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Steve Wolfman, based on work by Dan Grossman 
(with minor tweaks by Hassan Khosravi) 
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Parallelism and Concurrency, Part 2 

 

 
 
 

Analysis of Fork-Join Parallel Programs 
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Learning Goals 
•  Define work—the time it would take one processor to complete a 

parallelizable computation; span—the time it would take an 
infinite number of processors to complete the same computation; 
and Amdahl's Law—which relates the speedup in a program to the 
proportion of the program that is parallelizable. 
 

•  Use work, span, and Amdahl's Law to analyse the speedup 
available for a particular approach to parallelizing a computation. 
 

•  Judge appropriate contexts for and apply the parallel map, parallel 
reduce, and parallel prefix computation patterns. 
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Outline 
Done: 
•  How to use fork and join to write a parallel algorithm 
•  Why using divide-and-conquer with lots of small tasks is 

best 
–  Combines results in parallel 

•  Some C++11 and OpenMP specifics 
–  More pragmatics (e.g., installation) in separate notes 

Now: 
•  More examples of simple parallel programs 
•  Other data structures that support parallelism (or not) 
•  Asymptotic analysis for fork-join parallelism 
•  Amdahl’s Law 
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Easier Visualization for the Analysis 
•  It’s Asymptotic Analysis Time! 

– How long does dividing up/recombining the work take 
with infinite number of processors?  Um…?  

+ + + + + + + + 

+ + + + 

+ +
+

Time ∈ Θ(lg n) with an infinite number of processors. 
Exponentially faster than our Θ(n) solution!  Yay! 
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“Exponential speed-up” using 
Divide-and-Conquer 

•  Counting matches (lecture) and summing (reading) went from 
O(n) sequential to O(log n) parallel (assuming lots of 
processors!) 
–  An exponential speed-up (or more like: the sequential version 

represents an exponential slow-down) 

+ + + + + + + + 

+ + + + 

+ +
+

•  Many other operations can also use this structure… 
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Other Operations? 

What an example of something else we can put at the “+” marks? 
•  count elements that satisfy some property 
•  max or min  
•  concatenation  
•  Find the left-most array index that has an element that satisfies 

some property 
 

+ + + + + + + + 

+ + + + 

+ +
+
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What else looks like this? 

What’s an example of something we cannot put there 
•  Subtraction: ((5-3)-2) <> (5-(3-2)) 
•  Exponentiation: 234

  <> (23)
4  

•  281 <> 212  

 
 

+ + + + + + + + 

+ + + + 

+ +
+
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What else looks like this? 

What are the basic requirements for the reduction operator? 
 

Note: The “single” answer can be 
a list or other collection. 

+ + + + + + + + 

+ + + + 

+ +
+

The operator has be associative  
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CPSC 221 Administrative Notes 
•  Programming project #1 handin trouble 

– Brian has an office hour 3:30-4:40 DLC 
– There will be a 15% penalty, but if your files were 

stored on ugrad servers, we can remark them. 

•  Programming project #2 due 
– Apr Tue, 07 Apr @ 21.00 
– TA office hours during the long weekend 
– Friday   Lynsey: 12:00 – 2:00 
– Saturday        Kyle       11:00 – 12:00 
– Sunday          Kyle       11:00 – 12:00 
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CPSC 221 Administrative Notes 
•  Lab 10 Parallelism  Mar 26 – Apr 2 

–  Some changes to the code since Friday 
–  Marking Apr 7 – Apr 10 (Also doing Concept Inventory). 

Doing the Concept inventory is worth 1 lab point (0.33% course 
grade). 

•  PeerWise Call #5 due today (5pm) 
–   The deadline for contributing to your “Answer Score” and 

“Reputation score” is Monday April 20. 
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So… Where Were We? 
•  We talked about  

– Parallelism 
– Concurrency  

•  Problem: Count Matches of a Target 
– Race conditions 
– Out of scope variables 

•  Fork/Join Parallelism 
•  Divide-and-Conquer Parallelism 
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Reduction 
•  Computations of this form are called reductions (or reduces?) 

•  Produce single answer from collection via an associative operator 
–  Examples: max, count, leftmost, rightmost, sum, product, … 
–  Non-examples: median, subtraction, exponentiation 

•  (Recursive) results don’t have to be single numbers or strings.  
They can be arrays or objects with multiple fields. 
–  Example: Histogram of test results is a variant of sum 

 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 13 

Even easier: Maps (Data Parallelism) 
•  A map operates on each element of a collection 

independently to create a new collection of the same size 
–  No combining results 
–  For arrays, this is so trivial some hardware has direct support 

•  One we already did: counting matches becomes mapping 
“number → 1 if it matches, else 0” and then reducing with + 

void equals_map(int result[], int array[], int len, int target) { !
  FORALL(i=0; i < len; i++) { !
    result[i] = (array[i] == target) ? 1 : 0; !
  } !
} 

3 5 3 8 9 

1 0 1 0 0 
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Another Map Example: Vector Addition 

void vector_add(int result[], int arr1[], int arr2[], int len) { !
  FORALL(i=0; i < len; i++) { !
    result[i] = arr1[i] + arr2[i]; !
  } !
} !

1 2 3 4 5 

2 5 3 3 2 
+ 

3 7 6 7 6 
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Maps in OpenMP (w/explicit Divide & Conquer) 

void vector_add(int result[], int arr1[], int arr2[],                
int lo, int hi) !
{ !
  const int SEQUENTIAL_CUTOFF = 1000; !
  if (hi - lo <= SEQUENTIAL_CUTOFF) { !
    for (int i = lo; i < hi; i++) !
      result[i] = arr1[i] + arr2[i]; !
    return; !
  } !
  !
#pragma omp task untied!
  { !
    vector_add(result, arr1, arr2, lo, lo + (hi-lo)/2); !
  } !
  !
  vector_add(result, arr1, arr2, lo + (hi-lo)/2, hi); !
#pragma omp taskwait} !
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Maps and reductions 
•  These are by far the two most important and 

common patterns. 
 
