
CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 1

Steve Wolfman, based on work by Dan Grossman
(with minor tweaks by Hassan Khosravi)

CPSC 221
Basic Algorithms and Data Structures

A Sophomoric Introduction to Shared-Memory
Parallelism and Concurrency, Part 2

Analysis of Fork-Join Parallel Programs

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 2

Learning Goals
•  Define work—the time it would take one processor to complete a

parallelizable computation; span—the time it would take an
infinite number of processors to complete the same computation;
and Amdahl's Law—which relates the speedup in a program to the
proportion of the program that is parallelizable.

•  Use work, span, and Amdahl's Law to analyse the speedup
available for a particular approach to parallelizing a computation.

•  Judge appropriate contexts for and apply the parallel map, parallel
reduce, and parallel prefix computation patterns.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 3

Outline
Done:
•  How to use fork and join to write a parallel algorithm
•  Why using divide-and-conquer with lots of small tasks is

best
–  Combines results in parallel

•  Some C++11 and OpenMP specifics
–  More pragmatics (e.g., installation) in separate notes

Now:
•  More examples of simple parallel programs
•  Other data structures that support parallelism (or not)
•  Asymptotic analysis for fork-join parallelism
•  Amdahl’s Law

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 4

Easier Visualization for the Analysis
•  It’s Asymptotic Analysis Time!

– How long does dividing up/recombining the work take
with infinite number of processors? Um…?

+ + + + + + + +

+ + + +

+ +
+

Time ∈ Θ(lg n) with an infinite number of processors.
Exponentially faster than our Θ(n) solution! Yay!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 5

“Exponential speed-up” using
Divide-and-Conquer

•  Counting matches (lecture) and summing (reading) went from
O(n) sequential to O(log n) parallel (assuming lots of
processors!)
–  An exponential speed-up (or more like: the sequential version

represents an exponential slow-down)

+ + + + + + + +

+ + + +

+ +
+

•  Many other operations can also use this structure…

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 6

Other Operations?

What an example of something else we can put at the “+” marks?
•  count elements that satisfy some property
•  max or min
•  concatenation
•  Find the left-most array index that has an element that satisfies

some property

+ + + + + + + +

+ + + +

+ +
+

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 7

What else looks like this?

What’s an example of something we cannot put there
•  Subtraction: ((5-3)-2) <> (5-(3-2))
•  Exponentiation: 234

 <> (23)
4

•  281 <> 212

+ + + + + + + +

+ + + +

+ +
+

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 8

What else looks like this?

What are the basic requirements for the reduction operator?

Note: The “single” answer can be
a list or other collection.

+ + + + + + + +

+ + + +

+ +
+

The operator has be associative

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 9

CPSC 221 Administrative Notes
•  Programming project #1 handin trouble

– Brian has an office hour 3:30-4:40 DLC
– There will be a 15% penalty, but if your files were

stored on ugrad servers, we can remark them.

•  Programming project #2 due
– Apr Tue, 07 Apr @ 21.00
– TA office hours during the long weekend
– Friday Lynsey: 12:00 – 2:00
– Saturday Kyle 11:00 – 12:00
– Sunday Kyle 11:00 – 12:00

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 10

CPSC 221 Administrative Notes
•  Lab 10 Parallelism Mar 26 – Apr 2

–  Some changes to the code since Friday
–  Marking Apr 7 – Apr 10 (Also doing Concept Inventory).

Doing the Concept inventory is worth 1 lab point (0.33% course
grade).

•  PeerWise Call #5 due today (5pm)
–  The deadline for contributing to your “Answer Score” and

“Reputation score” is Monday April 20.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 11

So… Where Were We?
•  We talked about

– Parallelism
– Concurrency

•  Problem: Count Matches of a Target
– Race conditions
– Out of scope variables

•  Fork/Join Parallelism
•  Divide-and-Conquer Parallelism

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 12

Reduction
•  Computations of this form are called reductions (or reduces?)

•  Produce single answer from collection via an associative operator
–  Examples: max, count, leftmost, rightmost, sum, product, …
–  Non-examples: median, subtraction, exponentiation

•  (Recursive) results don’t have to be single numbers or strings.
They can be arrays or objects with multiple fields.
–  Example: Histogram of test results is a variant of sum

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 13

Even easier: Maps (Data Parallelism)
•  A map operates on each element of a collection

independently to create a new collection of the same size
–  No combining results
–  For arrays, this is so trivial some hardware has direct support

•  One we already did: counting matches becomes mapping
“number → 1 if it matches, else 0” and then reducing with +

void equals_map(int result[], int array[], int len, int target) { !
 FORALL(i=0; i < len; i++) { !
 result[i] = (array[i] == target) ? 1 : 0; !
 } !
}

3 5 3 8 9

1 0 1 0 0

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 14

Another Map Example: Vector Addition

void vector_add(int result[], int arr1[], int arr2[], int len) { !
 FORALL(i=0; i < len; i++) { !
 result[i] = arr1[i] + arr2[i]; !
 } !
} !

1 2 3 4 5

2 5 3 3 2
+

3 7 6 7 6

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 15

Maps in OpenMP (w/explicit Divide & Conquer)

void vector_add(int result[], int arr1[], int arr2[],
int lo, int hi) !
{ !
 const int SEQUENTIAL_CUTOFF = 1000; !
 if (hi - lo <= SEQUENTIAL_CUTOFF) { !
 for (int i = lo; i < hi; i++) !
 result[i] = arr1[i] + arr2[i]; !
 return; !
 } !
 !
#pragma omp task untied!
 { !
 vector_add(result, arr1, arr2, lo, lo + (hi-lo)/2); !
 } !
 !
 vector_add(result, arr1, arr2, lo + (hi-lo)/2, hi); !
#pragma omp taskwait} !

