
CPSC 221 ADTs, Stacks, and Queues Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

ADTs, Stacks, and Queues

Textbook References:
Koffman: 4.5-4.7, 5, 6.1-6.3, 6.5

CPSC 221 ADTs, Stacks, and Queues Page 2

Learning goals
•  Differentiate an abstraction from an

implementation.
•  Define and give examples of problems that can be

solved using the abstract data types stacks and
queues.

•  Compare and contrast the implementations of
these abstract data types using linked lists and
circular arrays in C++.

•  Manipulate data in stacks and queues(irrespective
of any implementation).

CPSC 221 ADTs, Stacks, and Queues Page 3

What is an Abstract Data Type?
•  Abstract Data Type (ADT) – a mathematical

description of an object and the set of operations
on the object.
– A description of how a data structure works (could be

implemented by different actual data structures).
•  Example: Dictionary ADT

– Stores pairs of strings: (word, definition)
– Operations:

•  Insert(word, definition)
• Delete(word)
• Find(word)

CPSC 221 ADTs, Stacks, and Queues Page 4

Why so many data structures?

Ideal data structure:
 fast, elegant, memory efficient

Trade-offs
–  time vs. space
–  performance vs. elegance
–  generality vs. simplicity
–  one operation’s performance vs.

another’s
–  serial performance vs. parallel

performance

“Dictionary” or “Map”
ADT
–  list
–  binary search tree
–  AVL tree
–  Splay tree
–  B+ tree
–  Red-Black tree
–  hash table
–  concurrent hash table
–  …

CPSC 221 ADTs, Stacks, and Queues Page 5

Code Implementation
•  Theoretically

–  abstract base class describes ADT
–  inherited implementations implement data structures
–  can change data structures transparently (to client

code)
•  Practice

–  different implementations sometimes suggest different
interfaces (generality vs. simplicity)

–  performance of a data structure may influence form of
client code (time vs. space, one operation vs. another)

CPSC 221 ADTs, Stacks, and Queues Page 6

ADT Presentation Algorithm
•  Present an ADT
•  Motivate with some applications
•  Repeat until browned entirely through

–  develop a data structure for the ADT
–  analyze its properties

•  efficiency
•  correctness
•  limitations
•  ease of programming

•  Contrast data structure’s strengths and weaknesses
–  understand when to use each one

CPSC 221 ADTs, Stacks, and Queues Page 7

Queue ADT
•  Queue operations

–  create
–  destroy
–  enqueue
–  dequeue
–  is_empty

•  Queue property:
 if x is enqueued before y is enqueued,
 then x will be dequeued before y is dequeued.

 FIFO: First In First Out

F E D C B enqueue dequeue G A

CPSC 221 ADTs, Stacks, and Queues Page 8

Applications of the Q
•  Hold jobs for a printer
•  Store packets on network routers
•  Hold memory “freelists”
•  Make waitlists fair
•  Breadth first search

CPSC 221 ADTs, Stacks, and Queues Page 9

Abstract Q Example
enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

In order, what letters are dequeued?

a.  OATE
b.  ROTA
c.  OTAE
d.  None of these, but it can

be determined from just the ADT.
e.  None of these, and it cannot

be determined from just the ADT.

CPSC 221 ADTs, Stacks, and Queues Page 10

Abstract Q Example
enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

In order, what letters are dequeued?

a.  OATE
b.  ROTA
c.  OTAE
d.  None of these, but it can

be determined from just the ADT.
e.  None of these, and it cannot

be determined from just the ADT.

CPSC 221 ADTs, Stacks, and Queues Page 11

Array Representation of Queues
•  Queues can be easily represented using linear arrays.
•  Every queue has front and back variables that point to the

position from where deletions and insertions can be done,
respectively. Consider the queue shown in figure

•  If we want to add one more value in the list say with
value 45, then back would be incremented by 1 and the
value would be stored at the position pointed by back.

 0 1 2 3 4 5 6 7 8 9
12 9 7 18 14 36 front = 0

 back = 6

12 9 7 18 14 36 45

 0 1 2 3 4 5 6 7 8 9
front = 0
 back= 7

CPSC 221 ADTs, Stacks, and Queues Page 12

Array Representation of Queues
•  Now, if we want to delete an element from the queue,

then the value of front will be incremented. Deletions are
done from only this end of the queue

•  What is a problem with this implementation?

