
CPSC 221 Asymptotic Analysis Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

Asymptotic Analysis

Textbook References:
Koffman: 2.6

EPP 3rd edition: 9.2 and 9.3
EPP 4th edition: 11.2 and 11.3

CPSC 221 Asymptotic Analysis Page 2

CPSC 221: A journey filled with data
structures, complexity, and algorithms

•  We’ve talked about ADT
– Stacks & Queues

•  We’ve talked about arrays and Linked Lists
– And how to implement Stacks & Queues with them

•  But if we have different implementations of an
algorithm/ADT, how can we compare them?

CPSC 221 Asymptotic Analysis Page 3

Learning Goals
•  Define which program operations we measure in an

algorithm in order to approximate its efficiency.
•  Define “input size” and determine the effect (in terms of

performance) that input size has on an algorithm.
•  Give examples of common practical limits of problem

size for each complexity class.
•  Give examples of tractable, intractable problems.
•  Given code, write a formula which measures the number

of steps executed as a function of the size of the input
(N).

Continued…

CPSC 221 Asymptotic Analysis Page 4

Learning Goals
•  Compute the worst-case asymptotic complexity of an

algorithm (i.e., the worst possible running time based on
the size of the input (N)).

•  Categorize an algorithm into one of the common
complexity classes.

•  Explain the differences between best-, worst-, and
average-case analysis.

•  Describe why best-case analysis is rarely relevant and
how worst-case analysis may never be encountered in
practice.

•  Given two or more algorithms, rank them in terms of
their time and space complexity. Continued…

CPSC 221 Asymptotic Analysis Page 5

Learning Goals
•  Define big-O, big-Omega, and big-Theta: O(•), Ω(•), Θ(•)
•  Explain intuition behind their definitions.
•  Prove one function is big-O/Omega/Theta of another

function.
•  Simplify algebraic expressions using the rules of

asymptotic analysis.
•  List common asymptotic complexity orders, and how they

compare.

CPSC 221 Asymptotic Analysis Page 6

A Task to Solve and Analyze
•  Find a student’s name in a class given her student

ID

CPSC 221 Asymptotic Analysis Page 7

Efficiency
•  Complexity theory addresses the issue of how efficient an

algorithm is, and in particular, how well an algorithm scales as the
problem size increases.

•  Some measure of efficiency is needed to compare one algorithm to
another (assuming that both algorithms are correct and produce the
same answers). Suggest some ways of how to measure efficiency.
–  Time (How long does it take to run?)
–  Space (How much memory does it take?)
–  Other attributes?

•  Expensive operations, e.g. I/O
•  Elegance, Cleverness
•  Energy, Power
•  Ease of programming, legal issues, etc.

CPSC 221 Asymptotic Analysis Page 8

Analyzing Runtime
How long does this take?

old2 = 1; !
old1 = 1; !
for (i=3; i<n; i++) { !
 result = old2+old1; !
 old1 = old2; !
 old2 = result; !
} !

CPSC 221 Asymptotic Analysis Page 9

Analyzing Runtime
How long does this take?

IT DEPENDS
•  What is n?
•  What machine?
•  What language?
•  What compiler?
•  How was it programmed?

old2 = 1; !
old1 = 1; !
for(i=3; i<n; i++){ !
 result = old2+old1; !
 old1 = old2; !
 old2 = result; !
} !

Wouldn’t be nice if didn’t
depend on so many things?

CPSC 221 Asymptotic Analysis Page 10

Number of Operations
•  Let us focus on one complexity measure: the number of

operations performed by the algorithm on an input of a given size.
•  What is meant by “number of operations”?

–  # instructions executed
–  # comparisons

•  Is the “number of operations” a precise indicator of an algorithm’s
running time (time complexity)? Compare a “shift register”
instruction to a “move character” instruction, in assembly language.
–  No, some operations are more costly than others

•  Is it a fair indicator?
–  Good enough

CPSC 221 Asymptotic Analysis Page 11

Analyzing Runtime
How many operations does this

take?

IT DEPENDS
•  What is n?

old2 = 1 !
old1 = 1 !
for(i=3; i<n; i++){ !
 result = old2+old1 !
 old1 = old2 !
 old2 = result!
} !

•  Running time is a function of n such as T(n)
•  This is really nice because the runtime analysis doesn’t

depend on hardware or subjective conditions anymore

CPSC 221 Asymptotic Analysis Page 12

Input Size
•  What is meant by the input size n? Provide some

application-specific examples.
•  Dictionary:
•  # words

•  Restaurant:
•  # customers or # food choices or # employees

•  Airline:
•  # flights or # luggage or # costumers

•  We want to express the number of operations performed
as a function of the input size n.

CPSC 221 Asymptotic Analysis Page 13

Run Time as a Function of Size of Input
•  But, which input?

– Different inputs of same size have different run times
 E.g., what is run time of linear search in a list?

–  If the item is the first in the list?
–  If it’s the last one?
–  If it’s not in the list at all?

What should we report?

CPSC 221 Asymptotic Analysis Page 14

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

CPSC 221 Asymptotic Analysis Page 15

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

Mostly
useless

CPSC 221 Asymptotic Analysis Page 16

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc.

Useful,
pessimistic

CPSC 221 Asymptotic Analysis Page 17

Which Run Time?

•  Average Case (Expected Time)
•  Some problems may be intractable in the worst case,

but tractable on average
•  Allows discriminating among algorithms with the

same worst case complexity
•  Classic example: MergeSort vs QuickSort

Useful, hard
to do right

Requires a notion of an "average" input to an algorithm

Uses a probability distribution over input

CPSC 221 Asymptotic Analysis Page 18

Which Run Time?
There are different kinds of analysis, e.g.,
•  Best Case
•  Worst Case
•  Average Case (Expected Time)
•  Common Case
•  etc. Very useful,

but ill-defined

CPSC 221 Asymptotic Analysis Page 19

Scalability!
•  What’s more important?