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 16

Maps and reductions
•  These are by far the two most important and

common patterns.

•  Learn to recognize when an algorithm can be

written in terms of maps and reductions! They
make parallel programming simple…

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 17

Digression: MapReduce on Clusters

You may have heard of Google’s “map/reduce” or the
open-source version Hadoop

Idea: Perform maps/reduces on data using many machines
•  system distributes the data and manages fault tolerance
•  your code just operates on one element (map)

or combines two elements (reduce)
•  old functional programming idea → big data/distributed

computing
What is specifically possible in a Hadoop “map/reduce” is
more general than the examples we’ve so far seen.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 18

Exercise: find largest
Given an array of positive integers, find the largest
number.

How is this a map and/or reduce?

a1 a2 … am-1 am

Reduce: max

max (a1) max (a2) … max (am-1) max (am)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 19

Exercise: find largest AND smallest
Given an array of positive integers, find the largest
and the smallest number.

How is this a map and/or reduce?

Reduce: max, and min

a1 a2 … am-1 am

max (a1)
min (a1)

max (a2)
min (a2)

… max (am-1)
min (am-1)

max (am)
min (am)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 20

Exercise: find the K largest numbers
Given an array of positive integers, return the k
largest in the list.

Reduce: Find k max values

Map: Same as max

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 21

Exercise: count prime numbers
Given an array of positive integers, count the
number of prime numbers.

Map: call is-prime on array and produce array2. for
each element write 1 if it is prime, and 0 otherwise

a1 a2 … am-1 am

0 1 … 0 1

Reduce: + on array2

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 22

Exercise: find first substring match
Given an extremely long string (DNA sequence?)
find the index of the first occurrence of a short
substring

a1 a2 … am-1 am

n 2 n n m

Reduce: Find min

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 23

Outline
Done:
•  How to use fork and join to write a parallel algorithm
•  Why using divide-and-conquer with lots of small tasks is

best
–  Combines results in parallel

•  Some C++11 and OpenMP specifics
–  More pragmatics (e.g., installation) in separate notes

Now:
•  More examples of simple parallel programs
•  Other data structures that support parallelism (or not)
•  Asymptotic analysis for fork-join parallelism
•  Amdahl’s Law

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 24

Trees
•  Maps and reductions work just fine on balanced trees

–  Divide-and-conquer each child rather than array subranges
–  Correct for unbalanced trees, but won’t get much speed-up

•  Certain problems will not run faster in parallel
– Searching for an element

•  Some problems run faster
– Summing the elements of a balanced binary tree

•  How to do the sequential cut-off?
–  Store number-of-descendants at each node (easy to maintain)
–  Or could approximate it with, e.g., AVL-tree height

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 25

Linked lists
•  Can you parallelize maps or reduces over linked lists?

– Example: Increment all elements of a linked list
– Example: Sum all elements of a linked list
– Parallelism still beneficial for expensive per-element

operations
b c d e f

front back

•  Once again, data structures matter!
•  For parallelism, balanced trees generally better

than lists so that we can get to all the data
exponentially faster O(log n) vs. O(n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 26

Outline
Done:
•  How to use fork and join to write a parallel algorithm
•  Why using divide-and-conquer with lots of small tasks is

best
–  Combines results in parallel

•  Some C++11 and OpenMP specifics
–  More pragmatics (e.g., installation) in separate notes

Now:
•  More examples of simple parallel programs
•  Other data structures that support parallelism (or not)
•  Asymptotic analysis for fork-join parallelism
•  Amdahl’s Law

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 27

Analyzing Parallel Algorithms
•  Like all algorithms, parallel algorithms should be:

–  Correct
–  Efficient

•  For our algorithms so far, correctness is “obvious” so
we’ll focus on efficiency
–  Want asymptotic bounds
–  Want to analyze the algorithm without regard to a specific

number of processors
–  The key “magic” of the ForkJoin Framework is getting

expected run-time performance asymptotically optimal for the
available number of processors

•  So we can analyze algorithms assuming this guarantee

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 28

CPSC 221 Administrative Notes
•  Marking lab 10 :Apr 7 – Apr 10
•  Written Assignment #2 is marked

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 29

CPSC 221 Administrative Notes
•  Marking lab 10 :Apr 7 – Apr 10

•  Written Assignment #2 is marked

•  Programming project is due tonight!

•  Here is what I’ve been doing on PeerWise
– Final call for Piazza question will be out tonight

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 30

Evaluations
•  TA Evaluation

– Please only evaluate TAs that you know and
worked with in some capacity.

•  Instructor Evaluation
– We’ll spend some time on Thursday on this.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 31

So… Where Were We?

•  We’ve talked about
– Parallelism and Concurrency
– Fork/Join Parallelism
– Divide-and-Conquer Parallelism
– Map & Reduce
– Using parallelism in other data structures such

as Trees and Linked list
– And Finally we talked about me getting

dressed!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 32

Digression, Getting Dressed

socks

shirt

shoes

pants

watch
belt

coat

under
roos

•  Here’s a graph representation for parallelism.
•  Nodes: (small) tasks that are potentially executable in

parallel
•  Edges: dependencies (the target of the arrow depends

on its source) (Note: costs are on nodes, not edges.)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 33

Digression, Getting Dressed (1)

socks

shirt

shoes

pants

watch
belt

coat

under
roos

•  Assume it takes me 5 seconds to put on each item, and I
cannot put on more than one item at a time. How long
does it take me to get dressed?