•  Learn to recognize when an algorithm can be 

written in terms of maps and reductions! They 
make parallel programming simple… 
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Digression:  MapReduce on Clusters 

You may have heard of Google’s “map/reduce” or the 
open-source version Hadoop 

Idea: Perform maps/reduces on data using many machines 
•  system distributes the data and manages fault tolerance 
•  your code just operates on one element (map) 

or combines two elements (reduce) 
•  old functional programming idea → big data/distributed 

computing  
What is specifically possible in a Hadoop “map/reduce” is  
more general than the examples we’ve so far seen. 
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Exercise: find largest 
Given an array of positive integers, find the largest 
number. 

How is this a map and/or reduce? 

a1 a2 … am-1 am 

Reduce: max 

max (a1) max (a2) … max (am-1) max (am) 
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Exercise: find largest AND smallest 
Given an array of positive integers, find the largest 
and the smallest number. 

How is this a map and/or reduce? 

Reduce: max, and min 

a1 a2 … am-1 am 

max (a1) 
min (a1) 

max (a2) 
min (a2) 

… max (am-1) 
min (am-1) 

max (am) 
min (am) 
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Exercise: find the K largest numbers 
Given an array of positive integers, return the k 
largest in the list. 
 

Reduce: Find k max values  

Map: Same as max 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 21 

Exercise: count prime numbers 
Given an array of positive integers, count the 
number of prime numbers. 

Map: call is-prime on array and produce array2. for 
each element write 1 if it is prime, and 0 otherwise 

a1 a2 … am-1 am 

0 1 … 0 1 

Reduce: + on array2 
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Exercise: find first substring match 
Given an extremely long string (DNA sequence?) 
find  the index of the first occurrence of a short 
substring 

a1 a2 … am-1 am 

n 2 n n m 

Reduce: Find min 
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Outline 
Done: 
•  How to use fork and join to write a parallel algorithm 
•  Why using divide-and-conquer with lots of small tasks is 

best 
–  Combines results in parallel 

•  Some C++11 and OpenMP specifics 
–  More pragmatics (e.g., installation) in separate notes 

Now: 
•  More examples of simple parallel programs 
•  Other data structures that support parallelism (or not) 
•  Asymptotic analysis for fork-join parallelism 
•  Amdahl’s Law 
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Trees 
•  Maps and reductions work just fine on balanced trees 

–  Divide-and-conquer each child rather than array subranges 
–  Correct for unbalanced trees, but won’t get much speed-up 

•  Certain problems will not run faster in parallel 
– Searching for an element 

•  Some problems run faster 
– Summing the elements of a balanced binary tree  

•  How to do the sequential cut-off? 
–  Store number-of-descendants at each node (easy to maintain) 
–  Or could approximate it with, e.g., AVL-tree height 
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Linked lists 
•  Can you parallelize maps or reduces over linked lists? 

– Example: Increment all elements of a linked list 
– Example: Sum all elements of a linked list 
– Parallelism still beneficial for expensive per-element 

operations 
b c d e f 

front back 

•  Once again, data structures matter! 
•  For parallelism, balanced trees generally better 

than lists so that we can get to all the data 
exponentially faster O(log n) vs. O(n) 
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Outline 
Done: 
•  How to use fork and join to write a parallel algorithm 
•  Why using divide-and-conquer with lots of small tasks is 

best 
–  Combines results in parallel 

•  Some C++11 and OpenMP specifics 
–  More pragmatics (e.g., installation) in separate notes 

Now: 
•  More examples of simple parallel programs 
•  Other data structures that support parallelism (or not) 
•  Asymptotic analysis for fork-join parallelism 
•  Amdahl’s Law 
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Analyzing Parallel Algorithms 
•  Like all algorithms, parallel algorithms should be: 

–  Correct  
–  Efficient 

•  For our algorithms so far, correctness is “obvious” so 
we’ll focus on efficiency 
–  Want asymptotic bounds 
–  Want to analyze the algorithm without regard to a specific 

number of processors 
–  The key “magic” of the ForkJoin Framework is getting 

expected run-time performance asymptotically optimal for the 
available number of processors 

•  So we can analyze algorithms assuming this guarantee 
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CPSC 221 Administrative Notes 
•  Marking lab 10 :Apr 7 – Apr 10 
•  Written Assignment #2 is marked 
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CPSC 221 Administrative Notes 
•  Marking lab 10 :Apr 7 – Apr 10 

•  Written Assignment #2 is marked 

•  Programming project is due tonight! 

•  Here is what I’ve been doing on PeerWise 
– Final call for Piazza question will be out tonight 
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Evaluations 
•  TA Evaluation 

– Please only evaluate TAs that you know and 
worked with in some capacity.  

•  Instructor Evaluation 
– We’ll spend some time on Thursday on this. 
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So… Where Were We? 

•  We’ve talked about  
– Parallelism and Concurrency 
– Fork/Join Parallelism 
– Divide-and-Conquer Parallelism 
– Map & Reduce 
– Using parallelism in other data structures such 

as Trees and Linked list 
– And Finally we talked about me getting 

dressed! 
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Digression, Getting Dressed 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

•  Here’s a graph representation for parallelism. 
•  Nodes: (small) tasks that are potentially executable in 

parallel  
•  Edges: dependencies (the target of the arrow depends 

on its source) (Note: costs are on nodes, not edges.) 
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Digression, Getting Dressed (1) 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

•  Assume it takes me 5 seconds to put on each item, and I 
cannot put on more than one item at a time. How long 
does it take me to get dressed? 