– At n=5, plain recursion version is faster.
– At n=35, complex version is faster.

•  Computer science is about solving problems people
couldn’t solve before. Therefore, the emphasis is almost
always on solving the big versions of problems.

•  (In computer systems, they always talk about
“scalability”, which is the ability of a solution to work
when things get really big.)

CPSC 221 Asymptotic Analysis Page 20

Asymptotic Analysis
•  Asymptotic analysis is analyzing what happens to

the run time (or other performance metric) as the
input size n goes to infinity.
– The word comes from “asymptote”, which is where

you look at the limiting behavior of a function as
something goes to infinity.

•  This gives a solid mathematical way to capture the
intuition of emphasizing scalable performance.

•  It also makes the analysis a lot simpler!

CPSC 221 Asymptotic Analysis Page 21

Big-O (Big-Oh) Notation
• Let T(n) and f(n) be functions mapping Z+→R+.

Time
(or anything
else we can
measure)

Input size

T(n)

f(n)

We want to compare the “overall” runtime (or memory
usage or …) of a piece of code against a familiar,
simple function.

Positive integers
Positive real numbers

CPSC 221 Asymptotic Analysis Page 22

Big-O Notation

Time
(or anything
else we can
measure)

Input size n0

T(n)
The function f(n) is sort of, asymptotically
“greater than or equal to” the function T(n).
In the “long run”, f(n) (multiplied by a
suitable constant) will upper-bound T(n).

f(n)

c f(n)
T(n) ∈ O(f(n)) ∃ c and n0 such that

 T(n) ≤ c f(n) ∀n ≥ n0

For all
There exists

CPSC 221 Asymptotic Analysis Page 23

Big-O Notation

Time
(or anything
else we can
measure)

Input size n0

T(n)
We do want the comparison to be valid for all
sufficiently large inputs… but we’re willing to
ignore behaviour on small examples.
(Looking for “steady state”.)

f(n)

c f(n)
T(n) ∈ O(f(n)) ∃ c and n0 such that

 T(n) ≤ c f(n) ∀n ≥ n0

For all
There exists

CPSC 221 Asymptotic Analysis Page 24

Big-O Notation (cont.)
•  Using Big-O notation, we might say that Algorithm A “runs

in time Big-O of n log n”, or that Algorithm B “is an order
n-squared algorithm”. We mean that the number of
operations, as a function of the input size n, is O(n log n) or
O(n2) for these cases, respectively.

•  Constants don’t matter in Big-O notation because we’re
interested in the asymptotic behavior as n grows arbitrarily
large; but, be aware that large constants can be very
significant in an actual implementation of the algorithm.

CPSC 221 Asymptotic Analysis Page 25

Rates of Growth
•  Suppose a computer executes 1012 ops per second:

n = 10 100 1,000 10,000 1012

n 10-11s 10-10s 10-9s 10-8s 1s

n lg n 10-11s 10-9s 10-8s 10-7s 40s

n2 10-10s 10-8s 10-6s 10-4s 1012s

n3 10-9s 10-6s 10-3s 1s 1024s

2n 10-9s 1018s 10289s

104s = 2.8 hrs 1018s = 30 billion years

CPSC 221 Asymptotic Analysis Page 26

Asymptotic Analysis Hacks

• Eliminate low order terms
–  4n + 5 ⇒ 4n

–  0.5 n log n - 2n + 7 ⇒ 0.5 n log n

–  2n + n3 + 3n ⇒ 2n

• Eliminate coefficients
–  4n ⇒ n

–  0.5 n log n ⇒ n log n

– n log (n2) = 2 n log n ⇒ n log n

CPSC 221 Asymptotic Analysis Page 27

Silicon Downs
Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82lg n

mn3

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

For each race, which
“horse” is “faster”.
Note that faster means
smaller, not larger!

All analysis are done
asymptotically

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 28

Race I

n3 + 2n2 100n2 + 1000 vs.

a. Left
b. Right
c. Tied
d. It depends

CPSC 221 Asymptotic Analysis Page 29

Race I

n3 + 2n2 100n2 + 1000 vs.

a. Left
b. Right
c. Tied
d. It depends

CPSC 221 Asymptotic Analysis Page 30

Race II

n0.1 log n vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 31

Race II

n0.1 log n vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

Moral of the story? neps is slower than log n for any eps > 0

CPSC 221 Asymptotic Analysis Page 32

Race III

n + 100n0.1 2n + 10 log n vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 33

Race III

n + 100n0.1 2n + 10 log n vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

Although left seems faster, asymptotically it is a TIE

CPSC 221 Asymptotic Analysis Page 34

Race IV

5n5 n! vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 35

Race IV

5n5 n! vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 36

Race V

n-152n/100 1000n15 vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 37

Race V

n-15 2n/100 1000n15 vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

Any exponential is slower than any polynomial.
 It doesn’t even take that long here (~250 input size)

CPSC 221 Asymptotic Analysis Page 38

Race VI

82 log2 (n) 3n7 + 7n vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

Log Rules:
1) log(mn) = log(m) + log(n)
2) log(m/n) = log(m) – log(n)
3) log(mn) = n · log(m)
4) n = 2k à log2 n = k

CPSC 221 Asymptotic Analysis Page 39

Race VI

82 log2(n) 3n7 + 7n vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

82lg(n) = 8lg(n
2) = (23)lg(n

2) = 233lg(n
2) = 2lg(n

6) = n6

Log Rules:
1) log(mn) = log(m) + log(n)
2) log(m/n) = log(m) – log(n)
3) log(mn) = n · log(m)
4) n = 2k à log n = k

CPSC 221 Asymptotic Analysis Page 40

Log Aside
logab means “the exponent that turns a into b”
lg x means “log2x” (the usual log in CS)
log x means “log10x” (the common log)
ln x means “logex” (the natural log)

•  There’s just a constant factor between the three

main log bases, and asymptotically they behave
equivalently.