A: 20 B: 25 C:30 D:35 E :40

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 34

Digression, Getting Dressed (1)

socks

shirt

shoes

pants

watch
belt

coat

under
roos

(Note: costs are on nodes, not edges.) 40 Seconds

under
roos

shirt socks belt watch pants shoes coat

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 35

Digression, Getting Dressed (∞)

socks

shirt

shoes

pants

watch
belt

coat

under
roos

•  Assume it takes my robotic wardrobe 5 seconds to put me
into each item, and it can put on up to 20 items at a time.
How long does it take me to get dressed?

A: 20 B: 25 C:30 D:35 E :40

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 36

Digression, Getting Dressed (∞)

socks

shirt

shoes

pants

watch
belt

coat

under
roos

under
roos

shirt

socks

belt watch

pants shoes
coat

20 Seconds

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 37

Digression, Getting Dressed (2)

socks

shirt

shoes

pants

watch
belt

coat

under
roos

•  Assume it takes me 5 seconds to put on each item, and I
can use my two hands to put on 2 items at a time. (I am
exceedingly ambidextrous.) How long does it take me to
get dressed?

A: 20 B: 25 C:30 D:35 E :40

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 38

Digression, Getting Dressed (2)

socks

shirt

shoes

pants

watch
belt

coat

under
roos

25 Seconds

under
roos

shirt

socks

belt watch
pants

shoes
coat

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 39

Un-Digression, Getting Dressed:
•  Nodes are pieces of work the

program performs. Each node
will be a constant, i.e., O(1),
amount of work that is
performed sequentially.

•  Edges represent that the source
node must complete before the
target node begins. That is, there
is a computational dependency
along the edge.

•  The graph needs to be a directed
acyclic graph (DAG)

• 

coat

socks shirt

shoes

pants watch

belt

under
roos

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 40

Un-Digression, Getting Dressed:
“Work”, AKA T1

•  T1 is called the work. By
definition, this is how long it takes
to run on one processor.

•  What mattered when I could put
only one item on at a time? How
do we count it?

T1 is asymptotically just the
number of nodes in the dag. coat

socks shirt

shoes

pants watch

belt

under
roos

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 41

Un-Digression, Getting Dressed:
“Span”, AKA T∞

•  T∞ is called the span, though
other common terms are the
critical path length or
computational depth.

•  What mattered when I could put
on an infinite number of items on
at a time? How do we count it?

we would immediately start every node as soon as its
predecessors in the graph had finished. So it would be the
length of the longest path in the DAG.

coat

socks shirt

shoes

pants watch

belt

under
roos

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 42

Work and Span
Two key measures of run-time:

•  Work: How long it would take 1 processor = T1

–  Just “sequentialize” the recursive forking

•  Span: How long it would take infinity processors = T∞

–  Example: O(log n) for summing an array
•  Notice having > n/2 processors is no additional help

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 43

Un-Digression, Getting Dressed:
Performance for P processors, AKA TP

•  TP is the time a program
takes to run if there are P
processors available during
its execution

•  What mattered when I could

put on 2 items on at a time?
Was it as easy as work or
span to calculate?

socks shirt

shoes

pants watch

belt

coat

under
roos

T1 and T ∞ are easy, but we want to understand TP in terms of P
We’ll come back to this soon!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 44

Analyzing Code, Not Clothes

Reminder, in our DAG representation:
– Each node: one piece of constant-sized

work
– Each edge: source must finish before

destination starts

– What is T∞ in this graph?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 45

Where the DAG Comes From

We start with just one thread.
(Using C++11 not OpenMP syntax to make things cleaner.)

main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

pseudocode C++11

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 46

Where the DAG Comes From

A fork ends a node and generates two new ones…

main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

fork!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 47

Where the DAG Comes From

…the new task/thread and the continuation of the current one.

main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 48

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

Again, we fork off a task/thread.
Meanwhile, the left (blue) task finished.

fork!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 49

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

join!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 50

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

The next join isn’t ready to go yet. The task/thread it’s
joining isn’t finished. So, it waits and so do we.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 51

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

Meanwhile, task2 also forks a task1.
(The DAG describes dynamic execution. We can run the same code many times!)

fork!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 52

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

task1 and task2 both chugging along.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 53

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

task2 joins task1.

join!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 54

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

Task2 (the right, green task) is finally done.
So, the main task joins with it.
(Arrow from the last node of the joining task and of the joined one.)

join!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 55

Where the DAG Comes From
main:
 a = fork task1
 b = fork task2
 O(1) work
 join a
 join b

task1:
 O(1) work

task2:
 c = fork task1
 O(1) work
 join c

int main(..) {
 std::thread t1(&task1);
 std::thread t2(&task2);
 // O(1) work
 t1.join();
 t2.join();
 return 0;
}

void task1() {
 // O(1) work
}

void task2() {
 std::thread t(&task1);
 // O(1) work
 t.join();
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 56

Analyzing Real Code
•  fork/join are very flexible, but divide-and-conquer

maps and reductions (like count-matches) use them
in a very basic way: A tree on top of an upside-down tree

base cases

divide

combine
results

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 57

More interesting DAGs?
•  The DAGs are not always this simple

•  Example:
– Suppose combining two results might be expensive

enough that we want to parallelize each one
– Then each node in the inverted tree on the previous

slide would itself expand into another set of nodes for
that parallel computation

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 58

Map/Reduce DAG: Work and Span?
Asymptotically, what’s the work in this DAG?
Asymptotically, what’s the span in this DAG?
Reasonable running with P processors?

