
CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 1

Steve Wolfman, based on work by Dan Grossman
(with minor tweaks by Hassan Khosravi)

CPSC 221
Basic Algorithms and Data Structures

A Sophomoric Introduction to Shared-Memory
Parallelism and Concurrency, Part 1

Introduction to Multithreading & Fork-Join Parallelism

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 2

Learning Goals
By the end of this unit, you should be able to:
•  Distinguish between parallelism—improving performance by

exploiting multiple processors—and concurrency—managing
simultaneous access to shared resources.

•  Explain and justify the task-based (vs. thread-based)
approach to parallelism. (Include asymptotic analysis of the
approach and its practical considerations, like "bottoming
out" at a reasonable level.)

•  Write simple fork-join and divide-and-conquer programs in C
++11 and with OpenMP.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 3

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic
analysis

CPSC 221 Journey

Priority Queue

Binary
Heap

Recursion
Induction

Loop invariants

Algorithms

Sorting Dictionary

BST

AVL
Hashing

Parallelism &
Concurrency

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 4

A simplified view of history
Writing multi-threaded code in common languages like

Java and C is more difficult than single-threaded
(sequential) code.

So, as long as possible (~1980-2005), desktop computers’
speed running sequential programs doubled every ~2
years.

4

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 5

Properties of Intel CPUs

Although we keep making
transistors smaller, we don’t
know how to continue the speed
increases:
•  Increasing clock rate

generates too much heat
•  Relative cost of memory

access is too high

Solution, not faster but smaller
and more…

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 6

Chart by Wikimedia user: Wgsimon
Creative Commons Attribution-Share
 Alike 3.0 Unported

•  Moore's law (predicted in 1975)
•  The number of transistors in a

dense integrated circuit doubles
approximately every two years

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 7

Chart by Wikimedia user: Wgsimon
Creative Commons Attribution-Share Alike 3.0 Unported

Microprocessor Transistor Counts

Sparc T3 micrograph from Oracle; 16 cores.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 8

What to do with multiple processors?
•  Run multiple totally different programs at the

same time
(Already doing that, but with time-slicing.)

•  Do multiple things at once in one program
– Requires rethinking everything from asymptotic

complexity to how to implement data-structure
operations

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 9

(Goodbye to) Sequential Programming
One thing happens at a time.

The next thing to happen is “my” next instruction.

Removing these assumptions creates challenges &
opportunities:
–  How can we get more work done per unit time (throughput)?
–  How do we divide work among threads of execution

and coordinate (synchronize) among them?
–  How do we support multiple threads operating on data

simultaneously (concurrent access)?
–  How do we do all this in a principled way?

(Algorithms and data structures, of course!)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 10

KP Duty: Peeling Potatoes, Parallelism
How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers
to peel 10,000 potatoes?
~25 minutes + Setup cost + distribution of recourses

Parallelism: using extra resources to solve a problem faster.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 11

KP Duty: Peeling Potatoes, Parallelism
How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers
to peel 10,000 potatoes?
~25 minutes + Setup cost + distribution of recourses
Note: these definitions of “parallelism” and “concurrency” are not yet
standard but the perspective is essential to avoid confusion!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 12

Problem: Count Matches of a Target

•  How many times does the number 3 appear?
3 5 9 3 2 0 4 6 1 3

// Basic sequential version.!
int count_matches(int array[], int len, int target) { !
 int matches = 0; !
 for (int i = 0; i < len; i++) { !
 if (array[i] == target) !
 matches++; !
 } !
 return matches; !
}

How can we take advantage of parallelism?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 13

Parallelism Example
•  Parallelism: Use extra computational resources to solve a

problem faster (increasing throughput via simultaneous
execution)

•  General idea

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 14

Parallelism Example
•  Parallelism: Use extra computational resources to solve a

problem faster (increasing throughput via simultaneous
execution)

•  Pseudocode for counting matches
–  Bad style for reasons we’ll see, but may get roughly 4x speedup

int cm_parallel(int arr[], int len, int target){ !
 res = new int[4]; !
 FORALL(i=0; i < 4; i++) { //parallel iterations!
 res[i] = count_matches(arr + i*len/4, !
 (i+1)*len/4 – i*len/4, target); !
 } !
 return res[0]+res[1]+res[2]+res[3]; !
} !
!
int count_matches(int arr[], int len, int target) { !
 // normal sequential code to count matches of target. !
} !

