
CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

Crash Course on Arrays, Pointers, and
Structs

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 2

Learning goals
•  Become familiar with addresses and pointers in C++.
•  Describe the relationship between addresses and pointers.
•  Become familiar with arrays in C++.
•  Define and use records (structs) in an implementation with

dynamic memory allocation.
•  Demonstrate how dynamic memory management is

handled in C++ (e.g., allocation, deallocation, memory
heap, run-time stack).

•  Gain experience with pointers in C++ and their tradeoffs
and risks (dangling pointers, memory leaks).

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 3

Why Arrays?
•  Arrays are a very low-level data structure, that

basically matches the underlying memory.
– Good: They are very efficient!
– Bad: They have unpleasant limitations.

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 4

Fact: Bits are real!
•  Every bit of memory in your program is stored in

an actual physical location on a silicon chip.
•  These physical memory bits are organized into

rectangular arrays, and you can quickly read/write
any bit by giving its location as a numerical
address.

•  (Google DRAM to see some pictures of what
memory really looks like.)

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 5

Die Photo of 1Mb DRAM

5

License: Creative Commons Attribution 3.0
Downloaded from Wikimedia Commons.
Source: http://zeptobars.ru/en/read/how-to-open-microchip-asic-what-inside

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 6

Consequences of Bits Being Real
•  If you know the address where your data is, you

can quickly access its memory.
•  If you don’t know the address, you can’t find the

data easily.
•  You must work to move data. You can’t just

“squeeze in” some more bits between data you’ve
already stored.

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 7

Arrays
•  Arrays have a fixed size. They cannot grow or shrink.
•  You can’t insert things or delete things from the middle of an

array.
Inserting into an array without
holes (in which order matters)

Deleting from an array without
holes (in which order matters)

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 8

Arrays vs. Java’s ArrayList
•  Java provides an ArrayList class that does let you

do those things. That makes programming easier.
•  (But Java ArrayLists are doing things behind the

scenes to make things nicer for you to program…)

•  But how do you allow arrays to grow?

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 9

Real-Life Analogy: Moving Homes
•  A house (or condo, apartment, etc.) has a fixed

size. What happens when your family grows and
you need more space?
–  Answer: You buy a bigger place, and then you pack up

and move all your stuff to the new place, and get rid of
your old home.

•  An array has a fixed size. What happens when your
list grows and you need more space?
–  Answer: You allocate a bigger array, and then you pack

up and move all your stuff to the new array, and get rid of
your old array

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 10

Making Your Own ArrayList

a 3 1 4 1

a.length 4

aCount 4

newA 3 1 4 1

newA.length 8

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 11

Making Your Own ArrayList

a

a.length 8

aCount 4

newA 3 1 4 1

newA.length 8

(free memory)

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 12

Making Your Own ArrayList

a

a.length 8

aCount 4

3 1 4 1

(free memory)

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 13

Addresses, &, and pointers

•  A pointer is a data type that contains the address of the

object in memory, but it is not the object itself.

•  In this example p is a pointer, which is storing the address
of a.

int a = 5; !
int *p = &a;

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 14

Addresses, &, and pointers (cont)
•  We declare a pointer to an object in the following way:
 dataType *identifier;

•  For example, to declare a pointer to an integer, we can do
the following:

 int *intPtr; or int* intPtr; or int * intPtr;
•  Warning: The declaration:

 int *var1, var2;
… declares var1 to be a pointer to an integer, but var2 to be an

integer! To declare both as pointers, do the following, or just
do one per line:

 int *var1, *var2; Or int* var1; int* var2;

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 15

Department of Computer Science
Undergraduate Events

More details @ https://my.cs.ubc.ca/students/development/events
 	

Simba	 Technologies	 Tech	
Talk:	 Big	 Data:	 Volume,	
Variety	 &	 	 Velocity	
	

Wed.,	 Jan	 7	
5:30	 pm,	 DMP	 110	
	
DeloiGe	 Career	 Talk:	 What	
is	 IT	 ConsulJng	
	

Wed.,	 Jan	 14	
5:30	 pm,	 DMP	 110	

CS	 Speed	 Mentoring	 &	 	
Townhall	 Event	
	

Thurs.,	 Jan	 15	
5:30	 pm	
Rm	 X860,	 ICICS/CS	 Bldg.	