O(n)

O(lg n)

T∞ < Tp <T1 à O(lg n) < Tp < O(n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 59

Connecting to performance
•  Recall: TP = running time if there are P processors available

•  Work = T1 = sum of run-time of all nodes in the DAG
–  That lonely processor does everything
–  Any topological sort is a legal execution
–  O(n) for simple maps and reductions

•  Span = T∞ = sum of run-time of all nodes on the most-expensive
path in the DAG
–  Note: costs are on the nodes not the edges
–  Our infinite army can do everything that is ready to be done, but still has to

wait for earlier results
–  O(log n) for simple maps and reductions

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 60

Definitions
A couple more terms:

•  Speed-up on P processors: T1 / TP

•  If speed-up is P as we vary P, we call it perfect linear speed-up
–  Perfect linear speed-up means doubling P halves running time
–  Usually our goal; hard to get in practice

•  Parallelism is the maximum possible speed-up: T1 / T ∞

–  At some point, adding processors won’t help
–  What that point is depends on the span

Parallel algorithms is about decreasing span without
increasing work too muchs

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 61

Asymptotically Optimal TP

Can TP beat:
– T1 / P?

– T ∞

No, because otherwise we didn’t do all the work!

No, because we still don’t have have ∞ processors!

So an asymptotically optimal execution would be:
TP = O((T1 / P) + T ∞)

First term dominates for small P, second for large P

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 62

Asymptotically Optimal TP

T1/P

T∞

As the marginal benefit of more processors
bottoms out, we get performance
proportional to T∞.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 63

Getting an Asymptotically Optimal Bound

–  Expected time because it flips
coins when scheduling

•  I have two Processors and
there are three tasks that I can
start with. Coin flip to pick two
of them

–  Guarantee requires a few
assumptions about your code…

coat

socks shirt

shoes

pants watch

belt

under
roos

•  Good OpenMP implementations guarantee expected
bound of

 O((T1 / P) + T ∞)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 64

Division of responsibility
•  Our job as OpenMP users:

–  Pick a good algorithm
–  Write a program. When run, it creates a DAG of things to do
–  Make all the nodes small-ish and (very) approximately equal

amount of work

•  The framework-implementer’s job:
–  Assign work to available processors to avoid idling
–  Keep constant factors low
–  Give the expected-time optimal guarantee assuming

framework-user did their job
TP = O((T1 / P) + T ∞)

64 Sophomoric Parallelism and Concurrency, Lecture 2

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 65

TP = O((T1 / P) + T ∞)

•  In the algorithms seen so far (e.g., sum an array):
–  T1 = O(n)
–  T ∞= O(log n)
–  So expect (ignoring overheads): TP = O(n/P + log n)

•  Suppose instead:
–  T1 = O(n2)
–  T ∞= O(n)
–  So expect (ignoring overheads): TP = O(n2/P + n)

Examples

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 66

Loop (not Divide-and-Conquer) DAG: Work/Span?
int divs = 4; /* some number of divisions */!
!
std::thread workers[divs]; !
int results[divs]; !
for (int d = 0; d < divs; d++) !
// count matches in 1/divs sized part of the array!
workers[d] = std::thread(&cm_helper_seql, ...); !
!
int matches = 0; !
for (int d = 0; d < divs; d++) { !
 workers[d].join(); !
 matches += results[d]; !
} !
!
return matches;

n/4 n/4 n/4 n/4

Black nodes take constant time.
Red nodes take non-constant time!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 67

… …
1 1 1 …

int divs = n; /* some number of divisions */!
!
std::thread workers[divs]; !
int results[divs]; !
for (int d = 0; d < divs; d++) !
// count matches in 1/divs sized part of the array!
workers[d] = std::thread(&cm_helper_seql, ...); !
!
int matches = 0; !
for (int d = 0; d < divs; d++) { !
 workers[d].join(); !
 matches += results[d]; !
} !
!
return matches;

Black nodes take constant time.
Red nodes take constant time!

Loop (not Divide-and-Conquer) DAG: Work/Span?

The chain length is O(n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 68

So, what’s the right choice of k?

… …
n/k n/k n/k …

int divs = k; /* some number of divisions */!
!
std::thread workers[divs]; !
int results[divs]; !
for (int d = 0; d < divs; d++) !
// count matches in 1/divs sized part of the array!
workers[d] = std::thread(&cm_helper_seql, ...); !
!
int matches = 0; !
for (int d = 0; d < divs; d++) { !
 workers[d].join(); !
 matches += results[d]; !
} !
!
return matches;

Black nodes take constant time.
Red nodes take non-constant time!

Loop (not Divide-and-Conquer) DAG: Work/Span?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 69

So, what’s the right choice of k?

… …
n/k n/k n/k …

Black nodes take constant time.
Red nodes take non-constant time!

Loop (not Divide-and-Conquer) DAG: Work/Span?

O(n/k + k)
When is n/k + k minimal?