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 15

KP Duty: Peeling Potatoes, Concurrency
How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 4 people with 3 potato peelers to
peel 10,000 potatoes?

(Better example: Lots of cooks in one kitchen,
but only 4 stove burners. Want to allow access
to all 4 burners, but not cause spills or incorrect
burner settings.)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 16

KP Duty: Peeling Potatoes, Concurrency
How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 4 people with 3 potato peelers to
peel 10,000 potatoes?

Concurrency: Correctly and efficiently
manage access to shared resources

Note: these definitions of “parallelism” and “concurrency” are not yet
standard but the perspective is essential to avoid confusion!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 17

Concurrency Example
Concurrency: Correctly and efficiently manage access to shared

resources (from multiple possibly-simultaneous clients)

Pseudocode for a shared Queue

Concurrency will be covered in CPSC 213

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 18

Concurrency Example
Concurrency: Correctly and efficiently manage access to shared

resources (from multiple possibly-simultaneous clients)

Pseudocode for a shared chaining hashtable
–  Prevent bad interleavings (correctness)
–  But allow some concurrent access (performance)

template <typename K, typename V>class Hashtable<K,V> { !
void insert(K key, V value) { !
 int bucket = …; !
 prevent-other-inserts/lookups in table[bucket] !
 do the insertion!
 re-enable access to table[bucket] !
 } !
 V lookup(K key) { !
 (like insert, but can allow concurrent!
 lookups to same bucket) !
 } !
} Concurrency will be covered in CPSC 213

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 19

OLD Memory Model

…

pc=…

The Stack

The Heap

Local variables
Control flow info

Dynamically
allocated data.

(pc = program counter, address of current instruction)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 20

Shared Memory Model
We assume (and C++11 specifies) shared

memory w/explicit threads
NEW story:

The Heap

Dynamically
allocated data.

…

pc=…

…

 pc=…

…

 pc=…

…

PER THREAD:
Local variables
Control flow info

A Stack

A Stack

A Stack

Note: we can share local variables by sharing pointers to their locations.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 21

Other Models
We will focus on shared memory, but you should know several other

models exist and have their own advantages

•  Message-passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages
–  Cooks working in separate kitchens, mail around ingredients

•  Dataflow: Programmers write programs in terms of a DAG.
 A node executes after all of its predecessors in the graph

–  Cooks wait to be handed results of previous steps

•  Data parallelism: Have primitives for things like “apply function
to every element of an array in parallel”

Note: our parallelism solution will have a “dataflow feel” to it.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 22

Problem: Count Matches of a Target

•  How many times does the number 3 appear?
3 5 9 3 2 0 4 6 1 3

// Basic sequential version.!
int count_matches(int array[], int len, int target) { !
 int matches = 0; !
 for (int i = 0; i < len; i++) { !
 if (array[i] == target) !
 matches++; !
 } !
 return matches; !
}

How can we take advantage of parallelism?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 23

First attempt (wrong.. but grab the code!)
void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = 4; !
 !
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

Notice: we use a pointer to shared memory to communicate across
threads! BE CAREFUL sharing memory!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 24

Race condition: What happens if one thread tries to write to a memory
location while another reads (or multiple try to write)? KABOOM
(possibly silently!)

void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = 4; !
 !
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 25

Scope problems: What happens if the child thread is still using the
variable when it is deallocated (goes out of scope) in the parent?
KABOOM (possibly silently??)

void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = 4; !
 !
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 26

Now, let’s run it.

