
CPSC 221 Introduction Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

Introduction

Textbook References:
Koffman: Chapters P and 1

CPSC 221 Introduction Page 2

Learning goal(s)
•  Get an overview of the course

•  Learning Goals for each chapter will be given
– Please pay attention to them.
– They’re part of the lecture slides.
– They make great exam checklists.

CPSC 221 Introduction Page 3

Course Personnel
•  Your Instructor:

– Hassan Khosravi
–  ICCS 241
–  hkhosrav@cs.ubc.ca
– Office hours

•  Right after lectures in class
•  Mondays 3-4, and Tuesdays 11-12 in ICCS 241
•  By appointment; see my webpage for my work calendar.

•  The other instructor
– Alan Hu

•  Teaching Assistants and office hours: See website

CPSC 221 Introduction Page 4

Course information
•  The course home page

http://www.ugrad.cs.ubc.ca/~cs221

•  Read it carefully
– Course info
– Notes (Pre-lecture notes, Post-lecture notes)

•  Texts: Epp Discrete Mathematics, Koffman C++
– Exams are open book

CPSC 221 Introduction Page 5

Connect

•  Quizzes and your grades are hosted on Connect
–  http://elearning.ubc.ca/connect/

•  To access Connect you need a Campus-Wide
Login (CWL). To register for a CWL account,
visit www.cwl.ubc.ca.

CPSC 221 Introduction Page 6

Piazza
•  The course bulletin (Piazza)

•  https://piazza.com/configure-classes/winterterm22014/cpsc221

•  Enrollment code is…

•  The Piazza bulletin board is required reading. It will be used
for important material that may not be mentioned in class.

•  Problems with the CPSC 221 course contents (e.g. lecture, lab,
textbook, assignments) can be posted on Piazza.

•  Students are encouraged to ask questions, and to respond to
other students' questions.

•  Selected individuals that actively respond to postings on
Piazza, may receive a bonus mark of up to 2%.

•  Only send email for personal issues. (ALWAYs add CPSC 221
in the title of your email)

CPSC 221 Introduction Page 7

Exams
•  Midterm: Wed. February 25, 6:00pm – 8:30pm

– Location to be announced
– Potentially two stage exam
–  If you have a conflict let me know ASAP and no later

than Thursday, January 8

•  Final: To be determined by UBC.
– Examination period begins: Tuesday, April 14 2015
– Examination period ends: Wednesday, April 29 2015

CPSC 221 Introduction Page 8

Labs
•  (roughly) every week. Please attend assigned lab

section for now.
•  Labs start Monday, January 12.

–  In room x350

•  We’ll try to have the labs posted by Thursday
evenings.

CPSC 221 Introduction Page 9

Assignments
•  No late work; may be flexible with advance notice
•  Programming projects (~3) typically due 9PM on

due date
–  All programming projects graded on Linux/g++

•  Written homework typically due 5PM on due
date
– Assignment box 35

CPSC 221 Introduction Page 10

PeerWise
•  Students use PeerWise to create and to explain their

understanding of course related assessment
questions, and to answer and discuss questions
created by their peers.
–  https://peerwise.cs.auckland.ac.nz/docs/

•  Making multiple-choice tests requires a much
higher level of understanding than simply taking
them!

CPSC 221 Introduction Page 11

PeerWise
•  Encouraging students to "own their own learning" in a

sharing and supportive environment. Posing good,
thoughtful questions with supporting explanations is an
excellent application of critical thinking skills.

•  Answering questions and giving comments offers
opportunities to improve one's communication and self-
reflection abilities.

CPSC 221 Introduction Page 12

Clickers
•  We will be using clickers in the section of the course, so

please register your i>Clicker using UBC Connect
– A typical pattern used in my lectures is: students vote

on their own first; for more difficult questions students
are encouraged to participate in group-discussions

– You can participate in answering questions
anonymously

– Responses are projected, in real-time, so you can
compare yourself with your peers

– Reveals misconceptions and I can pace the
presentation and explanations to fit the audience

CPSC 221 Introduction Page 13

Planned (tentative) assessments
•  Labs 10%
•  Theory Assns/Quizzes 15%
•  Programming Projects 15%
•  Midterm Exam 20%
•  Final Exam 35%
•  PeerWise 5%
•  Piazza 2% (Bonus)
•  To pass the course, you must obtain at least a 50%

overall course mark (as per the above formula) and
you must pass the final exam.