9 7 18 14 36 45

 0 1 2 3 4 5 6 7 8 9
front = 1
 back = 7

7 18 14 36 45 21 99 72
 0 1 2 3 4 5 6 7 8 9

CPSC 221 ADTs, Stacks, and Queues Page 13

Circular Array Q Data Structure

void enqueue(Object x) { !
 Q[back] = x; !
 back = (back + 1) % size; !
} !
Object dequeue() { !
 x = Q[front]; !
 front = (front + 1) % size; !
 return x; !
}

b c d e f

Q
0 size - 1

front back

bool is_empty() { !
 return (front == back); !
} !
!
!
!
bool is_full() { !
 return front == !
 (back + 1) % size; !
}

CPSC 221 ADTs, Stacks, and Queues Page 14

Circular Array Q Example 1
enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

CPSC 221 ADTs, Stacks, and Queues Page 15

Circular Array Q Example 1
enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

R
R O
R O
R O T
R O T A
R O T A T
R O T A T
R O T A T
E O T A T
E O T A T

CPSC 221 ADTs, Stacks, and Queues Page 16

Circular Array Q Data Structure

void enqueue(Object x) { !
 Q[back] = x; !
 back = (back + 1) % size; !
} !
Object dequeue() { !
 x = Q[front]; !
 front = (front + 1) % size; !
 return x; !
}

b c d e f

Q
0 size - 1

front back

bool is_empty() { !
 return (front == back); !
} !
!
!
!
bool is_full() { !
 return front == !
 (back + 1) % size; !
}

What is wrong with this code?

CPSC 221 ADTs, Stacks, and Queues Page 17

Circular Array Q Example 2
enqueue R
enqueue O
enqueue T
enqueue A
enqueue T
enqueue E

R
R O
R O T
R O T A
R O T A T
E O T A T

•  Before inserting
•  Check is_full()

•  Before removing
•  Check is_empty()

CPSC 221 ADTs, Stacks, and Queues Page 18

Circular Array Q Example 3
enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

CPSC 221 ADTs, Stacks, and Queues Page 19

Circular Array Q Example 3
enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

R
R O
R O
R O T
R O T A

Cannot add the second T

CPSC 221 ADTs, Stacks, and Queues Page 20

Linked Lists
•  Consider the following abstraction, picturing a

short linked list:

•  What might it look like in memory?

2 100 Null

5 Null 100

1 600 1080

1080
…
600
…
140
120
100

previous next data

5 1 2
Diagonal line
 represents NULL

struct Node !
{ !
 Node *previous; !
 int data; !
 Node *next; !
}; !

CPSC 221 ADTs, Stacks, and Queues Page 21

Inserting an Element to a Linked List

2 140 Null

5 Null 100

9 100 1080

1 600 140

1080
…
600
…
140
120
100

previous next

9

5 1 2
5 1 2

data

CPSC 221 ADTs, Stacks, and Queues Page 22

Removing an Element from a Linked List

2 600 Null

5 Null 1080

1 600 1080

1080
…
600
…
140
120
100

previous next

delete

5 1 2 5
1

2

data

CPSC 221 ADTs, Stacks, and Queues Page 23

Linked List Q Data Structure

b c d e f

front back

void enqueue(Object x) { !
 if (is_empty()) !
 front = back = new Node(x); !
 else { !
 back->next = new Node(x); !
 back = back->next; !
 } !
}

b c d e f

front
back

x

CPSC 221 ADTs, Stacks, and Queues Page 24

Linked List Q Data Structure

Object dequeue() { !
 assert(!is_empty); !
 char result = front->data; !
 Node * temp = front; !
 front = front->next; !
 delete temp; !
 return result; !
} !
!
bool is_empty() { !
 return front == NULL; !
}

b c d e f

front back temp

b c d e f

front back

Welcome to manual
 memory management!

Tip: “a delete for
 every new”

CPSC 221 ADTs, Stacks, and Queues Page 25

Clicker question (Inserting into a list)

•  Consider the following linked list, and possible commands

•  Assuming that we would like to keep the list sorted, which
of the following list of commands correctly inserts the new
node into the list

W: current->next = new
X: current= current->next
Y: new->next = current->next
Z: current = new

A: X X X Y W
B: X X X X W Y
C: X X X W Y
D: X X X W Z Y
E: None of the above

1 2 3 4 6 7 N

current new 5 N

CPSC 221 ADTs, Stacks, and Queues Page 26

Clicker Question (answer)
•  Consider the following linked list, and possible commands

•  Assuming that we would like to keep the list sorted, which
of the following list of commands correctly inserts the new
node into the list

W: current->next = new
X: current= current->next
Y: new->next = current->next
Z: current = new

1 2 3 4 6 7 N

current new

A: X X X Y W

1 2 3 4 6 7 N

current new 5 N

5 N

If W is performed before Y,
 then the second part of the list is lost

CPSC 221 ADTs, Stacks, and Queues Page 27

Clicker question (deleting from a list)

•  Consider the following linked list, and possible commands

•  Which one of the following list of commands correctly
deletes 3 from the list

V: current= current->next
W: prev = prev->next
X: prev->next = current->next
Y: current->next = prev->next
Z: delete current; current= NULL;

current

A: V W V Y Z
B: W V W X Z
C: V W V X Z
D: V V W W Y Z
E: None of the above

prev

1 2 3 4 6 7 N

CPSC 221 ADTs, Stacks, and Queues Page 28

Clicker question (answer)

•  Consider the following linked list, and possible commands

•  Which one of the following list of commands
correctly deletes 3 from the list

1 2 3 4 6 7

current

C: V W V X Z

prev

1 2 4 6 7

current prev

V: current= current->next
W: prev = prev->next
X: prev->next = current->next
Y: current->next = prev->next
Z: delete current; current= NULL;

CPSC 221 ADTs, Stacks, and Queues Page 29

Circular Array vs. Linked List

•  Ease of implementation?
•  Generality?
•  Speed?
•  Memory use?