A: 20       B: 25           C:30           D:35          E :40 
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Digression, Getting Dressed (1) 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

(Note: costs are on nodes, not edges.) 40 Seconds 

under 
roos 

shirt socks belt watch pants shoes coat 
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Digression, Getting Dressed (∞) 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

•  Assume it takes my robotic wardrobe 5 seconds to put me 
into each item, and it can put on up to 20 items at a time. 
How long does it take me to get dressed? 

A: 20       B: 25           C:30           D:35          E :40 
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Digression, Getting Dressed (∞) 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

under 
roos 

shirt 

socks 

belt watch 

pants shoes 
coat 

20 Seconds 
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Digression, Getting Dressed (2) 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

•  Assume it takes me 5 seconds to put on each item, and I 
can use my two hands to put on 2 items at a time. (I am 
exceedingly ambidextrous.) How long does it take me to 
get dressed? 

A: 20       B: 25           C:30           D:35          E :40 
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Digression, Getting Dressed (2) 

socks 

shirt 

shoes 

pants 

watch 
belt 

coat 

under 
roos 

25 Seconds 

under 
roos 

shirt 

socks 

belt watch 
pants 

shoes 
coat 
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Un-Digression, Getting Dressed:  
•  Nodes are pieces of work the 

program performs. Each node 
will be a constant, i.e., O(1), 
amount of work that is 
performed sequentially.  

•  Edges represent that the source 
node must complete before the 
target node begins. That is, there 
is a computational dependency 
along the edge. 

•  The graph needs to be a directed 
acyclic graph (DAG)  

•    

coat 

socks shirt 

shoes 

pants watch 

belt 

under 
roos 
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Un-Digression, Getting Dressed:  
“Work”, AKA T1 

•   T1 is called the work. By 
definition, this is how long it takes 
to run on one processor.  

•  What mattered when I could put 
only one item on at a time?  How 
do we count it? 

T1 is asymptotically just the 
number of nodes in the dag.  coat 

socks shirt 

shoes 

pants watch 

belt 

under 
roos 
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Un-Digression, Getting Dressed:  
“Span”, AKA T∞ 

•  T∞ is called the span, though 
other common terms are the 
critical path length or 
computational depth.  

•  What mattered when I could put 
on an infinite number of items on 
at a time?  How do we count it? 

we would immediately start every node as soon as its 
predecessors in the graph had finished. So it would be the 
length of the longest path in the DAG.  

coat 

socks shirt 

shoes 

pants watch 

belt 

under 
roos 
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Work and Span 
Two key measures of run-time: 
 
•  Work: How long it would take 1 processor = T1 

–  Just “sequentialize” the recursive forking 

•  Span: How long it would take infinity processors = T∞ 

–  Example: O(log n) for summing an array  
•  Notice having > n/2 processors is no additional help 
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Un-Digression, Getting Dressed:  
Performance for P processors, AKA TP 

•  TP is the time a program 
takes to run if there are P 
processors available during 
its execution  

 
•  What mattered when I could 

put on 2 items on at a time?  
Was it as easy as work or 
span to calculate? 

socks shirt 

shoes 

pants watch 

belt 

coat 

under 
roos 

T1 and T ∞ are easy, but we want to understand TP  in terms of P 
We’ll come back to this soon! 
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Analyzing Code, Not Clothes 

Reminder, in our DAG representation: 
– Each node: one piece of constant-sized 

work  
– Each edge: source must finish before 

destination starts 

– What is T∞ in this graph? 
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Where the DAG Comes From 

We start with just one thread. 
(Using C++11 not OpenMP syntax to make things cleaner.) 

main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

pseudocode C++11 
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Where the DAG Comes From 

A fork ends a node and generates two new ones… 

main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

fork! 
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Where the DAG Comes From 

…the new task/thread and the continuation of the current one. 

main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

Again, we fork off a task/thread. 
Meanwhile, the left (blue) task finished. 

fork! 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

join! 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

The next join isn’t ready to go yet.  The task/thread it’s 
joining isn’t finished.  So, it waits and so do we. 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

Meanwhile, task2 also forks a task1. 
(The DAG describes dynamic execution.  We can run the same code many times!) 

fork! 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 52 

Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

task1 and task2 both chugging along. 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

task2 joins task1. 

join! 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 

Task2 (the right, green task) is finally done. 
So, the main task joins with it.   
(Arrow from the last node of the joining task and of the joined one.) 

join! 
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Where the DAG Comes From 
main:  
  a = fork task1 
  b = fork task2 
  O(1) work 
  join a 
  join b 
 
 
 
task1:  
  O(1) work 
 
 
task2:  
  c = fork task1 
  O(1) work 
  join c 
 

int main(..) { 
  std::thread t1(&task1); 
  std::thread t2(&task2); 
  // O(1) work 
  t1.join(); 
  t2.join(); 
  return 0; 
} 
 
void task1() { 
  // O(1) work 
} 
 
void task2() { 
  std::thread t(&task1); 
  // O(1) work 
  t.join(); 
} 
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Analyzing Real Code 
•  fork/join are very flexible, but divide-and-conquer 

maps and reductions (like count-matches) use them 
in a very basic way: A tree on top of an upside-down tree 

base cases 

divide  

combine 
results  
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More interesting DAGs? 
•  The DAGs are not always this simple 

•  Example:  
– Suppose combining two results might be expensive 

enough that we want to parallelize each one 
– Then each node in the inverted tree on the previous 

slide would itself expand into another set of nodes for 
that parallel computation 
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Map/Reduce DAG: Work and Span? 
Asymptotically, what’s the work in this DAG? 
Asymptotically, what’s the span in this DAG? 
Reasonable running with P processors? 
 