CPSC 221 Asymptotic Analysis Page 41

Race VII

mn3 2mn vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

CPSC 221 Asymptotic Analysis Page 42

Race VII

mn3 2mn vs.

a.  Left
b.  Right
c.  Tied
d.  It depends

It depends on values of m and n

CPSC 221 Asymptotic Analysis Page 43

Silicon Downs

Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82lg n

mn3

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

Winner

O(n2)

O(log n)

TIE O(n)

O(n5)

O(n15)

O(n6)

IT DEPENDS

CPSC 221 Asymptotic Analysis Page 44

The fix sheet and what we care about most

•  The fix sheet (typical growth rates in order)
–  constant: O(1)
–  logarithmic: O(log n) (logkn, log n2 ∈ O(log n))
–  poly-log: O(logk n) (k is a constant >1)
–  Sub-linear: O(nc) (c is a constant, 0 < c < 1)
–  linear: O(n)
–  (log-linear): O(n log n) (usually called “n log n”)
–  (superlinear): O(n1+c) (c is a constant, 0 < c < 1)
–  quadratic: O(n2)
–  cubic: O(n3)
–  polynomial: O(nk) (k is a constant)
–  exponential: O(cn) (c is a constant > 1) Intractable!

Tractable

CPSC 221 Asymptotic Analysis Page 45

Name-drop your friends
–  constant: O(1)
–  Logarithmic: O(log n)
–  poly-log: O(logk n)
–  Sub-linear: O(nc)
–  linear: O(n)
–  (log-linear): O(n log n)
–  (superlinear): O(n1+c)
–  quadratic: O(n2)
–  cubic: O(n3)
–  polynomial: O(nk)
–  exponential: O(cn)

Casually name-drop the appropriate
terms in order to sound bracingly cool to
colleagues: “Oh, linear search? I hear it’s
sub-linear on quantum computers,
though. Wild, eh?”

CPSC 221 Asymptotic Analysis Page 46

USE those cheat sheets!

•  Which is faster, n3 or n3 log n?

•  Which is faster, n3 or n3.01/log n?
(Split it up and use the “dominance” relationships.)

n3 *1 vs. n3 *log n

n3 *1 vs. n3 * n0.01/ log n

CPSC 221 Asymptotic Analysis Page 47

Which of the following functions is likely to grow the
fastest, meaning that the algorithm is likely to take the
most steps, as the input size, n, grows sufficiently
large?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E. They would all be about the same.

Clicker Question

CPSC 221 Asymptotic Analysis Page 48

Which of the following functions is likely to grow the
fastest, meaning that the algorithm is likely to take the
most steps, as the input size, n, grows sufficiently
large?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E. They would all be about the same.

Clicker Question (answer)

CPSC 221 Asymptotic Analysis Page 49

Suppose we have 4 programs, A-D, that run
algorithms of the time complexities given. Which
program will finish first, when executing the
programs on input size n=10?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E.  Impossible to tell

Clicker Question

CPSC 221 Asymptotic Analysis Page 50

Suppose we have 4 programs, A-D, that run
algorithms of the time complexities given. Which
program will finish first, when executing the
programs on input size n=10?

A. O(n)
B. O(sqrt (n))
C. O (log n)
D. O (n log n)
E.  Impossible to tell

Clicker Question (Answer)

CPSC 221 Asymptotic Analysis Page 51

Which of the following statements about complexity
is true? Choose the best answer

A.  The set of functions in O(n4) have a fairly slow growth rate

B.  O(n) doesn‘t grow very quickly

C.  Big-O functions with the fastest growth rate represent the
fastest algorithms, most of the time

D.  Asymptotic complexity deals with relatively small input
sizes

Clicker Question

CPSC 221 Asymptotic Analysis Page 52

Which of the following statements about complexity
is true? Choose the best answer

A.  The set of functions in O(n4) have a fairly slow growth rate

B.  O(n) doesn‘t grow very quickly

C.  Big-O functions with the fastest growth rate represent the
fastest algorithms, most of the time

D.  Asymptotic complexity deals with relatively small input
sizes

Clicker Question (answer)

CPSC 221 Asymptotic Analysis Page 53

Order Notation – Big-O
•  T(n) ∈ O(f(n)) if there are constants c > 0 and

n0 such that T(n) ≤ c f(n) for all n ≥ n0

•  Why the ∈ ?
 (Many people write T(n)=O(f(n)),
 but this is sloppy. The ∈ shows you why
 you should never write O(f(n))=T(n),
 with the big-O on the left-hand side.)

CPSC 221 Asymptotic Analysis Page 54

How to formalize winning?
•  How to formally say that there’s some crossover

point, after which one function is bigger than the
other?

•  How to formally say that you don’t care about a
constant factor between the two functions?

CPSC 221 Asymptotic Analysis Page 55

Order Notation – Big-O
•  T(n) ∈ O(f(n)) if there are constants c > 0 and

n0 such that T(n) ≤ c f(n) for all n ≥ n0

•  Intuitively, what does this all mean?

The function f(n) is sort of, asymptotically

“greater than or equal to” the function T(n).
In the “long run”, f(n) (multiplied by a suitable

constant) will upper-bound T(n).

CPSC 221 Asymptotic Analysis Page 56

Proving a Big-O

Time
(or anything
else we can
measure)

Input size n0

T(n)

f(n)

c f(n)
T(n) ∈ O(f(n)) ∃ c and n0 such that

 T(n) ≤ c f(n) ∀n ≥ n0

For all
There exists

•  How do you prove a property?