-n/k2 + 1 = 0
k =sqrt(n)

√n √n √n …
The chain length is O(√n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 70

Outline
Done:
•  How to use fork and join to write a parallel algorithm
•  Why using divide-and-conquer with lots of small tasks is best

–  Combines results in parallel

•  Some C++11 and OpenMP specifics
–  More pragmatics (e.g., installation) in separate notes

Now:
•  More examples of simple parallel programs
•  Other data structures that support parallelism (or not)
•  Asymptotic analysis for fork-join parallelism
•  Amdahl’s Law

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 71

Amdahl’s Law (mostly bad news)

•  Work/span is great, but real programs typically
have:
–  parts that parallelize well like maps/reduces over

arrays/trees
–  parts that don’t parallelize at all like reading a

linked list, getting input, doing computations where
each needs the previous step, etc.

“Nine women can’t make a baby in one month”

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 72

Amdahl’s Law (mostly bad news)
•  Let T1 = 1 (measured in weird but handy units)

•  Let S be the portion of the execution that can’t be
parallelized

 T1 = S + (1-S) = 1

•  Suppose we get perfect linear speedup on the parallel
portion

 TP = S + (1-S)/P

•  speedup with P processors is (Amdahl’s Law):
 T1 / TP
•  speedup with ∞ processors is (Amdahl’s Law):
 T1 / T∞

T1 / T∞ =

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 73

Clicker Question
speedup with P processors T1 / TP = 1 / (S + (1-S)/P)
speedup with ∞ processors T1 / T∞ = 1 / S

•  Suppose 33% of a program is sequential
– How much speed-up do you get from 2 processors?
– A ~1.5
– B ~2
– C ~2.5
– D ~3
– E: none of the above

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 74

Clicker Question (Answer)
speedup with P processors T1 / TP = 1 / (S + (1-S)/P)
speedup with ∞ processors T1 / T∞ = 1 / S

•  Suppose 33% of a program is sequential
– How much speed-up do you get from 2 processors?
– A ~1.5
– B ~2
– C ~2.5
– D ~3
– E: none of the above

1

0.33+ 0.66
2

=1.51

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 75

Clicker Question
speedup with P processors T1 / TP = 1 / (S + (1-S)/P)
speedup with ∞ processors T1 / T∞ = 1 / S

•  Suppose 33% of a program is sequential
– How much speed-up do you get from 1,000,000

processors?
– A ~1.5
– B ~2
– C ~2.5
– D ~3
– E: none of the above

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 76

Mostly Bad News
speedup with P processors T1 / TP = 1 / (S + (1-S)/P)
speedup with ∞ processors T1 / T∞ = 1 / S

•  Suppose 33% of a program is sequential
– How much speed-up do you get from 1,000,000

processors?
– A ~1.5
– B ~2
– C ~2.5
– D ~3
– E: none of the above

1

0.33+ 0.66
1000000

~ 3

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 77

Why Such Bad News?

•  Suppose 33% of a program is sequential
– How much speed-up do you get from more

processors?

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Sp
ee

du
p

Processors

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 78

Why such bad news
speedup with P processors T1 / TP = 1 / (S + (1-S)/P)
speedup with ∞ processors T1 / T∞ = 1 / S

•  Suppose you miss the good old days (1980-2005) where
12ish years was long enough to get 100x speedup
– Now suppose in 12 years, clock speed is the same but

you get 256 processors instead of 1
–  For 256 processors to get at least 100x speedup What do

we need for S?

A: S ≤ 0.1 B:0.1<S ≤ 0.2 C: 0.2 < S ≤ 0.6
D: 0.6 < S ≤ 0.8 E: 0.8 < S

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 79

Why such bad news
•  we need 100 ≤ 1 / (S + (1-S)/256)
•  You would need at most 0.61% of the program to be

sequential, so S needs to be smaller than 0.0061. Answer: A

– with 256 processors how much speedup do you get?

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2

Sp
ee

du
p

S

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 80

All is not lost. Parallelism can still help!
In our maps/reduces, the sequential part is O(1) and so
becomes trivially small as n scales up. (This is
tremendously important!)

We can find new parallel algorithms. Some things that
seem sequential are actually parallelizable!

We can change the problem we’re solving or do new things
•  Example: Video games use tons of parallel processors

–  They are not rendering 10-year-old graphics faster
–  They are rendering more beautiful(?) monsters

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 81

Moore and Amdahl

•  Moore’s “Law” is an observation about the progress of
the semiconductor industry
–  Transistor density doubles roughly every 18 months

•  Amdahl’s Law is a mathematical theorem
–  Diminishing returns of adding more processors

•  Both are incredibly important in designing computer
systems

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 82

CPSC 221 Administrative Notes
•  Marking lab 10 :Apr 7 – Apr 10

•  Written Assignment #2 is marked
–  If you have any questions or concerns attend office

hours held by Cathy or Kyle

•  Final call for Piazza question is out and is due
Mon at 5pm.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 83

CPSC 221 Administrative Notes
•  Final exam Wed, Apr 22 at 12:00 SRC A

–  Open book (same as midterm) check course webpage

•  PRACTICE Written HW #3 is available on the course
website (Solutions will be released next week)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 84

CPSC 221 Administrative Notes
•  Office hours
•  Apr 14 Tue Kyle (12-1)
•  Apr 15 Wed Hassan(5-6)
•  Apr 16 Thu Brian (1-3)
•  Apr 17 Fri Kyle(11-1)
•  Apr 18 Sat Lynsey (12 -2)
•  Apr 19 Sun Justin (12 -2)
•  Apr 20 Mon Benny (10-12)
•  Apr 21 Tue Hassan(11-1) Kai Di(4 -6)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 85

