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Koffman: 4.5-4.7, 5, 6.1-6.3, 6.5 
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Learning goals 
•  Differentiate an abstraction from an 

implementation. 
•  Define and give examples of problems that can be 

solved using the abstract data types stacks and 
queues. 

•  Compare and contrast the implementations of 
these abstract data types using linked lists and 
circular arrays in C++. 

•  Manipulate data in stacks and queues(irrespective 
of any implementation). 
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What is an Abstract Data Type? 
•  Abstract Data Type (ADT) – a mathematical 

description of an object and the set of operations 
on the object. 
– A description of how a data structure works (could be 

implemented by different actual data structures). 
•  Example: Dictionary ADT 

– Stores pairs of strings: (word, definition) 
– Operations: 

•  Insert(word, definition) 
• Delete(word) 
• Find(word) 
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Why so many data structures? 

Ideal data structure: 
 fast, elegant, memory efficient 

 

Trade-offs 
–  time vs. space 
–  performance vs. elegance 
–  generality vs. simplicity 
–  one operation’s performance vs. 

another’s 
–  serial performance vs. parallel 

performance 

“Dictionary” or “Map” 
ADT 
–  list 
–  binary search tree 
–  AVL tree 
–  Splay tree 
–  B+ tree 
–  Red-Black tree 
–  hash table 
–  concurrent hash table 
–  … 
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Code Implementation 
•  Theoretically 

–  abstract base class describes ADT 
–  inherited implementations implement data structures 
–  can change data structures transparently (to client 

code) 
•  Practice 

–  different implementations sometimes suggest different 
interfaces (generality vs. simplicity) 

–  performance of a data structure may influence form of 
client code (time vs. space, one operation vs. another) 
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ADT Presentation Algorithm 
•  Present an ADT 
•  Motivate with some applications 
•  Repeat until browned entirely through 

–  develop a data structure for the ADT 
–  analyze its properties  

•  efficiency 
•  correctness 
•  limitations 
•  ease of programming 

•  Contrast data structure’s strengths and weaknesses 
–  understand when to use each one 
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Queue ADT 
•  Queue operations 

–  create 
–  destroy 
–  enqueue 
–  dequeue 
–  is_empty 

•  Queue property:  
 if x is enqueued before y is enqueued,  
 then x will be dequeued before y is dequeued. 

 FIFO: First In First Out 

F E D C B enqueue dequeue G A 
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Applications of the Q 
•  Hold jobs for a printer 
•  Store packets on network routers 
•  Hold memory “freelists” 
•  Make waitlists fair 
•  Breadth first search 
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Abstract Q Example 
enqueue R 
enqueue O 
dequeue 
enqueue T 
enqueue A 
enqueue T 
dequeue  
dequeue 
enqueue E 
dequeue 

In order, what letters are dequeued? 
 
 
a.  OATE 
b.  ROTA 
c.  OTAE 
d.  None of these, but it can  

be determined from just the ADT. 
e.  None of these, and it cannot  

be determined from just the ADT. 
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Array Representation of Queues 
•  Queues can be easily represented using linear arrays.  
•  Every queue has front and back variables that point to the 

position from where deletions and insertions can be done, 
respectively. Consider the queue shown in figure  

 

•  If we want to add one more value in the list say with 
value 45, then back would be incremented by 1 and the 
value would be stored at the position pointed by back.  

    0               1              2  3              4         5              6              7             8               9 
12 9 7 18 14 36 front = 0 

 back = 6  

12 9 7 18 14 36 45 

    0               1              2  3              4         5              6              7             8               9 
front = 0 
 back= 7  
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Array Representation of Queues 
•  Now, if we want to delete an element from the queue, 

then the value of front will be incremented. Deletions are 
done from only this end of the queue 

•  What is a problem with this implementation? 

9 7 18 14 36 45 

    0               1              2  3              4         5              6              7             8               9 
front = 1 
 back = 7  

7 18 14 36 45 21 99 72 
    0               1              2  3              4         5              6              7             8               9 
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Circular Array Q Data Structure 

void enqueue(Object x) { !
    Q[back] = x; !
    back = (back + 1) % size; !
} !
Object dequeue() { !
    x = Q[front]; !
    front = (front + 1) % size; !
    return x; !
} 

b c d e f 

Q 
0 size - 1 

front back 

bool is_empty() { !
    return (front == back); !
} !
!
!
!
bool is_full() { !
    return front == !
          (back + 1) % size; !
} 
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Circular Array Q Example 1 
enqueue R 
enqueue O 
dequeue 
enqueue T 
enqueue A 
enqueue T 
dequeue  
dequeue 
enqueue E 
dequeue 
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Circular Array Q Example 1 
enqueue R 
enqueue O 
dequeue 
enqueue T 
enqueue A 
enqueue T 
dequeue  
dequeue 
enqueue E 
dequeue 