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 16

CPSC 221 Administrative Notes
•  Lab1: Jan 12 – Jan 16

– Posted on the course website
–  If you still haven’t registered for a lab section, please

do so as soon as possible

•  Office hours to help you setup C++ on your
laptops Friday Jan 9
– Lynsey: Mac, 11-12, DLC
– Kai Di: Windows, 11-1, DLC
– Daniel: Mac, 1-3, DLC

– 

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 17

So, Where Were We?
•  We did a fun example on Fibonacci to show you

performance matters!

•  We talk about arrays
– Arrays have a fixed size
–  Java ArrayLists are doing things behind the scenes to

make things nicer for you to program…

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 18

Addresses, &, and pointers
•  Now that p is pointing to a, how do we reference the

object pointed to by p?

•  This is achieved using the * (dereferencing) operator

•  IMPORTANT – The two different stars
–  int *p or int* p à declares an integer pointer p
–  *p = a à uses the * operator to dereference p

• 

int a = 5; !
int *p = &a;

std::cout << p << std::endl; // 204 !
std::cout << *p << std::endl; // 5!

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 19

Clicker Question
int a = 10;

int b = 20;

int* p = &a;

int* t = &b;

After performing p = &b
A: The value of p changes
B: The value of *p changes
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204

64

148

110

int a=10

int* p = 204

int* t=64

int b=20

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 20

Clicker Question (answered)
int a = 10;

int b = 20;

int* p = &a;

int* t = &b;

After performing p = &b
A: The value of p changes
B: The value of *p changes
C: both A and B
D: none of the above

a=10

p = 204

t=64

b=20

204

64

148

110

int a=10

int* p = 64

int* t=64

int b=20

10

20
p

t

a

b

10

20
p

t

a

b

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 21

Clicker Question
int a = 10;

int b = 20;

int* p = &a;

int* t = &b;

*p=b and p=&b
A: Are literally the same;
B: both change the value of *p to 20
C: both end up making p be equal to t
D: Both B and C

a=10

p = 204

t=64

b=20

204

64

148

110

int a=10

int* p = 204

int* t=64

int b=20

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 22

Clicker Question (answered)

int a = 10;

int b = 20;

int* p = &a;

int* t = &b;

*p=b and p=&b
A: Are literally the same;
B: both change the value of *p to 20
C: both end up making p be equal to t
D: Both B and C

a=10

p = 204

t=64

b=20

204

64

148

110

int a=10

int* p = 64

int* t=64

int b=20

a=10

p = 204

t=64

b=20

204

64

148

110

int a=20

int* p = 204

int* t=64

int b=20

p=&b *p=b

20

20
p

t

a

b

10

20
p

t

a

b

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 23

Records (Structures)
•  A structure is declared using the keyword struct followed

by a structure name. All the variables of a structure are
declared within the structure. A structure type is defined
by using the given syntax.

•  The structure definition does not allocate any memory. It
just gives a template that conveys to the C++ compiler
how the structure is laid out in memory and gives details
of the member names.

struct Employee{ !
 int empNum; !
 string name; !
 double salary; !
} ;

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 24

Records (Structures)
•  Memory is allocated for the structure when we declare a

variable of the structure. For example, we can define a
variable of an employee by writing

•  Initializing a structure means assigning some constants to
the members of the structure.

• Each member of a structure can be used just like a normal
variable, but its name will be a bit longer. A structure
member variable is generally accessed using the ‘.’ (dot
operator).

Employee boss1;

 Employee former_boss = {5000, "Derek", 99250.75};

Employee new_boss; !
new_boss.empNum = 1000; !
new_boss.name = "Ralph"; !
new_boss.salary = 125750.99; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 25

Dynamic Memory Allocation
•  When our program runs, we can request extra

space on-the-fly (i.e., when we need it—even
large amounts!) from the memory heap.
– We’ll use two functions to handle our request for

memory (called “allocation”) from the heap, and our
return of that memory (when we don’t need it anymore
—called “deallocation”):

 int* p = new int(3); !
 delete p;

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 26

Heap example

int main() { !
 int a; /* on stack */!
 int* p = new int; /* on heap */!
 *p = 10; !
}

int main() { !
 int a; /* on stack */!
 int* p = new int[20]; /* on heap */!
}

Example taken from here

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 27

Memory Leaks
•  Keep track of the memory you allocate in a

program; otherwise, you won’t be able to
reference it again! (or free it!)