• 

CPSC 221 Introduction Page 14

Prerequisites
•  One of CPSC 210, EECE 210
•  One of CPSC 121, MATH 220
•  If you don’t have the prerequisites, you will be

dropped from the course. Check with a CS
Advisor if you have a problem

•  The instructor cannot change your lab section or
add you to the course.
– Check with CS front office

CPSC 221 Introduction Page 15

Academic Concession
•  Students registered with Access & Diversity

must:
–  inform the instructor within seven (7) days of adding

the course or the start of term (whichever is later)
(email me please)

–  provide a copy of the letter from A&D granting
accommodations (by email)

–  submit an accommodation form at least two weeks
prior to each exam for which accommodation is
requested

CPSC 221 Introduction Page 16

Collaboration
•  Read the collaboration policy on the website.

You have LOTS of freedom to collaborate! Use it
to learn and have fun while doing it!

•  Don’t violate the collaboration policy. There’s no
point in doing so.

•  Plagiarism occurs when you submit someone
else's work as if it were your own.

CPSC 221 Introduction Page 17

Using your computer during class…
Multitasking on your computer during CPSC 221
lectures:

A. Helps me to learn the course materials because I’m

not bored and has no effect on other people
B. Helps me to learn better, but distracts the people

around me
C. Makes me learn worse, but has no effect on other

people
D. Makes me learn worse, and distracts the people

around me

CPSC 221 Introduction Page 18

Multi-tasking on laptop lowers your
grade (Canadian study)

•  “all the participants used laptops to take notes during a
lecture on meteorology. But half were also asked to
complete a series of unrelated tasks on their computers
when they felt they could spare some time. Those tasks
— which included online searches for information —
were meant to mimic what distracted students might do
during class.”

•  The students who were asked to multitask averaged 11%
lower on the exam (difference between A- and B-)

•  Their neighbors also did significantly worse than the
average.

CPSC 221 Introduction Page 19

Some class rules
•  Show up on time for class.

•  Be respectful. Don’t disrupt the class for your
fellow students. Examples of behavior to be
avoided during class:
– Using a cell phone in class
– Surfing the Web on your laptop, iPad, smartphone, etc.

in class
– Talking loudly with your friends when I’m lecturing.

• Whisper please, and only talk briefly.

CPSC 221 Introduction Page 20

Acknowledgement
•  Thanks to Steve Wolfman for the content of most

of these slides with additional material from Alan
Hu, Ed Knorr, Will Evans, and Kim Voll

CPSC 221 Introduction Page 21

Observation
•  Most programs manipulate data

–  programs process, store, display, gather
–  data can be numbers, images, sound (information!)

•  Each program must decide how to store and
manipulate data

•  Choice influences program at every level
–  execution speed
– memory requirements
– maintenance (debugging, extending, etc.)

How you structure your data matters to every program you create!

CPSC 221 Introduction Page 22

What this course is about

•  Some Classic Algorithms
•  Some Classic Data Structures
•  Analysis Tools and Techniques for the Above

– what’s good or bad
– what trade-offs are being made

•  Some Basics of Parallelism and Concurrency

CPSC 221 Introduction Page 23

What’s an algorithm?
•  Algorithm (Typical Definition)

–  A high-level, language-independent description of a
step-by-step process for solving a problem

•  Algorithm (Street Definition)
–  A smarter way to solve the problem!

CPSC 221 Introduction Page 24

What’s a Data Structure?
•  Data Structure (Typical Definition)

– A way to store data to facilitate its manipulation/
access

•  Data Structure (Street Definition)

–  How to organize your data to get the results you want,
along with the supporting algorithms

CPSC 221 Introduction Page 25

Why study classic examples?
•  They are useful!

–  Like pre-packaged intelligence in a can!
–  Don’t have to work hard to come up with your own solution

•  They let you abstract away details!
–  These are “power tools” for programming.
–  Let you focus on solving bigger problems, ignore details.

•  You learn general solution ideas!
–  This will help you solve new, unexpected problems.
–  Great masters in any field study the classic examples from their

field.

CPSC 221 Introduction Page 26

Goals of the Course
•  Become familiar with some of the fundamental

data structures and algorithms in computer science
•  Improve ability to solve problems abstractly

–  data structures and algorithms are the building blocks

•  Improve ability to analyze your algorithms
–  prove correctness
–  gauge, compare, and improve time and space

complexity
•  Become modestly skilled with C++ and UNIX,

but this is largely on your own!

CPSC 221 Introduction Page 27

Fun Example
•  We’ll look at a simple example, to see how
 different choices affect performance:

– Fibonacci Numbers

•  Does performance matter in practice?
– Massive load on web applications: Anyone use Cuil

instead of Google?
– Efficient algorithms allow lower power, longer battery

life, cheaper processors, etc.