R 
R O 
R O 
R O T 
R O T A 
R O T A T 
R O T A T 
R O T A T 
E O T A T 
E O T A T 



CPSC 221                                    ADTs, Stacks, and Queues                                                         Page 16 

Circular Array Q Data Structure 

void enqueue(Object x) { !
    Q[back] = x; !
    back = (back + 1) % size; !
} !
Object dequeue() { !
    x = Q[front]; !
    front = (front + 1) % size; !
    return x; !
} 

b c d e f 

Q 
0 size - 1 

front back 

bool is_empty() { !
    return (front == back); !
} !
!
!
!
bool is_full() { !
    return front == !
          (back + 1) % size; !
} 

What is wrong with this code? 
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Circular Array Q Example 2 
enqueue R 
enqueue O 
enqueue T 
enqueue A 
enqueue T 
enqueue E 

R 
R O 
R O T 
R O T A 
R O T A T 
E O T A T 

•  Before inserting 
•  Check is_full() 

•  Before removing 
•  Check is_empty() 
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Circular Array Q Example 3 
enqueue R 
enqueue O 
dequeue 
enqueue T 
enqueue A 
enqueue T 
dequeue  
dequeue 
enqueue E 
dequeue 
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Circular Array Q Example 3 
enqueue R 
enqueue O 
dequeue 
enqueue T 
enqueue A 
enqueue T 
dequeue  
dequeue 
enqueue E 
dequeue 

R 
R O 
R O 
R O T 
R O T A 

Cannot add the second T 
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Linked Lists 
•  Consider the following abstraction, picturing a 

short linked list: 

 
•  What might it look like in memory?  

2 100 Null 

5 Null 100 

1 600 1080 

1080 
… 
600 
… 
140 
120 
100 

previous next data 

5 1 2 
Diagonal line 
 represents NULL 

struct Node !
{ !
    Node *previous; !
    int  data; !
    Node *next; !
}; !
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Inserting an Element to a Linked List 

2 140 Null 

5 Null 100 

9 100 1080 

1 600 140 

1080 
… 
600 
… 
140 
120 
100 

previous next 

9

5 1 2
5 1 2 

data 
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Removing an Element from a Linked List 

2 600 Null 

5 Null 1080 

1 600 1080 

1080 
… 
600 
… 
140 
120 
100 

previous next 

delete 

5 1 2 5 
1 

2 

data 
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Linked List Q Data Structure 
 

b c d e f 

front back 

void enqueue(Object x) { !
    if (is_empty()) !
        front = back = new Node(x); !
    else { !
        back->next = new Node(x); !
        back = back->next; !
    } !
} 

b c d e f 

front 
back 

x 
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Linked List Q Data Structure 
 

Object dequeue() { !
    assert(!is_empty); !
    char result = front->data; !
    Node * temp = front; !
    front = front->next; !
    delete temp; !
    return result; !
} !
!
bool is_empty() { !
    return front == NULL; !
} 

b c d e f 

front back temp 

b c d e f 

front back 

Welcome to manual 
 memory management! 
 
Tip: “a delete for 
        every new” 
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Clicker question (Inserting into a list) 

•  Consider the following linked list, and possible commands 

•  Assuming that we would like to keep the list sorted, which 
of the following list of commands correctly inserts the new 
node into the list 

W: current->next = new 
X: current= current->next 
Y: new->next = current->next 
Z: current = new 

A: X X X Y W 
B: X X X X W Y 
C: X X X W Y 
D: X X X W Z Y 
E: None of the above 

1 2 3 4 6 7 N

current new 5 N
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Clicker Question (answer)  
•  Consider the following linked list, and possible commands 

•  Assuming that we would like to keep the list sorted, which 
of the following list of commands correctly inserts the new 
node into the list 

W: current->next = new 
X: current= current->next 
Y: new->next = current->next 
Z: current = new 

1 2 3 4 6 7 N

current new 

A: X X X Y W 
 

1 2 3 4 6 7 N

current new 5 N

5 N

If W is performed before Y, 
 then the second part of the list is lost 
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Clicker question (deleting from a list) 

•  Consider the following linked list, and possible commands 

 

•  Which one of the following list of commands correctly 
deletes 3 from the list 

V: current= current->next 
W: prev = prev->next 
X: prev->next = current->next 
Y: current->next = prev->next 
Z: delete current; current= NULL; 

current 

A: V W V Y Z 
B: W V W X Z 
C: V W V X Z 
D: V V W W Y Z 
E: None of the above 

prev 

1 2 3 4 6 7 N
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Clicker question (answer) 

•  Consider the following linked list, and possible commands 

•  Which one of the following list of commands 
correctly deletes 3 from the list 

1 2 3 4 6 7

current 

C: V W V X Z 

prev 

1 2 4 6 7

current prev 

V: current= current->next 
W: prev = prev->next 
X: prev->next = current->next 
Y: current->next = prev->next 
Z: delete current; current= NULL; 
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Circular Array vs. Linked List 

•  Ease of implementation? 
•  Generality? 
•  Speed? 
•  Memory use? 