#include <stdio.h> !
#include <stdlib.h> !
!
int main() { !
 int a; !
 int* p = new int; !
 *p =10; !
 p = new int; !
 *p = 20; !
 … !
} !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 28

Memory Leaks
int main(void) !
{ !
 int* getMemory; !
 while (1){ /* endless loop */!
 getMemory = new int[100000000000]; !
 if (getMemory == NULL){ !
 std::cout<< "no more memory available"<<std::endl; !
 return -1; !
 } !
 std::cout<< "got memory at "<< getMemory<<std::endl; !
 } !
 return 0; !
}

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 29

Dangling pointer
•  When we’re done with the object we delete it,

which reclaims the memory

 int* p = new int(5); !
delete p; !
std::cout <<*p;// 5 is printed!

What actually happens is
that section of memory is
marked as OK to overwrite,
but it’s still there in memory,
at least until its overwritten.

delete p;
5

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 30

Dangling pointer
•  If we don’t change our pointer so that it no longer

refers to the deleted object, it is now referring to
deallocated memory.

•  The system may later re-allocate that memory and
the pointer will behave unpredictably when
dereferenced.

•  Such a pointer is called a dangling pointer and

leads to bugs that can be subtle and brutally
difficult to find.

????

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 31

Example

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

• What is printed to the screen, and clearly identify
any memory leaks and dangling pointers.

x
y
t
z
w

Stack
Heap

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 32

x
y
t
z
w

Stack
Heap

3

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 33

x
y
t
z
w

Stack
Heap

5

3

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 34

x
y
t

z = 8
w

Stack
Heap

5

3

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 35

x
y
t

z = 8
w=5

Stack
Heap

5

3

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 36

x
y
t

z = 8
w=5

Stack
Heap

5

8

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 37

x
y
t

z = 8
w=5

Stack
Heap

5

8

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 38

x
y
t

z = 8
w=5

Stack
Heap

5

8

2

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 39

x
y
t

z = 8
w=5

5

8

2

Stack
Heap

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 40

x
y
t

z = 8
w=5

5

8

2

Stack
Heap

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 41

x
y
t

z = 8
w=5

Stack
Heap

5

8

2

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 42

 int* x = new int; !
 int* y = new int; !
 int* t = new int; !
 int z; !
 int w; !
 !
 *x = 3; !
 *y = 5; !
 z = *x + *y; !
 w = *y; !
 *x = z; !
 delete x; !
 *t = 2; !
 y = &z; !
 x = y; !
 delete t; !
 std::cout << *x << " "<< *y << " "<< z <<" "<< w ; !

x
y
t

z = 8
w=5

Stack Heap
5

8

2

8 8 8 5

Dangling pointer

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 43

Declaring a struct through pointers
• Like in other cases, a pointer to a structure is never itself a

structure, but merely a variable that holds the address of a
structure. The syntax to declare a pointer to a structure
can be given as

 Employee *vice_president = new Employee(); !
(*vice_president).empNum = 10000.00; /* one way */!
vice_president->empNum = 1; /* another way */!
vice_president->salary = 105000.00;

empNum
name
salary

vice_president

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 44

Declaring an array of struct through pointers
Employee * staff_senior = new Employee[50]; !
int i = 4; !
staff_senior[i].empNum = 100 + i; !
 !
/* another way of accessing the data, !
 via pointer arithmetic (parentheses needed) */!
(staff_senior + i)->salary = 80000; !
(*(staff_senior + i)).salary *= 1.0 /* 5% pay increase*/!

empNum
name
salary

empNum
name
salary

empNum
name
salary

…

staff_senior

CPSC 221 Crash Course on Arrays, Pointers, and Structs Page 45

Learning goals revisited
•  Become familiar with addresses and pointers in C++.
•  Describe the relationship between addresses and pointers.
•  Become familiar with arrays in C++.
•  Define and use records (structs) in an implementation with

dynamic memory allocation.
•  Demonstrate how dynamic memory management is

handled in C++ (e.g., allocation, deallocation, memory
heap, run-time stack).

•  Gain experience with pointers in C++ and their tradeoffs
and risks (dangling pointers, memory leaks).