•  How do you prove a property? ……∀∃

∃...

CPSC 221 Asymptotic Analysis Page 57

Proving a “There exists” Property

How do you prove “There exists a good
restaurant in Vancouver”?

How do you prove a property like

∃c c = 3c+1[]

CPSC 221 Asymptotic Analysis Page 58

Proving a Property

How do you prove “There exists a restaurant in
Vancouver, where all items on the menu are
less than $10”?

How do you prove a property like

[]102 −≤∀∃ xcxc

……∀∃

CPSC 221 Asymptotic Analysis Page 59

Proving a Big-O

Formally, to prove T(n) ∈ O(f(n)), you must
show:

So, we have to come up with specific values of

c and n0 that “work”, where “work” means
that for any n>n0 that someone picks, the
formula holds:

[])()(ncfnT ≤

[])()(,0 00 ncfnTnnnc ≤>∀>∃

CPSC 221 Asymptotic Analysis Page 60

Prove n log n ∈ O(n2)
•  Guess or figure out values of c and n0 that will

work.

•  This is fairly trivial: log n <= n (for n>1)
 c=1 and n0 = 1 works!

 n log n ≤ cn2

 log n ≤ cn

CPSC 221 Asymptotic Analysis Page 61

Aside: Writing Proofs
•  In lecture, my goal is to give you intuition.

–  I will just sketch the main points, but not fill in all details.
•  When you write a proof (homework, exam,

reports, papers), be sure to write it out formally!
– Standard format makes it much easier to write!

• Class website has links to notes with standard
tricks, examples

• Textbook has good examples of proofs, too.
• Copy the style, structure, and format of these

proofs.
– On exams and homeworks, you’ll get more credit.
–  In real life, people will believe you more.

CPSC 221 Asymptotic Analysis Page 62

To Prove n log n ∈ O(n2)
Proof:
By the definition of big-O, we must find values of c and n0

such that for all n ≥ n0, n log n ≤ cn2.
Consider c=1 and n0 = 1.
For all n ≥ 1, log n ≤ n.
Therefore, log n ≤ cn, since c=1.
Multiplying both sides by n (and since n ≥ n0= 1), we have
 n log n ≤ cn2.
Therefore, n log n ∈ O(n2).

(This is more detail than you’ll use in the future, but
until you learn what you can skip, fill in the details.)

CPSC 221 Asymptotic Analysis Page 63

Example
•  Prove T(n) = n3 + 20 n +1 ∈ O(n3)

–  n3 + 20 n +1 ≤ cn3 for n>n0

–  1 + 20/n2 + 1/n3 ≤ c à holds for c=22 and n0 = 1
•  Prove T(n) = n3 + 20 n +1 ∈ O(n4)

–  n3 + 20 n +1 ≤ cn4 for n>n0

–  1/n + 20/n3 + 1/n4 ≤ c à holds for c=22 and n0= 1

•  Prove T(n) = n3 + 20 n +1 ∈ O(n2)
–  n3 + 20 n +1 ≤ cn2 for n>n0

–  n + 20/n + 1/n2 ≤ c à You cannot find such c or n0

CPSC 221 Asymptotic Analysis Page 64

Computing Big-O
•  If T(n) is a polynomial of degree d
•  (i.e., T(n) = a0 + a1n + a2n2 + … + ad nd),

•  then its Big-O estimate is simply the largest term
without its coefficient, that is, T(n) ∈ O(nd).

•  If T1(n) ∈ O(f(n)) and T2(n) ∈ O(g(n)), then
– T1 (n) + T2(n) ∈ O(max(f(n), g(n))).
•  T1(n) = 4 n3/2 + 9
•  T2(n) = 30 n lg n + 17n
•  T(n) = T1(n) + T2(n) ∈ O(max(n3/2, n log n) = O(n3/2)

CPSC 221 Asymptotic Analysis Page 65

•  Compute Big-O with witnesses c and n0 for
•  T(n) = 25n2 - 50n + 110.

25n2 - 50n + 110 ≤ 25n2 + 50n + 110 ≤ cn2

25 + 50/n + 110/n2 ≤ c
T(n) ∈ O(n2) c=27, n0 =110

We are interested in the “tightest”
Big-O estimate and not necessarily
the smallest c and n0

More Example

Triangle inequality
|a+b| ≤ |a| + |b|

(substitute –b with b)
 |a-b| ≤ |a| + |-b| ≤ |a| + |b|

CPSC 221 Asymptotic Analysis Page 66

•  Example Compute Big-O with witnesses c and n0 for T(n) = 106.

•  Example Compute Big-O with witnesses c and n0 for T(n) = log (n!).

106≤ c
T(n) ∈ O(1) c=106, n0 = whatever

log (n!) = log(1*2..*n)
 =log(1) + log(2) + … + log(n)
 ≤ log(n) + log(n) + … + log(n)
 ≤ n log(n) <= cn log(n)

T(n) ∈ O(n log(n)) c=10, n0 = 10

Log Rules:
1) log(mn) = log(m) + log(n)
2) log(m/n) = log(m) – log(n)
3) log(mn) = n · log(m)

More Example

CPSC 221 Asymptotic Analysis Page 67

Proving a Big-O

Time
(or anything
else we can
measure)

Input size n0

T(n)

f(n)

c f(n)
T(n) ∈ O(f(n)) ∃ c and n0 such that

 T(n) ≤ c f(n) ∀n ≥ n0

CPSC 221 Asymptotic Analysis Page 68

Big-Omega (Ω) notation
•  Just as Big-O provides an upper bound, there exists Big-Omega (Ω)

notation to estimate the lower bound of an algorithm, meaning that, in
the worst case, the algorithm takes at least so many steps:

T(n) ∈ Ω(f(n)) if ∃ d and n0 such that
 d f(n) ≤ T(n) ∀ n ≥ n0

Time
(or anything
else we can
measure)

Input size
n0

T(n)

d f(n)

f(n)

CPSC 221 Asymptotic Analysis Page 69

Proving Big-Ω

•  Just like proving Big-O, but backwards…

•  Prove T(n) = n3 + 20 n +1 ∈ Ω(n2)

dn2 ≤ n3 + 20n + 1
d ≤ n + 20/n + 1/n2

d=10, n0 = 20

CPSC 221 Asymptotic Analysis Page 70

Big-Theta (Θ) notation
•  Furthermore, each algorithm has both an upper bound and a lower

bound, and when these correspond to the same growth order
function, the result is called Big-Theta (Θ) notation.