•  In general, many different data structures can 
implement an ADT, each with different trade-offs.  
You must pick the best for your needs. 
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Stack ADT 

• Stack operations 
–  create 

–  destroy 

–  push 

–  pop 

–  top 

–  is_empty 

• Stack property: if x is pushed before y is pushed,  
  then x will be popped after y is popped 

 LIFO: Last In First Out 

A 

B 
C 
D 
E 
F 

E D C B A 

 
 
 
 
F 
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Stacks in Practice (Call Stack) 
int square (int x){ !
    return x*x; !
} !
!
int squareOfSum(int x, int y){ !
    return square(x+y); !
    !
} !
!
int main() { !
    int a = 4; !
    int b = 8; !
    int total = squareOfSum(a, b); !
    cout << total<< endl; !
} 

Stack 

main 
a,b 

squareOfSum 
x,y 

square  
x 
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•  Application: Binary Expression Trees 

Arithmetic expressions can be represented using binary 
trees.  We will build a binary tree representing the 
expression: 

( 3 + 2 ) * 5 – 1 

 

 

Now let’s print this expression tree using postorder traversal: 

      3 2 + 5 * 1 - 

 

–

* 1

+

23

5

Stacks in Practice (Arithmetic expressions) 

We’ll cover this topic in 
 detail later in the course 
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Now let’s compute this expression using a Stack 

      3 2 + 5 * 1 - 

 

–

* 1

+

23

5

Stacks in Practice (Arithmetic expressions) 

Character 
scanned Stack 

3 3 
2 3, 2 
+ 5 
5 5, 5 
* 25 
1 25,1 
- 24 We’ll cover this topic in 

 detail later in the course 
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Stacks in Practice  (Backtracking) 

We’ll cover this 
 topic in detail 
 later in the course 

1 

9 
3 

2 

4 

5 

Stack 

1 
3, 2 
3,5,4 
3,5 
3 
9 
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Stacks in Practice  (depth first search) 

E

C I

A

B

F J

H

D

G

We’ll cover this topic in 
 detail later in the course 
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Array Stack Data Structure 

a b c d e f g h 

S 
0 size - 1 

top 

7 1 2 … … 

8 
(int) 

void push(char x) { !
    assert(!is_full()) !
    S[top] = x !
    top++ !
} !
!
char top() { !
    assert(!is_empty()) !
    return S[top - 1] !
} !
 

char pop() { !
    assert(!is_empty()) !
    top-- !
    return S[top] !
} !
!
bool is_empty() { !
    return top == 0 !
} !
!
bool is_full() { !
    return top == size !
} !
!
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Example Stack with Arrays 

push B 

pop 

push K 

push C 

push A 

pop 

pop 

pop 
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Example Stack with Arrays 

push B 

pop 

push K 

push C 

push A 

pop 

pop 

pop 

1 B 

0 

1 K 

2 K C 

3 K C A 

2 K C 

1 K 

0 
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Linked List Stack Data Structure 

!
void push(char x) { !
    temp = top; !
    top = new Node(x); !
    top->next = temp; !
} !
!
char top() { !
    assert(!is_empty()) !
    return top->data; !
} !

char pop() { !
  assert(!is_empty()) !
  char return_data = top->data; !
  temp = top; !
  top = top->next; !
  delete temp; !
  return return_data; !
} !
!
bool is_empty() { !
    return top == nullptr; !
} !

b c d e f 

top 
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Linked List Stack Data Structure (push) 

void push(char x) { !
    temp = top; !
    top = new Node(x); !
    top->next = temp; !
} !

b c d e f 

top 

b c d e f 

top 

temp 

x 
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Linked List Stack Data Structure (pop) 

char pop() { !
  assert(!is_empty()) !
  char return_data = top->data; !
  temp = top; !
  top = top->next; !
  delete temp; !
  return return_data; !
} !

b c d e f 

top 

b c d e f 

top temp 
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Example Stack with Linked List  
• Try at home 

push B 

pop 

push K 

push C 

push A 

pop 

pop 
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Learning goals revisited 
•  Differentiate an abstraction from an 

implementation. 
•  Define and give examples of problems that can be 

solved using the abstract data types stacks and 
queues. 

•  Compare and contrast the implementations of 
these abstract data types using linked lists and 
circular arrays in C++. 

•  Manipulate data in stacks and queues(irrespective 
of any implementation). 