•  In general, many different data structures can
implement an ADT, each with different trade-offs.
You must pick the best for your needs.

CPSC 221 ADTs, Stacks, and Queues Page 30

Stack ADT

• Stack operations
–  create

–  destroy

–  push

–  pop

–  top

–  is_empty

• Stack property: if x is pushed before y is pushed,
 then x will be popped after y is popped

 LIFO: Last In First Out

A

B
C
D
E
F

E D C B A

F

CPSC 221 ADTs, Stacks, and Queues Page 31

Stacks in Practice (Call Stack)
int square (int x){ !
 return x*x; !
} !
!
int squareOfSum(int x, int y){ !
 return square(x+y); !
 !
} !
!
int main() { !
 int a = 4; !
 int b = 8; !
 int total = squareOfSum(a, b); !
 cout << total<< endl; !
}

Stack

main
a,b

squareOfSum
x,y

square
x

CPSC 221 ADTs, Stacks, and Queues Page 32

•  Application: Binary Expression Trees

Arithmetic expressions can be represented using binary
trees. We will build a binary tree representing the
expression:

(3 + 2) * 5 – 1

Now let’s print this expression tree using postorder traversal:

 3 2 + 5 * 1 -

–

* 1

+

23

5

Stacks in Practice (Arithmetic expressions)

We’ll cover this topic in
 detail later in the course

CPSC 221 ADTs, Stacks, and Queues Page 33

Now let’s compute this expression using a Stack

 3 2 + 5 * 1 -

–

* 1

+

23

5

Stacks in Practice (Arithmetic expressions)

Character
scanned Stack

3 3
2 3, 2
+ 5
5 5, 5
* 25
1 25,1
- 24 We’ll cover this topic in

 detail later in the course

CPSC 221 ADTs, Stacks, and Queues Page 34

Stacks in Practice (Backtracking)

We’ll cover this
 topic in detail
 later in the course

1

9
3

2

4

5

Stack

1
3, 2
3,5,4
3,5
3
9

CPSC 221 ADTs, Stacks, and Queues Page 35

Stacks in Practice (depth first search)

E

C I

A

B

F J

H

D

G

We’ll cover this topic in
 detail later in the course

CPSC 221 ADTs, Stacks, and Queues Page 36

Array Stack Data Structure

a b c d e f g h

S
0 size - 1

top

7 1 2 … …

8
(int)

void push(char x) { !
 assert(!is_full()) !
 S[top] = x !
 top++ !
} !
!
char top() { !
 assert(!is_empty()) !
 return S[top - 1] !
} !

char pop() { !
 assert(!is_empty()) !
 top-- !
 return S[top] !
} !
!
bool is_empty() { !
 return top == 0 !
} !
!
bool is_full() { !
 return top == size !
} !
!

CPSC 221 ADTs, Stacks, and Queues Page 37

Example Stack with Arrays

push B

pop

push K

push C

push A

pop

pop

pop

CPSC 221 ADTs, Stacks, and Queues Page 38

Example Stack with Arrays

push B

pop

push K

push C

push A

pop

pop

pop

1 B

0

1 K

2 K C

3 K C A

2 K C

1 K

0

CPSC 221 ADTs, Stacks, and Queues Page 39

Linked List Stack Data Structure

!
void push(char x) { !
 temp = top; !
 top = new Node(x); !
 top->next = temp; !
} !
!
char top() { !
 assert(!is_empty()) !
 return top->data; !
} !

char pop() { !
 assert(!is_empty()) !
 char return_data = top->data; !
 temp = top; !
 top = top->next; !
 delete temp; !
 return return_data; !
} !
!
bool is_empty() { !
 return top == nullptr; !
} !

b c d e f

top

CPSC 221 ADTs, Stacks, and Queues Page 40

Linked List Stack Data Structure (push)

void push(char x) { !
 temp = top; !
 top = new Node(x); !
 top->next = temp; !
} !

b c d e f

top

b c d e f

top

temp

x

CPSC 221 ADTs, Stacks, and Queues Page 41

Linked List Stack Data Structure (pop)

char pop() { !
 assert(!is_empty()) !
 char return_data = top->data; !
 temp = top; !
 top = top->next; !
 delete temp; !
 return return_data; !
} !

b c d e f

top

b c d e f

top temp

CPSC 221 ADTs, Stacks, and Queues Page 42

Example Stack with Linked List
• Try at home

push B

pop

push K

push C

push A

pop

pop

CPSC 221 ADTs, Stacks, and Queues Page 43

Learning goals revisited
•  Differentiate an abstraction from an

implementation.
•  Define and give examples of problems that can be

solved using the abstract data types stacks and
queues.

•  Compare and contrast the implementations of
these abstract data types using linked lists and
circular arrays in C++.

•  Manipulate data in stacks and queues(irrespective
of any implementation).