Time
(or anything
else we can
measure)

Input size
n0

T(n)

d f(n)

f(n)

n0

c f(n)
T(n) ∈ Θ(f(n)) if ∃ c, d and n0 such that

 d f(n) ≤ T(n) ≤ c f(n) ∀ n ≥ n0

CPSC 221 Asymptotic Analysis Page 71

Examples

10,000 n2 + 25 n ∈ Θ(n2)
10-10 n2 ∈ Θ(n2)
n log n ∈ O(n2)
n log n ∈ Ω(n)
n3 + 4 ∈ O(n4) but not Θ(n4)
n3 + 4 ∈ Ω(n2) but not Θ(n2)

CPSC 221 Asymptotic Analysis Page 72

Proving Big-Θ
•  Just prove Big-O and Big-Ω
•  Prove T(n) = n3 + 20 n +1∈ Θ(n3)

dn3 ≤ n3 + 20 n +1 ≤ cn3 for n>n0
d ≤ 1 + 20/n2 + 1/n3 ≤ c

holds for d=1, c=22 , n0 = 105

CPSC 221 Asymptotic Analysis Page 73

Proving Big-Θ
•  Just prove Big-O and Big-Ω
•  Prove T(n) = n3 + 20 n +1∈ Θ(n3)

dn3 ≤ n3 + 20 n +1 ≤ cn3 for n>n0
holds for d=1, c=22 , n0 = 105

CPSC 221 Asymptotic Analysis Page 74

Types of analysis
•  Bound flavor

–  upper bound (O)
–  lower bound (Ω)
–  asymptotically tight (Θ)

•  Analysis case
– worst case (adversary)
–  average case
–  best case
–  “common” case

•  Analysis quality
–  loose bound (any true analysis)
–  tight bound

CPSC 221 Asymptotic Analysis Page 75

“Tight” Bound
There are at least three common usages for

calling a bound “tight”:
1.  Big-Theta, “asymptotically tight”
2.  “no better bound which is asymptotically

different”
3.  Big-O upper bound on run time of an

algorithm matches provable worst-case lower-
bound on any solution algorithm.

CPSC 221 Asymptotic Analysis Page 76

“Tight” Bound – Def. 1
1.  Big-Theta, “asymptotically tight”

This definition is formal and clear:

 T(n) ∈ Θ(f(n)) if T(n) ∈ O(f(n)) and T(n) ∈ Ω (f(n))

but it is too rigid to capture practical intuition.
For example, what if
 T(n) = (n%2==0)? n*n : 1
Is T(n) ∈ O(n2) ?
Is T(n) ∈ Θ(n2) ?

CPSC 221 Asymptotic Analysis Page 77

“Tight” Bound – Def. 2
•  “no better bound which is asymptotically

different”
•  This is the most common definition, and captures

what people usually want to say, but it’s not
formal.
– E.g., given same T(n), we want T(n) ∈ O(n2) to be

considered “tight”, but not T(n) ∈ O(n3)
– But, T(n) is NOT Θ(n2), so isn’t T(n) ∈ O(T(n)) a

tighter bound?

CPSC 221 Asymptotic Analysis Page 78

“Tight” Bound – Def. 2
•  “no better ‘reasonable’ bound which is

asymptotically different”
•  This is the most common definition, and captures

what people usually want to say, but it’s not
formal.

“Reasonable” is defined subjectively, but it basically means a simple
combination of normal, common functions, i.e., anything on our list
of common asymptotic complexity categories (e.g., log n, n, nk, 2n,
n!, etc.). There should be no lower-order terms, and no unnecessary
coefficients.

This is the definition we’ll use in CPSC 221 unless stated otherwise.

CPSC 221 Asymptotic Analysis Page 79

“Tight” Bound – Def. 3
•  Big-O upper bound on run time of an algorithm

matches provable lower-bound on any
algorithm.

•  The definition used in more advanced,
theoretical computer science:
–  Upper bound is on a specific algorithm.
–  Lower bound is on the problem in general.
–  If the two match, you can’t get an asymptotically

better algorithm.
•  This is beyond this course, for the most part.

–  (Examples: Searching and Sorting…)

CPSC 221 Asymptotic Analysis Page 80

Bounding Searching and Sorting
•  Searching an unsorted list using comparisons

takes Ω(n) time (lower bound)
– Linear search takes O(n) time (matching upper bound)

•  Sorting a list using comparisons takes Ω(n lg n)
time (lower bound)
– Mergesort takes O(n lg n) time (matching upper

bound)
– More on this later!

CPSC 221 Asymptotic Analysis Page 81

Analyzing Code

•  But how can we obtain T(n) from an algorithm/
code

•  C++ operations - constant time
•  consecutive stmts - sum of times
•  conditionals - max of branches, condition
•  loops - sum of iterations
•  function calls - cost of function body

CPSC 221 Asymptotic Analysis Page 82

Analyzing Code

•  Step 1: What’s the input size n?
•  Step 2: What kind of analysis should we perform?