Evaluations
•  Instructor Evaluation

– We’ll spend some time at the end of the lecture on
this.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 86

So… Where Were We?
•  We’ve talked about

– Parallelism and Concurrency
– Fork/Join Parallelism
– Divide-and-Conquer Parallelism
– Map & Reduce
– Using parallelism in other data structures such as

Trees and Linked list
– Work, Span, Asymptotic analysis Tp

– Amdahl’s Law

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 87

FANCIER FORK-JOIN
ALGORITHMS: PREFIX, PACK,
SORT

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 88

Motivation
•  This section presents a few more sophisticated

parallel algorithms to demonstrate:
–  sometimes problems that seem inherently sequential

turn out to have efficient parallel algorithms.
– we can use parallel-algorithm techniques as building

blocks for other larger parallel algorithms.
– we can use asymptotic complexity to help decide when

one parallel algorithm is better than another.
•  As is common when studying algorithms, we will

focus on the algorithms instead of code.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 89

The prefix-sum problem
•  Given a list of integers as input, produce a list of integers

as output where
•  output[i] = input[0]+input[1]+…+input[i]

•  Example

•  It is not at all obvious that a good parallel algorithm
exists.

•  it seems we need output[i-1] to compute output[i].

input

output
42 3 4 7 1 10
 42 45 49 56 57 67

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 90

The prefix-sum problem
•  Given a list of integers as input, produce a list of integers

as output where
•  output[i] = input[0]+input[1]+…+input[i]

Sequential version is straightforward:

vector<int> prefix_sum(const vector<int>& input)
{ !
 vector<int> output(input.size()); !
 output[0] = input[0]; !
 for(int i=1; i < input.size(); i++) !
 output[i] = output[i-1]+input[i]; !
 return output; !
} !

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 91

Parallel prefix-sum
The parallel-prefix algorithm does two passes:

1.  A parallel sum to build a binary tree:
–  Root has sum of the range [0,n)
–  An internal node with the sum of [lo,hi) has

•  Left child with sum of [lo,middle)
•  Right child with sum of [middle,hi)

–  A leaf has sum of [i,i+1), i.e., input[i]
(or an appropriate larger region w/a cutoff)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 92

input

output

6 4 16 10 16 14 2 8

range 0,8

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 93

input

output

6 4 16 10 16 14 2 8

range 0,8

range 0,4 range 4,8

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 94

input

output

6 4 16 10 16 14 2 8

range 0,8

range 0,4 range 4,8

range 6,8 range 4,6 range 2,4 range 0,2

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 95

input

output

6 4 16 10 16 14 2 8

range 0,8

range 0,4 range 4,8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7.8

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 96

input

output

6 4 16 10 16 14 2 8

range 0,8

range 0,4 range 4,8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 97

input

output

6 4 16 10 16 14 2 8

range 0,8

range 0,4 range 4,8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

10 26 30 10

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 98

input

output

6 4 16 10 16 14 2 8

range 0,8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

10 26 30 10

range 0,4
sum

range 4,8
sum

36 40

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 99

input

output

6 4 16 10 16 14 2 8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

10 26 30 10

range 0,4
sum

range 4,8
sum

36 40

range 0,8
sum

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 100

The algorithm, step 1
1.  A parallel sum to build a binary tree:

–  Root has sum of the range [0,n)
–  An internal node with the sum of [lo,hi) has

•  Left child with sum of [lo,middle)
•  Right child with sum of [middle,hi)

–  A leaf has sum of [i,i+1), i.e., input[i]
(or an appropriate larger region w/a cutoff)

–  Work O(n)
–  Span O(lg n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 101

The algorithm, step 2
2.  Parallel map, passing down a fromLeft parameter

–  Root gets a fromLeft of 0
–  Internal nodes pass along:

•  to its left child the same fromLeft
•  to its right child fromLeft plus its left child’s sum

–  At a leaf node for array position i, output[i]=fromLeft
+input[i]

How? A map down the step 1 tree, leaving results in the
output array.