 
 

O(n) 

O(lg n) 

T∞ <  Tp   <T1 à    O(lg n) <  Tp   < O(n) 
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Connecting to performance 
•  Recall: TP = running time if there are P processors available 
 

•  Work = T1 = sum of run-time of all nodes in the DAG 
–  That lonely processor does everything 
–  Any topological sort is a legal execution 
–  O(n) for simple maps and reductions 

•  Span = T∞ = sum of run-time of all nodes on the most-expensive 
path in the DAG 
–  Note: costs are on the nodes not the edges 
–  Our infinite army can do everything that is ready to be done, but still has to 

wait for earlier results 
–  O(log n) for simple maps and reductions 
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Definitions 
A couple more terms: 
 

•  Speed-up on P processors: T1 / TP   

•  If speed-up is P as we vary P, we call it perfect linear speed-up 
–  Perfect linear speed-up means doubling P halves running time 
–  Usually our goal; hard to get in practice 

•  Parallelism is the maximum possible speed-up: T1 / T ∞  

–  At some point, adding processors won’t help 
–  What that point is depends on the span 

Parallel algorithms is about decreasing span without  
increasing work too muchs 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 61 

Asymptotically Optimal TP 

Can TP beat: 
– T1 / P? 
 
– T ∞ 

No, because otherwise we didn’t do all the work! 

No, because we still don’t have have ∞ processors! 

So an asymptotically optimal execution would be: 
TP  =  O((T1 / P) + T ∞) 

First term dominates for small P, second for large P 
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Asymptotically Optimal TP 

T1/P 

T∞ 

As the marginal benefit of more processors 
bottoms out, we get performance 
proportional to T∞. 
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Getting an Asymptotically Optimal Bound 

–  Expected time because it flips 
coins when scheduling 

•  I have two Processors and 
there are three tasks that I can 
start with. Coin flip to pick two 
of them 

–  Guarantee requires a few 
assumptions about your code… 

coat 

socks shirt 

shoes 

pants watch 

belt 

under 
roos 

•  Good OpenMP implementations guarantee expected 
bound of    

 O((T1 / P) + T ∞) 
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Division of responsibility 
•  Our job as OpenMP users: 

–  Pick a good algorithm 
–  Write a program.  When run, it creates a DAG of things to do 
–  Make all the nodes small-ish and (very) approximately equal 

amount of work 

•  The framework-implementer’s job: 
–  Assign work to available processors to avoid idling 
–  Keep constant factors low 
–  Give the expected-time optimal guarantee assuming 

framework-user did their job 
TP  =  O((T1 / P) + T ∞) 

64 Sophomoric Parallelism and Concurrency, Lecture 2 
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TP  =  O((T1 / P) + T ∞) 

•  In the algorithms seen so far (e.g., sum an array): 
–   T1 = O(n) 
–   T ∞= O(log n) 
–  So expect (ignoring overheads): TP  =  O(n/P + log n) 
 

•  Suppose instead: 
–   T1 = O(n2) 
–   T ∞= O(n) 
–  So expect (ignoring overheads): TP  =  O(n2/P + n) 
  

Examples 
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Loop (not Divide-and-Conquer) DAG: Work/Span? 
int divs = 4;  /* some number of divisions */!
!
std::thread workers[divs]; !
int results[divs]; !
for (int d = 0; d < divs; d++) !
// count matches in 1/divs sized part of the array!
workers[d] = std::thread(&cm_helper_seql, ...); !
!
int matches = 0; !
for (int d = 0; d < divs; d++) { !
  workers[d].join(); !
  matches += results[d]; !
} !
!
return matches; 

n/4 n/4 n/4 n/4 

Black nodes take constant time. 
Red nodes take non-constant time! 
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… … 
1 1 1 … 

int divs = n;  /* some number of divisions */!
!
std::thread workers[divs]; !
int results[divs]; !
for (int d = 0; d < divs; d++) !
// count matches in 1/divs sized part of the array!
workers[d] = std::thread(&cm_helper_seql, ...); !
!
int matches = 0; !
for (int d = 0; d < divs; d++) { !
  workers[d].join(); !
  matches += results[d]; !
} !
!
return matches; 

Black nodes take constant time. 
Red nodes take constant time! 

Loop (not Divide-and-Conquer) DAG: Work/Span? 

The chain length is O(n) 
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So, what’s the right choice of k? 

… … 
n/k n/k n/k … 

int divs = k;  /* some number of divisions */!
!
std::thread workers[divs]; !
int results[divs]; !
for (int d = 0; d < divs; d++) !
// count matches in 1/divs sized part of the array!
workers[d] = std::thread(&cm_helper_seql, ...); !
!
int matches = 0; !
for (int d = 0; d < divs; d++) { !
  workers[d].join(); !
  matches += results[d]; !
} !
!
return matches; 

Black nodes take constant time. 
Red nodes take non-constant time! 

Loop (not Divide-and-Conquer) DAG: Work/Span? 
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So, what’s the right choice of k? 

… … 
n/k n/k n/k … 

Black nodes take constant time. 
Red nodes take non-constant time! 

Loop (not Divide-and-Conquer) DAG: Work/Span? 

O(n/k + k) 
When is n/k + k minimal? 

-n/k2 + 1 = 0  
k =sqrt(n)  

√n √n √n … 
The chain length is O(√n) 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 70 

Outline 
Done: 
•  How to use fork and join to write a parallel algorithm 
•  Why using divide-and-conquer with lots of small tasks is best 

–  Combines results in parallel 

•  Some C++11 and OpenMP specifics 
–  More pragmatics (e.g., installation) in separate notes 

Now: 
•  More examples of simple parallel programs 
•  Other data structures that support parallelism (or not) 
•  Asymptotic analysis for fork-join parallelism 
•  Amdahl’s Law 
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Amdahl’s Law (mostly bad news) 

•  Work/span is great, but real programs typically 
have: 
–  parts that parallelize well like maps/reduces over 

arrays/trees 
–  parts that don’t parallelize at all like reading a 

linked list, getting input, doing computations where 
each needs the previous step, etc. 