– Worst-case? Best-case? Average-case?
•  Step 3: How much does each line cost? (Are lines

the right unit?)

find(key, array) !
 for i = 1 to length(array) do!
 if array[i] == key !
 return i !
 !
 return -1

CPSC 221 Asymptotic Analysis Page 83

Analyzing Code

•  Step 4: What’s T(n) in its raw form?
•  Step 5: Simplify T(n) and convert to order

notation. (Also, which order notation: O, Θ, Ω?)
•  Step 6: Prove the asymptotic bound by finding

constants c and n0 such that
–  for all n ≥ n0, T(n) ≤ cn.

find(key, array) !
 for i = 1 to length(array) do!
 if array[i] == key !
 return i !
 !
 return -1

CPSC 221 Asymptotic Analysis Page 84

Example 1

•  This example is pretty straightforward. Each loop
goes n times, and a constant amount of work is
done on the inside.

for i = 1 to n do !
 for j = 1 to n do !
 sum = sum + 1] n times] n times

T (n) = (1+ 2)
j=1

n

∑
i=1

n

∑ = (1+ 2n)
i=1

n

∑ = n+ 2n2 =O(n2)

1
1
1

CPSC 221 Asymptotic Analysis Page 85

Example 1 (simpler version)

•  Count the number of times sum = sum + 1 occurs

for i = 1 to n do !
 for j = 1 to n do !
 sum = sum + 1] n times] n times

T (n) = 1
j=1

n

∑
i=1

n

∑ = n
i=1

n

∑ = n2 =O(n2)

1
1
1

CPSC 221 Asymptotic Analysis Page 86

Example 2
i = 1 !
 while i < n do!
 for j = i to n do!
 sum = sum + 1 !
 i++

Time complexity:
a.  O(n)
b.  O(n lg n)
c.  O(n2)
d.  O(n2 lg n)
e.  None of these

CPSC 221 Asymptotic Analysis Page 87

Example 2 (Pure Math Approach)

CPSC 221 Asymptotic Analysis Page 88

Example 2 (Pure Math Approach)

() ()

CPSC 221 Asymptotic Analysis Page 89

Example 2 (Pure Math Approach)

() ()

CPSC 221 Asymptotic Analysis Page 90

Example 2 (Pure Math Approach)

Yay!!!

3

3

CPSC 221 Asymptotic Analysis Page 91

Example 2 (Simplified Math Approach)
i = 1 !
 while i < n do!
 for j = i to n do!
 sum = sum + 1 !
 i++

T (n) = 1
j=i

n

∑
i=1

n−1

∑

T (n) = (n− i+1) = n+ n−1+...+ 2
i=1

n−1

∑

The second sigma is n-i+1

T (n) = n(n+1) / 2 ∈Θ(n2) i =
i=1

n

∑ n(n+1)
2

Count this line

CPSC 221 Asymptotic Analysis Page 92

Example 2 Pretty Pictures Approach
i = 1 takes “1” step
while i < n do i varies 1 to n-1
 for j = i to n do j varies i to n
 sum = sum + 1 takes “1” step
 i++ takes “1” step

* * * * * * * * * *
 * * * * * * * * *
 * * * * * * * *
 * * * * * * *
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

•  Imagine drawing one point for each
time the “sum=sum+1” line gets
executed. In the first iteration of the
outer loop, you’d draw n points. In
the second, n-1. Then n-2, n-3, and
so on down to (about) 1. Let’s draw
that picture…

CPSC 221 Asymptotic Analysis Page 93

Example 2 Pretty Pictures Approach

•  It is a triangle and its area is proportional to
runtime

n rows

T (n) = Base×Height
2 = n2

2 ∈Θ(n2)

* * * * * * * * * *
 * * * * * * * * *
 * * * * * * * *
 * * * * * * *
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

n columns

CPSC 221 Asymptotic Analysis Page 94

Example 2 (Faster/Slower Code Approach)

i = 1 takes “1” step
while i < n do i varies 1 to n-1
 for j = i to n do j varies i to n
 sum = sum + 1 takes “1” step
 i++ takes “1” step

•  This code is “too hard” to deal with. So, let’s find just an
upper bound.
–  In which case we get to change the code so in any way

that makes it run no faster (even if it runs slower).
–  We’ll let j go from 1 to n rather than i to n. Since i ≥ 1,

this is no less work than the code was already doing…

CPSC 221 Asymptotic Analysis Page 95

Example 2 (Faster/Slower Code Approach)

i = 1 takes “1” step
while i < n do i varies 1 to n-1

 for j = 1 to n do j varies i to n
 sum = sum + 1 takes “1” step
 i++ takes “1” step

•  But this is just an upper bound O(n2), since we made the code

run slower.

•  Could it actually run faster?

 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

CPSC 221 Asymptotic Analysis Page 96

Example 2 (Faster/Slower Code Approach)

i = 1 takes “1” step
while i < n do i varies 1 to n-1
 for j = i to n do j varies i to n
 sum = sum + 1 takes “1” step
 i++ takes “1” step

•  Let’s do a lower-bound, in which case we can make the code
run faster if we want.
–  Let’s make j start at n-1. Does the code run faster? Is that helpful?