Notice the invariant: fromLeft is the sum of elements
left of the node’s rangE

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 102

input

output

6 4 16 10 16 14 2 8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

10 26 30 10

range 0,4
sum

range 4,8
sum

36 40

range 0,8
sum

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 103

input

output

6 4 16 10 16 14 2 8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

10 26 30 10

range 0,4
sum

range 4,8
sum

36 40

range 0,8
sum
fromleft 0

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 104

input

output

6 4 16 10 16 14 2 8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

10 26 30 10

range 0,4
sum
fromleft 0

range 4,8
sum
fromleft 36

36 40

range 0,8
sum
fromleft 0

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 105

input

output

6 4 16 10 16 14 2 8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s

r 1,2
s

r 2,3
s

r 3,4
s

r 4,5
s

r 5,6
s

r 6,7
s

r 7.8
s

6 4 16 10 16 14 2 8

range 6,8
sum
fromleft 66

range 4,6
sum
fromleft 36

range 2,4
sum
fromleft 10

range 0,2
sum
fromleft 0

10 26 30 10

range 0,4
sum
fromleft 0

range 4,8
sum
fromleft 36

36 40

range 0,8
sum
fromleft 0

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 106

input

output

6 4 16 10 16 14 2 8

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s
f 0

r 1,2
s
f 6

r 2,3
s
f 10

r 3,4
s
f 26

r 4,5
s
f 36

r 5,6
s
f 52

r 6,7
s
f 66

r 7.8
s
f 68

6 4 16 10 16 14 2 8

range 6,8
sum
fromleft 66

range 4,6
sum
fromleft 36

range 2,4
sum
fromleft 10

range 0,2
sum
fromleft 0

10 26 30 10

range 0,4
sum
fromleft 0

range 4,8
sum
fromleft 36

36 40

range 0,8
sum
fromleft 0

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 107

input

output

6 4 16 10 16 14 2 8

 6 10 26 36 52 66 68 76

range 6,8 range 4,6 range 2,4 range 0,2

r 0,1
s
f 0

r 1,2
s
f 6

r 2,3
s
f 10

r 3,4
s
f 26

r 4,5
s
f 36

r 5,6
s
f 52

r 6,7
s
f 66

r 7.8
s
f 68

6 4 16 10 16 14 2 8

range 6,8
sum
fromleft 66

range 4,6
sum
fromleft 36

range 2,4
sum
fromleft 10

range 0,2
sum
fromleft 0

10 26 30 10

range 0,4
sum
fromleft 0

range 4,8
sum
fromleft 36

36 40

range 0,8
sum
fromleft 0

76

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 108

The algorithm, step 2
2.  Parallel map, passing down a fromLeft parameter

–  Root gets a fromLeft of 0
–  Internal nodes pass along:

•  to its left child the same fromLeft
•  to its right child fromLeft plus its left child’s sum

–  At a leaf node for array position i, output[i]=fromLeft
+input[i]

•  Work? O(n)
•  Span? O(lg n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 109

Parallel prefix, generalized
•  Just as sum-array was the simplest example of a common

pattern, prefix-sum illustrates a pattern that arises in
many, many problems
– Minimum, maximum of all elements to the left of I
–  Is there an element to the left of i satisfying some

property?
– Count of elements to the left of i satisfying some

property

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 110

Pack
 •  Given an array input, produce an array output

containing only those elements of input that
satisfy some property, and in the same order they
appear in input.

•  Example:
–  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
–  Values greater than 10
–  output [17, 11, 13, 19, 24]

•  Notice the length of output is unknown in advance
but never longer than input.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 111

Parallel Prefix Sum to the Rescue
1.  Parallel map to compute a bit-vector for true elements

input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits [1, 0, 0, 0, 1, 0, 1, 1, 0, 1]

2.  Parallel prefix-sum on the bit-vector
 bitsum [1, 1, 1, 1, 2, 2, 3, 4, 4, 5]

3.  Parallel map to produce the output

 output [17, 11, 13, 19, 24]

output = new array of size bitsum[n-1] !
FORALL(i=0; i < input.size(); i++){ !
 if(bits[i]) !
 output[bitsum[i]-1] = input[i]; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 112

Pack comments
•  First two steps can be combined into one pass

–  Just using a different base case for the prefix sum
– No effect on asymptotic complexity

•  Can also combine third step into the down pass of the
prefix sum
–  Again no effect on asymptotic complexity

•  Analysis: O(n) work, O(lg n) span
–  2 or 3 passes, but 3 is a constant

•  Parallelized packs will help us parallelize quicksort…

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 113

Parallelizing Quicksort
•  Recall quicksort was sequential, recursive,

expected time O(n lg n)

•  How should we parallelize this?

 Best / expected case work
1.  Pick a pivot element O(1)
2.  Partition all the data into: O(n)

A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

3.  Recursively sort A and C 2T(n/2)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 114

Parallelizing Quicksort
 Best / expected case work

1.  Pick a pivot element O(1)
2.  Partition all the data into: O(n)

A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

3.  Recursively sort A and C 2T(n/2)

•  Easy: Do the two recursive calls in parallel
•  Work: unchanged of course O(n log n)
T∞(n) = n + T(n/2) only doing of the recursive calls
 = n + n/2 + T(n/4)
 = n/1 + n/2 + n/4 + n/8 + … + 1 assuming n = 2k

 = n (1+ 1/2 +1/4 + 1/n) ∈ Θ(n)
•  So parallelism (i.e., work / span) is O(log n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 115

Parallelizing Quicksort
 Best / expected case work

1.  Pick a pivot element O(1)
2.  Partition all the data into: O(n)

A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

3.  Recursively sort A and C 2T(n/2)

•  Easy: Do the two recursive calls in parallel
•  Work: unchanged of course O(n log n)
•  Span: now T(n) = O(n) + 1T(n/2) = O(n)
•  So parallelism (i.e., work / span) is O(log n)

O(log n) speed-up with an infinite number of processors is okay,
but a bit underwhelming (Sort 109 elements 30 times faster)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 116

Parallelizing Quicksort (Doing better)
•  We need to split the work done in Partition

•  This is just two packs!
–  We know a pack is O(n) work, O(log n) span
–  Pack elements less than pivot into left side of aux array
–  Pack elements greater than pivot into right size of aux array
–  Put pivot between them and recursively sort
–  With a little more cleverness, can do both packs at once but no

effect on asymptotic complexity

Partition all the data into: O(n)
A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 117

Parallelizing Quicksort (Doing better)
•  We need to split the work done in Partition

•  This is just two packs!
–  We know a pack is O(n) work, O(log n) span
–  Pack elements less than pivot into left side of aux array
–  Pack elements greater than pivot into right size of aux array
–  Put pivot between them and recursively sort
–  With a little more cleverness, can do both packs at once but no

effect on asymptotic complexity

Partition all the data into: O(n)
A.  The elements less than the pivot
B.  The pivot
C.  The elements greater than the pivot