 
“Nine women can’t make a baby in one month” 
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Amdahl’s Law (mostly bad news) 
•  Let T1 = 1 (measured in weird but handy units) 
 

•  Let S be the portion of the execution that can’t be 
parallelized 

          T1 = S + (1-S) = 1 

•  Suppose we get perfect linear speedup on the parallel 
portion 

                 TP = S + (1-S)/P 

•  speedup with P processors is (Amdahl’s Law): 
                           T1 / TP    
•  speedup with ∞ processors is (Amdahl’s Law): 
                           T1 / T∞ 

 
T1 / T∞  =   
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Clicker Question 
speedup with P processors T1 / TP  = 1 / (S + (1-S)/P)   
speedup with ∞ processors T1 / T∞  = 1 / S 

•  Suppose 33% of a program is sequential 
– How much speed-up do you get from 2 processors? 
– A ~1.5 
– B ~2 
– C ~2.5 
– D ~3 
– E: none of the above 
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Clicker Question (Answer) 
speedup with P processors T1 / TP  = 1 / (S + (1-S)/P)   
speedup with ∞ processors T1 / T∞  = 1 / S 

•  Suppose 33% of a program is sequential 
– How much speed-up do you get from 2 processors? 
– A ~1.5 
– B ~2 
– C ~2.5 
– D ~3 
– E: none of the above 

1

0.33+ 0.66
2

=1.51
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Clicker Question 
speedup with P processors T1 / TP  = 1 / (S + (1-S)/P)   
speedup with ∞ processors T1 / T∞  = 1 / S 
 

•  Suppose 33% of a program is sequential 
– How much speed-up do you get from 1,000,000 

processors? 
– A ~1.5 
– B ~2 
– C ~2.5 
– D ~3 
– E: none of the above 
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Mostly Bad News 
speedup with P processors T1 / TP  = 1 / (S + (1-S)/P)   
speedup with ∞ processors T1 / T∞  = 1 / S 
 

•  Suppose 33% of a program is sequential 
– How much speed-up do you get from 1,000,000 

processors? 
– A ~1.5 
– B ~2 
– C ~2.5 
– D ~3 
– E: none of the above 

1

0.33+ 0.66
1000000

~ 3
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Why Such Bad News? 
 

•  Suppose 33% of a program is sequential 
– How much speed-up do you get from more 

processors? 

0 

0.5 

1 

1.5 

2 

2.5 

3 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Sp
ee

du
p 

Processors 
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Why such bad news 
speedup with P processors T1 / TP  = 1 / (S + (1-S)/P)   
speedup with ∞ processors T1 / T∞  = 1 / S 

•  Suppose you miss the good old days (1980-2005) where 
12ish years was long enough to get 100x speedup 
– Now suppose in 12 years, clock speed is the same but 

you get 256 processors instead of 1 
–  For 256 processors to get at least 100x speedup What do 

we need for S? 

A: S ≤ 0.1                       B:0.1<S ≤ 0.2       C: 0.2 < S ≤ 0.6  
D: 0.6 < S  ≤ 0.8             E:  0.8 < S  
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Why such bad news 
•  we need    100 ≤ 1 / (S + (1-S)/256) 
•  You would need at most 0.61% of the program to be 

sequential, so S needs to be smaller than 0.0061. Answer: A 
 

– with 256 processors how much speedup do you get? 

0 

5 

10 

15 

20 

0 0.2 0.4 0.6 0.8 1 1.2 

Sp
ee

du
p 

S 
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All is not lost. Parallelism can still help! 
In our maps/reduces, the sequential part is O(1) and so 
becomes trivially small as n scales up. (This is 
tremendously important!) 

We can find new parallel algorithms.  Some things that 
seem sequential are actually parallelizable! 
 
We can change the problem we’re solving or do new things 
•  Example: Video games use tons of parallel processors   

–  They are not rendering 10-year-old graphics faster 
–  They are rendering more beautiful(?) monsters 
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Moore and Amdahl 

•  Moore’s “Law” is an observation about the progress of 
the semiconductor industry 
–  Transistor density doubles roughly every 18 months 

•  Amdahl’s Law is a mathematical theorem 
–  Diminishing returns of adding more processors 

•  Both are incredibly important in designing computer 
systems 
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CPSC 221 Administrative Notes 
•  Marking lab 10 :Apr 7 – Apr 10 

•  Written Assignment #2 is marked 
–  If you have any questions or concerns attend office 

hours held by Cathy or Kyle 

•  Final call for Piazza question is out and is due 
Mon at 5pm. 
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CPSC 221 Administrative Notes 
•  Final exam Wed, Apr 22 at 12:00  SRC A 

–  Open book (same as midterm) check course webpage 

•  PRACTICE Written HW #3 is available on the course 
website (Solutions will be released next week) 
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CPSC 221 Administrative Notes 
•  Office hours 
•  Apr 14 Tue Kyle (12-1) 
•  Apr 15 Wed Hassan(5-6)  
•  Apr 16 Thu Brian ( 1-3) 
•  Apr 17 Fri Kyle(11-1) 
•  Apr 18 Sat Lynsey (12 -2) 
•  Apr 19 Sun Justin (12 -2) 
•  Apr 20 Mon Benny (10-12) 
•  Apr 21 Tue Hassan(11-1) Kai Di(4 -6)  
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Evaluations 
•  Instructor Evaluation 

– We’ll spend some time at the end of the lecture on 
this. 
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So… Where Were We? 
•  We’ve talked about  