Runs faster but you get Ω(n) which is not what we want
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

*
*
*
*
*
*

CPSC 221 Asymptotic Analysis Page 97

Example 2 (Faster/Slower Code Approach)
i = 1 takes “1” step
while i < n do i varies 1 to n-1
 for j = i to n do j varies i to n
 sum = sum + 1 takes “1” step
 i++ takes “1” step

•  Let’s do a lower-bound, in which case we can make the code
run faster if we want.
–  Let’s make j start at n/2. Does the code run faster? Is that helpful?
 Hard to argue that it is faster. Every inner loop now runs n/2 times

 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

 * * *
 * * *
 * * *
 * * *
 * * *
 * * *

CPSC 221 Asymptotic Analysis Page 98

Example 2(Faster /Slower Code Approach)

i = 1 takes “1” step
while i < n/2 +1 do goes n/2 times
 for j = n/2 +1 to n do goes n/2 times
 sum = sum + 1 takes “1” step
 i++ takes “1” step

•  Let’s change the bounds on both i and j to make both loops
faster.

T (n) = 1
j=1

n/2

∑
i=1

n/2

∑ = (n / 2)
i=1

n/2

∑ = n2 / 4∈Ω(n2)
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

 * * *
 * * *
 * * *

CPSC 221 Asymptotic Analysis Page 99

Note Pretty Pictures and Faster/Slower
are the Same(ish) Picture

•  Both the overestimate (upper-bound) and the
underestimate (lower-bound) are proportional to n2

* * * * * * * * * *
 * * * * * * * * *
 * * * * * * * *
 * * * * * * *
 * * * * * *
 * * * * *
 * * * *
 * * *
 * *
 *

CPSC 221 Asymptotic Analysis Page 100

Example 2.5
for (i=1; i <= n; i++) !
 for (j=1; j <= n; j=j*2) !
 sum = sum + 1 !

Time complexity:
a.  O(n)
b.  O(n lg n)
c.  O(n2)
d.  O(n2 lg n)
e.  None of these

CPSC 221 Asymptotic Analysis Page 101

Example 2.5
for (i=1; i <= n; i++) !
 for (j=1; j <= n; j=j*2) !
 sum = sum + 1 !

T (n) = 1
j=0

lgn!" #$

∑
i=1

n

∑ = lgn
i=0

n

∑ = (n+1)lgn ∈O(n lgn)

Asymptotically flooring doesn’t matter

j= 1, 2, 4, 8, 16, 32, … x <= n < 2x

= 20, 21, 22,...2k 2k <= 2lg n < 2k+1

k <= lg n< k+1 k = lgn!" #$

CPSC 221 Asymptotic Analysis Page 102

Example 3
i = 1 !
 while i < n do !
 for j = 1 to i do!
 sum = sum + 1 !
 i += i

Time complexity:
a.  O(n)
b.  O(n lg n)
c.  O(n2)
d.  O(n2 lg n)
e.  None of these

CPSC 221 Asymptotic Analysis Page 103

Example 3
i = 1 !
 while i < n do !
 for j = 1 to i do!
 sum = sum + 1 !
 i += i

i = 1, 2, 4, 8, 16, 32, …
x <= n-1 < 2x

= 20, 21, 22,...2k 2k <= 2lg n-1 < 2k+1

k <= lg n-1< k+1

k = lgn−1"# $%

CPSC 221 Asymptotic Analysis Page 104

Example 3
i = 1 !
 while i < n do !
 for j = 1 to i do !
 sum = sum + 1 !
 i += i

Outer loop
iteration

i j Inner loop
iteration

0 1 1-1 1

1 2 1-2 2

2 4 1-4 4

3 8 1-8 8

… … … …

k 2k 1-2k 2k

lg n-1 2 lgn-1 1-2 lgn-1 2 lgn-1

T (n) = 1
j=1

2i

∑
i=1

lgn−1

∑ = 2i
i=1

lgn−1

∑ = 2lg(n−1)+1 −1∈Ο(n)

2i =
i=0

k

∑ 2k+1 −1

CPSC 221 Asymptotic Analysis Page 105

Example 3 (another approach)
i = 1 !
 while i < n do !
 for j = 1 to i do!
 sum = sum + 1 !
 i += i

i= 1, 2, 4, 8, 16, 32, …

T (n) =1+ 2+ 4+...x

T (n) = 2i
i=1

?

∑

x <= n-1 < 2x

= 20 + 21 + 22 +...2k 2k <= 2lg n-1 < 2k+1

k <= lg n-1< k+1

k = lgn−1"# $%

CPSC 221 Asymptotic Analysis Page 106

Example 3 (another approach)
i = 1 !
 while i < n do !
 for j = 1 to i do!
 sum = sum + 1 !
 i += i

Count this line

T (n) = 2i
i=1

lg(n−1)

∑

T (n) = 2i
i=1

lg(n−1)

∑ = 2lg(n−1)+1 − 2 ∈Ο(n)

CPSC 221 Asymptotic Analysis Page 107

Example 4
•  Conditional
 if C then S1 else S2

 or

•  Loops
 while C do S

O(c) + max (O(s1), O(s2))

O(c) + O(s1) + O(s2)

max(O(c), O(s)) * # iterations

CPSC 221 Asymptotic Analysis Page 108

Example 5
•  Recursion almost always yields a recurrence

– Recursive max:

– Recurrence relation

T(1) <= b if n <= 1
T(n) <= c + T(n - 1) if n > 1

int maxRecurse(int nums[], int n){ !
 if (n== 1) !
 return nums[0]; !
!
 return max(maxRecurse(nums, n-1), nums[n-1]); !
}

CPSC 221 Asymptotic Analysis Page 109

Example 5

•  Analysis
–  T(n) <= c + c + T(n - 2) (substitution)
–  T(n) <= c + c + c + T(n – 3)(substitution)
–  T(n) <= kc + T(n – k) (extrapolating 0 < k ≤ n)

–  T(n) <= (n – 1)c + T(1) (for k = n – 1)
–  T(n) = (n – 1)c + b

•  T(n) ∈ O(n)