KABOOM! What happens, and how do we fix it?

void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = 4; !
 !
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 27

Join (not the most descriptive word)
•  The thread class defines various methods you could not

implement on your own
–  For example, the constructor calls its argument in a new

thread

•  The join method helps coordinate this kind of computation
–  Caller blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)
–  Else we have a race condition accessing
matchesPer[d]

•  This style of parallel programming is called “fork/join”

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 28

Fork/Join Parallelism

std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread
(forks)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 29

Fork/Join Parallelism

std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread
(forks)

fork!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 30

Fork/Join Parallelism

std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread
(forks)

fork!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 31

Fork/Join Parallelism

std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread
(forks)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 32

Fork/Join Parallelism
std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread (forks)
–  join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

join!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 33

Fork/Join Parallelism
std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread (forks)
–  join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

join!

This thread is stuck until
the other one finishes.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 34

Fork/Join Parallelism
std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread (forks)
–  join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

join!

This thread is stuck until
the other one finishes.

This thread could already be
done (joins immediately) or
could run for a long time.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 35

Join
std::thread defines methods you could not
implement on your own

–  The constructor calls its argument in a new thread (forks)
–  join blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)

fork!

join!

And now the thread
proceeds normally.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 36

CPSC 221 Administrative Notes
•  Lab 10 Parallelism Mar 26 – Apr 2

– Some changes to the code since Friday
– Marking Apr 7 – Apr 10 (Also doing Concept

Inventory). Doing the Concept inventory is worth 1
lab point (0.33% course grade).

•  Programming project #2 due
– Apr Tue, 07 Apr @ 21.00
– There was a typo in make, posted on Piazza

•  PeerWise Call #5 due Apr 2 (5pm)
–  The deadline for contributing to your “Answer Score”

and “Reputation score” is Monday April 20.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 37

So… Where Were We?
•  We talked about

– Parallelism
– Concurrency (mostly 213’s problem)

•  Problem: Count Matches of a Target
– Race conditions
– Out of scope variables

•  Fork/Join Parallelism

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 38

Second attempt (patched!)
int cm_parallel(int array[], int len, int target) { !
 int divs = 4; !
 !

 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], !
 array, (d*len)/divisions, ((d+1)*len)/ !
 divisions, target); !
 !

 int matches = 0; !
 for (int d = 0; d < divs; d++) { !
 workers[d].join(); // this line was added!
 matches += results[d]; !
 } !
 !
 return matches; !
}

Let’s run the code again!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 39

Success! Are we done?
Answer these:

– What happens if I run my code on an old-fashioned
one-core machine?

– What happens if I run my code on a machine with
more cores in the future?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 40

Chopping (a Bit) Too Fine

12

secs

of

work

3s

We thought there were 4
processors available.

3s

3s

3s

But there’s only 3. Result?
Would take ~ twice as long as with 4 processors

3s 3s 3s

3s

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 41

Chopping (a Bit) Too Fine

12

secs

of

work

We thought there were 3
processors available. And there are. Results?

4s

4s

4s

4s 4s 4s

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 42

Chopping (a Bit) Too Fine

•  Do not use constants where a variable is
appropriate.

•  So if I have p processors, should I just p threads?

(Note: I can use the following to get # cores
•  std::thread::hardware_concurrency()
•  omp_get_num_procs().

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 43

Is there a “Just Right”?

12

secs

of

work

We thought there were 3
processors available. And there are, sort of. Results?

4s

4s

4s

I’m
busy.

I’m
busy.

4s

4s

4s

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 44

Chopping (a Bit) Too Fine

•  Do not use constants where a variable is
appropriate.

•  So if I have p processors, should I just p threads?

(Note: I can use the following to get # cores
•  std::thread::hardware_concurrency()
•  omp_get_num_procs().

We cannot always assume that every processor is
available to the code we’re writing all the time.

We cannot predictably divide the work into approximately
equal pieces (processing equal-size chunks of the array
doesn’t necessarily take the same amount of time.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 45

Chopping So Fine It’s Like Sand or Water

…

…

(of course, we can’t predict the busy times!)

I’m
busy.

I’m
busy.