CPSC 221 Introduction Page 28

The Fibonacci Numbers
•  The Fibonacci numbers are the numbers in the sequence:
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
•  The first two numbers are 1, and then each succeeding

number can be generated by adding together the previous
two numbers in the sequence. This leads to the following
recursive definition:

–  Common example in CS
–  Brief appearance in
 Da Vinci Code
–  Some applications, pops up in unusual places (art,
 nature, algorithm analysis)

int fib(int n){ !
 if (n==1) !
 return 1; !
 else if(n==2) !
 return 1; !
 else!
 return fib(n-1) + fib(n-2); !
} !

CPSC 221 Introduction Page 29

fib(4)

fib(3) fib(2)

fib(2) fib(1)

1 1

2 1

int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à

à

à

n=4
int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à

à

à

n=3
int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à

à

n=2

int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à
à

n=1
int fib(int n){
 if (n==1)
 return 1;
 else if (n==2)
 return 1;
 else
 return fib(n-1)
 + fib(n-2);
}

à

à
à

n=2

CPSC 221 Introduction Page 30

Recursion and efficiency
•  How many times is fib(3) calculated?

•  Does it really need to be calculated multiple
times?

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

CPSC 221 Introduction Page 31

Memoization
– After computing a solution, store it in a table before

returning. (Leave a “memo” to yourself.)
– At start of the function, check if you’ve solved this

case before. If so, return the already calculated
solution.

fib(6)

fib(5)

fib(4)

fib(3)

fib(2) fib(1)

fib(2)

fib(3)

fib(4)

n Fn

6
5
4
3
2
1

1

1

2

3

5

8

fib(6)

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(4)

fib(3) fib(2)

fib(2) fib(1)

CPSC 221 Introduction Page 32

Dynamic programming
•  In dynamic programming you solve the problem

"bottom up”, so you don’t risk blowing stack space.

unsigned long long dp_fib(int n) { !
 unsigned long long answer; !
 unsigned long long answerminus1 = 1; !
 unsigned long long answerminus2 = 1; !
 for (int i = 3; i <= n; i++) { !
 answer = answerminus1 + answerminus2; !
 answerminus2 = answerminus1; !
 answerminus1 = answer; !
 } !
 return answer; !
}

See course website for source code

CPSC 221 Introduction Page 33

Matrix Multiplication
•  Consider this matrix equation:

•  Hey! That’s one iteration of Fibonacci!

⎥
⎦

⎤
⎢
⎣

⎡ +
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

x
yx

y
x

01
11

CPSC 221 Introduction Page 34

Matrix Fibonacci
•  Repeated matrix multiplication computes

Fibonacci numbers…

!

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

3
5

2
3

01
11

2
3

1
2

01
11

1
2

1
1

01
11

CPSC 221 Introduction Page 35

Repeated Multiplication is
Exponentiation!

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

−

⎥
⎦

⎤
⎢
⎣

⎡
=

−

1
1

)1(
)(

01
11

2nT
nfib
nfib

T

CPSC 221 Introduction Page 36

Multiplication is associative.
•  Associative Law: (xy)z = x(yz)
•  Therefore,

…
…
…
…

…

=

⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅⋅=

)())()((
)()()()(

))))((((

xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxxxn

CPSC 221 Introduction Page 37

Matrix Multiplication Is Associative

...
...
...

...

44444

22222

=

⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=

TTTTT
TTTTT

TTTTTTTTTTTT n

CPSC 221 Introduction Page 38

Exponentiation by Iterative Squaring
•  Imagine you have an old calculator and need to

compute 232.
•  You could type 2 x 2 x 2 x 2 x ….
•  Or, you could type:

– 2 x 2 = and get 22.
–  22 x 22 = and get 24.
–  24 x 24 = and get 28.
–  28 x 28 = and get 216.
–  216 x 216 = and get 232.

CPSC 221 Introduction Page 39

Iterative squaring works for matrices, too!

!

323264

161632

8816

448

224

2

TTT
TTT
TTT
TTT
TTT
TTT

⋅=

⋅=

⋅=

⋅=

⋅=

⋅=

CPSC 221 Introduction Page 40

Iterative Squaring Example

43264

3664100

TTT
TTT

⋅⋅=

⋅=

Do only 8 multiplications instead of 99!

CPSC 221 Introduction Page 41

Comparison of different fib
implementations (in seconds)

n=10 n=50 n=10,000 n=200,000 100,000,000

Plain, recursive 3 *10-5 71
Memoized
recursive

5 *10-6 7 *10-6

3 *10-4

Out of
memory

Dynamic
programming

3 *10-6

5 *10-6

4 *10-5

7 * 10-4

0.4

Matrix
Multiplication

5 *10-6

10-6

9 * 10-5

 10-5

2* 10-4