– Parallelism and Concurrency 
– Fork/Join Parallelism 
– Divide-and-Conquer Parallelism 
– Map & Reduce 
– Using parallelism in other data structures such as 

Trees and Linked list 
– Work, Span, Asymptotic analysis Tp 

– Amdahl’s Law  
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FANCIER FORK-JOIN 
ALGORITHMS: PREFIX, PACK, 
SORT  
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Motivation 
•  This section presents a few more sophisticated 

parallel algorithms to demonstrate: 
–  sometimes problems that seem inherently sequential 

turn out to have efficient parallel algorithms. 
– we can use parallel-algorithm techniques as building 

blocks for other larger parallel algorithms.  
– we can use asymptotic complexity to help decide when 

one parallel algorithm is better than another.  
•  As is common when studying algorithms, we will 

focus on the algorithms instead of code. 
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The prefix-sum problem 
•  Given a list of integers as input, produce a list of integers 

as output where  
•  output[i] = input[0]+input[1]+…+input[i] 

•  Example 

•  It is not at all obvious that a good parallel algorithm 
exists. 

•   it seems we need output[i-1] to compute output[i].  

 

input 

output 
42 3 4 7 1 10 
  42  45  49  56  57  67 
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The prefix-sum problem 
•  Given a list of integers as input, produce a list of integers 

as output where 
•  output[i] = input[0]+input[1]+…+input[i] 

Sequential version is straightforward: 

vector<int> prefix_sum(const vector<int>& input)
{ !
  vector<int> output(input.size()); !
  output[0] = input[0]; !
  for(int i=1; i < input.size(); i++) !
    output[i] = output[i-1]+input[i]; !
  return output; !
} !
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Parallel prefix-sum 
The parallel-prefix algorithm does two passes: 

1.  A parallel sum to build a binary tree: 
–  Root has sum of the range [0,n) 
–  An internal node with the sum of [lo,hi) has  

•  Left child with sum of [lo,middle) 
•  Right child with sum of [middle,hi)  

–  A leaf has sum of [i,i+1),  i.e., input[i] 
(or an appropriate larger region w/a cutoff) 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 

range   0,4 range   4,8 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 

range   0,4 range   4,8 

range   6,8 range   4,6 range   2,4 range   0,2 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 

range   0,4 range   4,8 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 r   1,2 r   2,3 r   3,4 r   4,5 r   5,6 r   6,7 r   7.8 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 

range   0,4 range   4,8 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 

range   0,4 range   4,8 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
 

range   4,6 
sum 
 

range   2,4 
sum 
 

range   0,2 
sum 
 

10 26 30 10 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range    0,8 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
 

range   4,6 
sum 
 

range   2,4 
sum 
 

range   0,2 
sum 
 

10 26 30 10 

range   0,4 
sum 

range   4,8 
sum 
 

36 40 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
 

range   4,6 
sum 
 

range   2,4 
sum 
 

range   0,2 
sum 
 

10 26 30 10 

range   0,4 
sum 

range   4,8 
sum 
 

36 40 

range    0,8 
sum 
 

76 
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The algorithm, step 1 
1.  A parallel sum to build a binary tree: 

–  Root has sum of the range [0,n) 
–  An internal node with the sum of [lo,hi) has  

•  Left child with sum of [lo,middle) 
•  Right child with sum of [middle,hi)  

–  A leaf has sum of [i,i+1),  i.e., input[i] 
(or an appropriate larger region w/a cutoff) 

–  Work O(n) 
–  Span O(lg n) 
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The algorithm, step 2 
2.  Parallel map, passing down a fromLeft parameter 

–  Root gets a fromLeft of 0 
–  Internal nodes pass along: 

•  to its left child the same fromLeft 
•  to its right child fromLeft plus its left child’s sum 

–  At a leaf node for array position i, output[i]=fromLeft
+input[i] 

How? A map down the step 1 tree, leaving results in the 
output array. 

Notice the invariant: fromLeft is the sum of elements 
left of the node’s rangE 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
 

range   4,6 
sum 
 

range   2,4 
sum 
 

range   0,2 
sum 
 

10 26 30 10 

range   0,4 
sum 

range   4,8 
sum 
 

36 40 

range    0,8 
sum 
 

76 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
 

range   4,6 
sum 
 

range   2,4 
sum 
 

range   0,2 
sum 
 

10 26 30 10 

range   0,4 
sum 

range   4,8 
sum 
 

36 40 

range    0,8 
sum 
fromleft     0 

76 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
 

range   4,6 
sum 
 

range   2,4 
sum 
 

range   0,2 
sum 
 

10 26 30 10 

range   0,4 
sum 
fromleft      0 
 

range   4,8 
sum 
fromleft    36 
 
 

36 40 

range    0,8 
sum 
fromleft       0 

76 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
 

r   1,2 
s   
 

r   2,3 
s   
 

r   3,4 
s   
 

r   4,5 
s   
 

r   5,6 
s   
 

r   6,7 
s   
 

r   7.8 
s   
 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
fromleft    66 
 

range   4,6 
sum 
fromleft    36 
 

range   2,4 
sum 
fromleft    10 
 
 

range   0,2 
sum 
fromleft    0 
 
 

10 26 30 10 

range   0,4 
sum 
fromleft      0 
 

range   4,8 
sum 
fromleft    36 
 
 

36 40 

range    0,8 
sum 
fromleft       0 

76 
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input 

output 

6 4 16 10 16 14 2 8 

                 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
f      0 

r   1,2 
s    
f      6 

r   2,3 
s   
f     10 

r   3,4 
s   
f     26 

r   4,5 
s   
f     36 

r   5,6 
s   
f     52 

r   6,7 
s   
f    66 

r   7.8 
s   
f    68 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
fromleft    66 
 

range   4,6 
sum 
fromleft    36 
 

range   2,4 
sum 
fromleft    10 
 
 

range   0,2 
sum 
fromleft    0 
 
 