12

secs

of

work

We chopped into 10,000
pieces. And there are, sort of. Results?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 46

Chopping So Fine It’s Like Sand or Water

•  This solves a few problems
–  any number of processors will stay busy until the very

end
– we just have a “big pile” of threads waiting to run. If

the number of processors available changes, that
affects only how fast the pile is processed, but we are
always doing useful work with the resources available.

–  smaller chunks of work make load imbalance far less
likely since the threads do not run as long. Also, if one
processor has a slow chunk, other processors can
continue processing faster chunks.

–  .

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 47

Chopping So Fine It’s Like Sand or Water

…

…

Let’s try this

I’m
busy.

I’m
busy.

12

secs

of

work

We chopped into 10,000
pieces. And there are, sort of. Results?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 48

Analyzing Performance
void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = len; !
 !
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

It’s Asymptotic Analysis Time!
(len=4 , # of processors = ∞)

] Θ(1)

] Θ(1)

Θ(n)

Runtime ∈ Θ(n)

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 49

Analyzing Performance
void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = len; !
!
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

It’s Asymptotic Analysis Time!
(len=n, # of processors = ∞)

] Θ(n)

] Θ(n)

Θ(1)

Runtime ∈ Θ(n)
That sucks!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 50

Analyzing Performance
void cmp_helper(int * result, int array[], int lo, int hi, int target) { !
 *result = count_matches(array + lo, hi - lo, target); !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int divs = len; !
 !
 std::thread workers[divs]; !
 int results[divs]; !
 for (int d = 0; d < divs; d++) !
 workers[d] = std::thread(&cmp_helper, &results[d], array, !
 (d*len)/divisions, ((d+1)*len)/divisions, target); !
 !
 int matches = 0; !
 for (int d = 0; d < divs; d++) !
 matches += results[d]; !
 !
 return matches; !
}

]Θ(p)

] Θ(p)

Θ(n/p)

It’s Asymptotic Analysis Time!
(len=P , # of processors = ∞)

Runtime ∈ Θ(n/P +P)
What should P be?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 51

Chopping So Fine It’s Like Sand or Water

•  This approach still has two major problems
– C++11 threads: The threads will work and produce the

correct answer, but the constant-factor overheads of
creating each thread is far too large.
• We need an implementation of threads that is

designed for this kind of fork/join programming.

– We now have more results to combine, which is time

consuming.
• we need a better way to combine results.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 52

Zombies Seeking Help
A group of (non-CSist) zombies wants your help
infecting the living. Each time a zombie bites a
human, it gets to transfer a program.

The new zombie in town has the humans line up
and bites each in line, transferring the program: Do
nothing except say “Eat Brains!!”
Analysis?

How do they do better?

 Asymptotic analysis
was so much easier

with a brain!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 53

A better idea

The zombie apocalypse is straightforward using
divide-and-conquer

+ + + + + + + +

+ + + +

+ +
+

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 54

Divide-and-Conquer Style Code
still with a few problems

void cmp_helper(int * result, int array[], int lo, int hi, int target)
{ !
 if (len <= 1) { !
 *result = count_matches(array + lo, hi-lo, target); !
 return; !
 } !
 !
 int left, right; !
 int mid = lo + (hi-lo)/2; !
 std::thread left(&cmp_helper, &left, array, lo, mid, target); !
 std::thread right(&cmp_helper, &right, array, mid, hi, target); !
 left.join(); !
 right .join(); !
 return left + right; !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int result; !
 cmp_helper(&result, array, 0, len, target); !
 return result; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 55

Lazy lazy threads!
•  Each thread creates two helper threads left and

right and then waits for them to finish and add the
results.

•  Rather than having all these threads wait around,

it is more efficient to create one helper thread to
do half the work and have the thread do the other
half itself.