T(1) <= b if n <= 1
T(n) <= c + T(n - 1) if n > 1

CPSC 221 Asymptotic Analysis Page 110

Example 6
•  Mergesort algorithm

–  split list in half, sort first half, sort second half, merge
together

•  Recurrence relation
T(1) <= b if n <= 1
T(n) <= 2T(n/2) + cn if n > 1

CPSC 221 Asymptotic Analysis Page 111

Example 6
•  Mergesort algorithm

T(1) <= b if n <= 1
T(n) <= 2T(n/2) + cn if n > 1

Time complexity:
a.  O(n)
b.  O(n lg n)
c.  O(n2)
d.  O(n2 lg n)
e.  None of these

CPSC 221 Asymptotic Analysis Page 112

Example 6

•  Analysis
 T(n)<= 2T(n/2) + cn
 <= 2(2T(n/4) + c(n/2)) + cn (substitution)
 = 4T(n/4) + cn + cn

 <= 4(2T(n/8) + c(n/4)) + cn + cn (substitution)
 = 8T(n/8) + cn + cn + cn

 <= 2kT(n/2k) + kcn (extrapolating 1 < k ≤ n)
 <= nT(1) + cn lg n (for 2k = n or k = lg n)

•  T(n) ∈ O(n lg n)

T(1) <= b if n <= 1
T(n) <= 2T(n/2) + cn if n > 1

CPSC 221 Asymptotic Analysis Page 113

Example 7
•  Recursive Fibonacci

•  Recurrence relation

•  Claim

if (n == 0 or n == 1) !
 return 1 !
else!
 return Fib(n - 1) + Fib(n - 2)

T(0), T(1) >= b
T(n) >= T(n - 1) + T(n - 2) + c if n > 1

T(n) >= bφn-1
Where φ = (1+√5)/2 ≈ 1.618
Note: φ2 = φ+1

CPSC 221 Asymptotic Analysis Page 114

Example 7
•  Claim:

•  Proof:
– Basis: T(0) ≥ b > bφ-1 and T(1) ≥ b = bφ0

–  Inductive step: Assume T(m) ≥ bφm - 1 for all m < n

 T(n) ≥ T(n - 1) + T(n - 2) + c
 ≥ bφn-2 + bφn-3 + c
 ≥ bφn-3(φ + 1) + c
 = bφn-3φ2 + c
 ≥ bφn-1

T(n) >= bφn-1
φ = (1+√5)/2 ≈1.618
Note: φ2 = φ + 1

T(n) ∈ Ω(φn-1)

CPSC 221 Asymptotic Analysis Page 115

Example 8
•  Problem: find a tight bound on

– T(n) = lg(n!)

Time complexity:
a.  Θ(n)
b.  Θ(n lg n)
c.  Θ(n2)
d.  Θ(n2 lg n)
e.  None of these

CPSC 221 Asymptotic Analysis Page 116

CPSC 221 Asymptotic Analysis Page 117

Example 9
•  Problem: find a tight bound on

– T(n) = lg(n!)

T (n) = lg(i)
i=1

n

∑ ≤ lg(n)
i=1

n

∑ ∈Ο(n lgn)

T (n) = lg(i)
i=1

n

∑ ≥ lg(i)>
i=n/2

n

∑ lg(n / 2)
i=n/2

n

∑

lg(n / 2) = n / 2(lgn−1)
i=n/2

n

∑ ∈Ω(n lgn)

T(n) ∈ Θ (n lg n)

CPSC 221 Asymptotic Analysis Page 118

Who Cares About Ω(lg (n!))?

a<b<c
a<c<b
b<a<c
b<c<a
c<a<b
c<b<a

a<b<c
a<c<b
c<a<b

b<a<c
b<c<a
c<b<a

c<a<b a<b<c
a<c<b

c<b<a b<a<c
b<c<a

a<c<b

a<b<c b<c<a

b<a<c

a<b b<a

a<c c<a

b<c c<b

b<c c<b

a<c c<a

•  Let’s assume that you want to sort a,b, and c

CPSC 221 Asymptotic Analysis Page 119

Who Cares About Ω(lg (n!))?
•  How many ways can you order n items?

–  There are n! possible ways to order them. We could number
them 1,2,…n!

•  A sorting algorithm must distinguish between these n!
choices (because any of them might be the input).

•  So we want a binary tree with n! leaves. A binary tree
with height h has 2h leaves.

•  So, to distinguish which of the n! orders you were given
requires lg(n!) comparisons, which is Ω (n log n)

n! <= 2h

lg (n!) <= h

CPSC 221 Asymptotic Analysis Page 120

Learning Goals revisited
•  Define which program operations we measure in an

algorithm in order to approximate its efficiency.
•  Define “input size” and determine the effect (in terms of

performance) that input size has on an algorithm.
•  Give examples of common practical limits of problem

size for each complexity class.
•  Give examples of tractable, intractable problems.
•  Given code, write a formula which measures the number

of steps executed as a function of the size of the input
(N).

Continued…

CPSC 221 Asymptotic Analysis Page 121

Learning Goals revisited
•  Compute the worst-case asymptotic complexity of an

algorithm (i.e., the worst possible running time based on
the size of the input (N)).

•  Categorize an algorithm into one of the common
complexity classes.

•  Explain the differences between best-, worst-, and
average-case analysis.

•  Describe why best-case analysis is rarely relevant and
how worst-case analysis may never be encountered in
practice.

•  Given two or more algorithms, rank them in terms of
their time and space complexity. Continued…

CPSC 221 Asymptotic Analysis Page 122

Learning Goals revisited
•  Define big-O, big-Omega, and big-Theta: O(•), Ω(•), Θ(•)
•  Explain intuition behind their definitions.
•  Prove one function is big-O/Omega/Theta of another

function.
•  Simplify algebraic expressions using the rules of

asymptotic analysis.
•  List common asymptotic complexity orders, and how they

compare.

