules of 

asymptotic analysis. 
•  List common asymptotic complexity orders, and how they 

compare. 