Reduces the number of threads by a factor of 2

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 56

Fewer threads pictorially

+
5

+
3

+
6

+
2

+
7

+
4

+
8

+
1 +

3
+
2

+
4

+
1

+

2

+

1

+
1

2 new
threads
at each step
(and only leaves
do much work)

1 new
thread
at each step

+
8

+
9

+
10

+
11

 +
12

+
13

 +
14

+
15 +

4
+
5

+
6

+
7

+

2

+

3

+
1

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 57

Divide-and-Conquer Style Code
(doesn’t work in general... more on that later)

void cmp_helper(int * result, int array[], int lo, int hi, int target)
{ !
 if (len <= 1) { !
 *result = count_matches(array + lo, hi-lo, target); !
 return; !
 } !
 !
 int left, right; !
 int mid = lo + (hi-lo)/2; !
 std::thread child(&cmp_helper, &left, array, lo, mid, target); !
 cmp_helper(&right, array, mid, hi, target); !
 child.join(); !
 !
 return left + right; !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int result; !
 cmp_helper(&result, array, 0, len, target); !
 return result; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 58

Chopping Too Fine Again

1
2

s
e
c
s

o
f

w
o
r
k

We chopped into n pieces
 (n == array length).

Result?

…

…

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 59

KP Duty: Peeling Potatoes,
Parallelism Reminder

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers
to peel 10,000 potatoes?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 60

KP Duty: Peeling Potatoes,
Parallelism Problem

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 10,000 people with 10,000 potato
peelers to peel 10,000 potatoes?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 61

KP Duty: Peeling Potatoes,
Parallelism Problem

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 10,000 people with 10,000 potato
peelers to peel 10,000 potatoes?
 How much time do we spend finding places

for people to work, handing out peelers,
giving instructions, teaching technique,
bandaging wounds, and (ack!) filling out
paperwork?

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 62

Being Realistic
•  Creating one thread per element is way too expensive.
•  So, we use a library where we create “tasks” (“bite-sized”

pieces of work) that the library assigns to a “reasonable”
number of threads.

•  But… creating one task per element still too expensive.
•  So, we use a sequential cutoff, typically ~500-1000.

(This is like switching from quicksort to insertion sort for
small subproblems.)

Note: we’re still chopping into Θ(n)
pieces, just not into n pieces.

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 63

Being Realistic: Exercise

How much does a sequential cutoff help?

•  Exercise: If there are (~230) elements in the array and our
cutoff is 1, about how many tasks do we create? (I.e.,
nodes in the tree.)

•  Exercise: If there are (~230) elements in the array and our

cutoff is 1,000 (~210), about how many tasks do we create?

•  What percentage of the tasks do we eliminate with our

cutoff?

231 (2 billion)

221 (2 million)

99.9%

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 64

That Library, Finally
•  C++11’s threads are usually too

“heavyweight” (implementation dependent).

•  OpenMP version 3.0’s main contribution was to
meet the needs of divide-and-conquer fork-join
parallelism
– Available in recent g++’s.
– See provided code and notes for details.
– Efficient implementation is a fascinating but advanced

topic!

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 65

Example: Final Version
int cmp_helper(int array[], int len, int target) { !
 const int SEQUENTIAL_CUTOFF = 1000; !
 if (len <= SEQUENTIAL_CUTOFF) !
 return count_matches(array, len, target); !
 !
 int left, right; !
#pragma omp task untied shared(left)!
 left = cmp_helper(array, len/2, target); !
 right = cmp_helper(array+len/2, len-(len/2), target); !
#pragma omp taskwait!
 !
 return left + right; !
} !
!
int cm_parallel(int array[], int len, int target) { !
 int result; !
 !
#pragma omp parallel!
#pragma omp single!
 result = cmp_helper(array, len, target); !
 !
 return result; !
}

CPSC 221 A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency, part 1 Page 66

Learning Goals
By the end of this unit, you should be able to:
•  Distinguish between parallelism—improving performance by

exploiting multiple processors—and concurrency—managing
simultaneous access to shared resources.

•  Explain and justify the task-based (vs. thread-based)
approach to parallelism. (Include asymptotic analysis of the
approach and its practical considerations, like "bottoming
out" at a reasonable level.)

•  Write simple fork-join and divide-and-conquer programs in C
++11 and with OpenMP.