10 26 30 10 

range   0,4 
sum 
fromleft      0 
 

range   4,8 
sum 
fromleft    36 
 
 

36 40 

range    0,8 
sum 
fromleft       0 

76 
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input 

output 

6 4 16 10 16 14 2 8 

  6  10  26  36  52  66  68  76 

range   6,8 range   4,6 range   2,4 range   0,2 

r   0,1 
s   
f      0 

r   1,2 
s    
f      6 

r   2,3 
s   
f     10 

r   3,4 
s   
f     26 

r   4,5 
s   
f     36 

r   5,6 
s   
f     52 

r   6,7 
s   
f    66 

r   7.8 
s   
f    68 

6 4 16 10 16 14 2 8 

range   6,8 
sum 
fromleft    66 
 

range   4,6 
sum 
fromleft    36 
 

range   2,4 
sum 
fromleft    10 
 
 

range   0,2 
sum 
fromleft    0 
 
 

10 26 30 10 

range   0,4 
sum 
fromleft      0 
 

range   4,8 
sum 
fromleft    36 
 
 

36 40 

range    0,8 
sum 
fromleft       0 

76 
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The algorithm, step 2 
2.  Parallel map, passing down a fromLeft parameter 

–  Root gets a fromLeft of 0 
–  Internal nodes pass along: 

•  to its left child the same fromLeft 
•  to its right child fromLeft plus its left child’s sum 

–  At a leaf node for array position i, output[i]=fromLeft
+input[i] 

•  Work? O(n) 
•  Span?  O(lg n) 
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Parallel prefix, generalized 
•  Just as sum-array was the simplest example of a common 

pattern, prefix-sum illustrates a pattern that arises in 
many, many problems 
– Minimum, maximum of all elements to the left of I 
–  Is there an element to the left of i satisfying some 

property? 
– Count of elements to the left of i satisfying some 

property 
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Pack  
 •  Given an array input, produce an array output 

containing only those elements of input that 
satisfy some property, and in the same order they 
appear in input.  

•  Example:  
–  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 
–  Values greater than 10 
–  output [17, 11, 13, 19, 24] 

•  Notice the length of output is unknown in advance 
but never longer than input.  
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Parallel Prefix Sum to the Rescue  
1.  Parallel map to compute a bit-vector for true elements 

input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24] 
bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1] 

2.  Parallel prefix-sum on the bit-vector 
 bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5] 

3.  Parallel map to produce the output 

   output [17, 11, 13, 19, 24] 

  
 

output = new array of size bitsum[n-1] !
FORALL(i=0; i < input.size(); i++){ !
  if(bits[i]) !
    output[bitsum[i]-1] = input[i]; !
} 
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Pack comments 
•  First two steps can be combined into one pass 

–  Just using a different base case for the prefix sum 
– No effect on asymptotic complexity 

•  Can also combine third step into the down pass of the 
prefix sum 
–  Again no effect on asymptotic complexity 

•  Analysis: O(n) work, O(lg n) span  
–  2 or 3 passes, but 3 is a constant 

•  Parallelized packs will help us parallelize quicksort… 
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Parallelizing Quicksort 
•  Recall quicksort was sequential, recursive, 

expected time O(n lg n) 

•  How should we parallelize this? 

 

                                 Best / expected case work 
1.  Pick a pivot element         O(1) 
2.  Partition all the data into:                   O(n) 

A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 

3.  Recursively sort A and C                                     2T(n/2) 
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Parallelizing Quicksort 
                                                Best / expected case work 

1.  Pick a pivot element                     O(1) 
2.  Partition all the data into:                    O(n) 

A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 

3.  Recursively sort A and C                                                     2T(n/2) 

•  Easy: Do the two recursive calls in parallel 
•  Work: unchanged of course O(n log n) 
T∞(n) = n + T(n/2)   only doing of the recursive calls 
         =  n + n/2 + T(n/4)   
      = n/1 + n/2 + n/4 + n/8 + … + 1 assuming n = 2k 

          = n (1+ 1/2 +1/4 + 1/n)   ∈ Θ(n) 
•  So parallelism (i.e., work / span) is O(log n) 
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Parallelizing Quicksort 
                                                Best / expected case work 

1.  Pick a pivot element                     O(1) 
2.  Partition all the data into:                    O(n) 

A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 

3.  Recursively sort A and C                                                     2T(n/2) 

•  Easy: Do the two recursive calls in parallel 
•  Work: unchanged of course O(n log n) 
•  Span: now T(n) = O(n) + 1T(n/2) = O(n) 
•  So parallelism (i.e., work / span) is O(log n) 

 
 

O(log n) speed-up with an infinite number of processors is okay, 
but a bit underwhelming (Sort 109 elements 30 times faster) 
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Parallelizing Quicksort (Doing better) 
•  We need to split the work done in Partition 

 
 

•  This is just two packs! 
–  We know a pack is O(n) work, O(log n) span 
–  Pack elements less than pivot into left side of aux array  
–  Pack elements greater than pivot into right size of aux array 
–  Put pivot between them and recursively sort 
–  With a little more cleverness, can do both packs at once but no 

effect on asymptotic complexity 

Partition all the data into:                    O(n) 
A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 
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Parallelizing Quicksort (Doing better) 
•  We need to split the work done in Partition 

 
 

•  This is just two packs! 
–  We know a pack is O(n) work, O(log n) span 
–  Pack elements less than pivot into left side of aux array  
–  Pack elements greater than pivot into right size of aux array 
–  Put pivot between them and recursively sort 
–  With a little more cleverness, can do both packs at once but no 

effect on asymptotic complexity 

Partition all the data into:                    O(n) 
A.  The elements less than the pivot 
B.  The pivot 
C.  The elements greater than the pivot 
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Example 
•  Step 1: pick pivot as median of three 