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 118

Example
•  Step 1: pick pivot as median of three

8 1 4 9 0 3 5 2 7 6

•  Steps 2a and 2c (combinable): pack less than, then pack
greater than into a second array
–  Fancy parallel prefix to pull this off not shown
 1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7

•  Step 3: Two recursive sorts in parallel
–  Can sort back into original array (like in mergesort)
–  Note that it uses O(n) extra space like mergesort too!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 119

Parallelizing Quicksort (Doing better)

•  With O(lg n) span for partition, the total best-case and
expected-case span for quicksort is T(n) = lg n + T(n/2)

T(n) = lg n + T(n/2)
 = lg n + lg n - 1 + T(n/4)
 = lg n + lg n - 1 + lg n - 2 +... + 1
 = k + k - 1 + k - 2 +... + 1 (let lg n =k)

 = i
i=1

k

∑ ∈O(k2)∈O(lg2 n) Span: O(lg2 n)
So parallelism is O(n / lg n)
Sort 109 elements 108 times faster

 Best / expected case work
1.  Pick a pivot element O(1)
2.  Partition all the data into: O(lg n)
3.  Recursively sort A and C T(n/2)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 120

Parallelizing mergesort
•  Recall mergesort: sequential, not-in-place,

worst-case O(n log n)

1.  Sort left half and right half 2T(n/2)
2.  Merge results O(n)

•  Just like quicksort, doing the two recursive sorts in
parallel changes the recurrence for the span to

 T(n) = O(n) + 1T(n/2) = O(n)
•  Again, parallelism is O(log n)

To do better, need to parallelize the merge
–  The trick won’t use parallel prefix this time

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 121

Parallelizing the merge

•  Need to merge two sorted subarrays (may not have
the same size)

 •  Idea: Suppose the larger subarray has m elements. In

parallel:
•  Merge the first m/2 elements of the larger half with

the “appropriate” elements of the smaller half
•  Merge the second m/2 elements of the larger half

with the rest of the smaller half

0 1 4 8 9 2 3 5 6 7

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 122

Parallelizing the merge

0 4 6 8 9 1 2 3 5 7

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 123

Parallelizing the merge

1.  Get median of bigger half: O(1) to compute middle index

0 4 6 8 9 1 2 3 5 7

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 124

1.  Get median of bigger half: O(1) to compute middle index
2.  Find how to split the smaller half at the same value as the left-

half split: O(log n) to do binary search on the sorted small half

Parallelizing the merge

0 4 6 8 9 1 2 3 5 7

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 125

Parallelizing the merge

1.  Get median of bigger half: O(1) to compute middle index
2.  Find how to split the smaller half at the same value as the left-

half split: O(log n) to do binary search on the sorted small half
3.  Size of two sub-merges conceptually splits output array: O(1)

0 4 6 8 9 1 2 3 5 7

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 126

Parallelizing the merge

1.  Get median of bigger half: O(1) to compute middle index
2.  Find how to split the smaller half at the same value as the left-

half split: O(log n) to do binary search on the sorted small half
3.  Size of two sub-merges conceptually splits output array: O(1)
4.  Do two submerges in parallel

0 4 6 8 9 1 2 3 5 7

0 1 2 3 4 5 6 7 8 9

lo hi

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 127

The Recursion

•  When we do each merge in parallel, we split the
bigger one in half and use binary search to split
the smaller one

0 4 6 8 9 1 2 3 5 7

0 4 1 2 3 5 7 6 9 8

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 128

Analysis
•  Sequential recurrence for mergesort:

T(n) = 2T(n/2) + O(n) which is O(n lg n)

•  Doing the two recursive calls in parallel but a sequential
merge:

Work: same as sequential
Span: T(n)=1T(n/2)+O(n) which is O(n)

•  Parallel merge makes work and span harder to compute
–  Each merge step does an extra O(lg n) binary search to find

how to split the smaller subarray
–  To merge n elements total, do two smaller merges of possibly

different sizes
•  worst-case split is (1/4)n and (3/4)n

•  When subarrays same size and “smaller” splits “all” / “none”

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 129

Analysis
For just a parallel merge of n elements:
 Work is T(n) = T(3n/4) + T(n/4) + O(lg n) which is O(n)
 Span is T(n) = T(3n/4) + O(lg n), which is O(lg2 n)
•  (neither bound is immediately obvious, but “trust me”)

So for mergesort with parallel merge overall:
 Work is T(n) = 2T(n/2) + O(n), which is O(n lg n)
 Span is T(n) = 1T(n/2) + O(lg2 n), which is O(lg3 n)
So parallelism (work / span) is O(n / lg2 n)

– Not quite as good as quicksort’s O(n / lg n)
• But worst-case guarantee Sort 109 elements

107 times faster

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2 Page 130

Learning Goals (revisited)
•  Define work—the time it would take one processor to complete a

parallelizable computation; span—the time it would take an
infinite number of processors to complete the same computation;
and Amdahl's Law—which relates the speedup in a program to the
proportion of the program that is parallelizable.

•  Use work, span, and Amdahl's Law to analyse the speedup
available for a particular approach to parallelizing a computation.

•  Judge appropriate contexts for and apply the parallel map, parallel
reduce, and parallel prefix computation patterns.