8 1 4 9 0 3 5 2 7 6 

•  Steps 2a and 2c (combinable): pack less than, then pack 
greater than into a second array 
–  Fancy parallel prefix to pull this off not shown 
  1 4 0 3 5 2  

1 4 0 3 5 2 6 8 9 7 

•  Step 3: Two recursive sorts in parallel 
–  Can sort back into original array (like in mergesort) 
–  Note that it uses O(n) extra space like mergesort too! 
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Parallelizing Quicksort (Doing better) 

•  With O(lg n) span for partition, the total best-case and 
expected-case span for quicksort is  T(n) = lg n + T(n/2) 

 
 

T(n) = lg n + T(n/2) 
       =  lg n +  lg n - 1 + T(n/4)
       = lg n +  lg n - 1 + lg n - 2  +... +  1 
       = k +  k - 1 + k - 2  +... +  1 (let lg n =k)

       =  i
i=1

k

∑ ∈O(k2 )∈O(lg2 n) Span: O(lg2 n) 
So parallelism is O(n / lg n) 
Sort 109 elements 108 times faster 

                                                Best / expected case work 
1.  Pick a pivot element                     O(1) 
2.  Partition all the data into:                    O(lg n) 
3.  Recursively sort A and C                                                        T(n/2) 
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Parallelizing mergesort 
•  Recall mergesort: sequential, not-in-place, 

worst-case O(n log n) 

1.  Sort left half and right half     2T(n/2) 
2.  Merge results                  O(n) 

•  Just like quicksort, doing the two recursive sorts in 
parallel changes the recurrence for the span to  

                   T(n) = O(n) + 1T(n/2) = O(n) 
•  Again, parallelism is O(log n) 

To do better, need to parallelize the merge 
–  The trick won’t use parallel prefix this time 
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Parallelizing the merge 

•  Need to merge two sorted subarrays (may not have 
the same size) 

 
 
 •  Idea: Suppose the larger subarray has m elements.  In 

parallel: 
•  Merge the first m/2 elements of the larger half with 

the “appropriate” elements of the smaller half 
•  Merge the second m/2 elements of the larger half 

with the rest of the smaller half 
 
 
 

0 1 4 8 9 2 3 5 6 7 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 122 

Parallelizing the merge 

0 4 6 8 9 1 2 3 5 7 
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Parallelizing the merge 

1.  Get median of bigger half:  O(1) to compute middle index 

0 4 6 8 9 1 2 3 5 7 
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1.  Get median of bigger half:  O(1) to compute middle index 
2.  Find how to split the smaller half at the same value as the left-

half split: O(log n) to do binary search on the sorted small half 
 

Parallelizing the merge 

0 4 6 8 9 1 2 3 5 7 
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Parallelizing the merge 

1.  Get median of bigger half:  O(1) to compute middle index 
2.  Find how to split the smaller half at the same value as the left-

half split: O(log n) to do binary search on the sorted small half 
3.  Size of two sub-merges conceptually splits output array: O(1) 

 

0 4 6 8 9 1 2 3 5 7 
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Parallelizing the merge 

1.  Get median of bigger half:  O(1) to compute middle index 
2.  Find how to split the smaller half at the same value as the left-

half split: O(log n) to do binary search on the sorted small half 
3.  Size of two sub-merges conceptually splits output array: O(1) 
4.  Do two submerges in parallel 

 

0 4 6 8 9 1 2 3 5 7 

0 1 2 3 4 5 6 7 8 9 

lo hi 
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The Recursion 

•  When we do each merge in parallel, we split the 
bigger one in half and use binary search to split 
the smaller one 

0 4 6 8 9 1 2 3 5 7 

0 4 1 2 3 5 7 6 9 8 



CPSC 221      A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 2      Page 128 

Analysis 
•  Sequential recurrence for mergesort: 

T(n) = 2T(n/2) + O(n) which is O(n lg n) 
 

•  Doing the two recursive calls in parallel but a sequential 
merge: 

Work: same as sequential     
Span: T(n)=1T(n/2)+O(n) which is O(n) 

 

•  Parallel merge makes work and span harder to compute 
–  Each merge step does an extra O(lg n) binary search to find 

how to split the smaller subarray 
–  To merge n elements total, do two smaller merges of possibly 

different sizes 
•  worst-case split is (1/4)n and (3/4)n 

•  When subarrays same size and “smaller” splits “all” / “none” 
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Analysis 
For just a parallel merge of n elements: 
  Work is T(n) = T(3n/4) + T(n/4) + O(lg n) which is O(n) 
  Span is T(n) = T(3n/4) + O(lg n), which is O(lg2 n) 
•  (neither bound is immediately obvious, but “trust me”) 
 

So for mergesort with parallel merge overall: 
  Work is T(n) = 2T(n/2) + O(n), which is O(n lg n) 
   Span is T(n) = 1T(n/2) + O(lg2 n), which is O(lg3 n) 
So parallelism (work / span) is O(n / lg2 n) 

– Not quite as good as quicksort’s O(n / lg n) 
• But worst-case guarantee Sort 109 elements  

107 times faster 
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Learning Goals (revisited) 
•  Define work—the time it would take one processor to complete a 

parallelizable computation; span—the time it would take an 
infinite number of processors to complete the same computation; 
and Amdahl's Law—which relates the speedup in a program to the 
proportion of the program that is parallelizable. 
 

•  Use work, span, and Amdahl's Law to analyse the speedup 
available for a particular approach to parallelizing a computation. 
 

•  Judge appropriate contexts for and apply the parallel map, parallel 
reduce, and parallel prefix computation patterns. 


