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Learning Goals 
After this unit, you should be able to: 
•  Define various forms of the pigeonhole principle; 

recognize and solve the specific types of counting and 
hashing problems to which they apply. 

•  Provide examples of the types of problems that can 
benefit from a hash data structure. 

•  Compare and contrast open addressing and chaining. 
•  Evaluate collision resolution policies. 
•  Describe the conditions under which hashing can 

degenerate from O(1) expected complexity to O(n). 
•  Identify the types of search problems that do not benefit 

from hashing (e.g. range searching) and explain why. 
•  Manipulate data in hash structures both irrespective of 

implementation and also within a given implementation. 
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CPSC 221 Administrative Notes 
•  Written Assignment 2 is due tomorrow(5pm) 

•  Lab 9 is posted, which is on Hashing   
•  (Mar 20 – Mar 26) 

•  PeerWise  Call #4 is due Monday March 23. 
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Reminder: Dictionary ADT 

•  Dictionary operations 
–  create 
–  destroy 
–  insert 
–  find 
–  delete 

•  Stores values associated with user-specified keys 
–  values may be any (homogenous) type 
–  keys may be any (homogenous) comparable type 

•  midterm 
–  would be tastier with 

brownies 
•  prog-project 

–  so painful… who invented 
templates? 

•  wolf 
–  the perfect mix of oomph 

and Scrabble value 

insert 

find(wolf) 

•  brownies 
   - tasty 

•  wolf 
    - the perfect mix of oomph  
      and Scrabble value 
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Implementations So Far 

•  Unsorted list   O(1)   O(n)   O(n) 
•  Sorted Array   O(n)   O(log n)  O(n) 
•  AVL Trees   O(log n)  O(log n)  O(log n) 

 

insert delete find 

Can we do better? O(1)? 
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Example 1 (natural, numeric keys) 
•  In a small company of 100 employees, each employee is 

assigned an Emp_ID number in the range 0 – 99.  
•  To store the employee’s records in an array, each 

employee’s Emp_ID number acts as an index into the 
array where this employee’s record will be stored as 
shown in figure  

KEY ARRAY OF EMPLOYEE’S RECORD 
Key 0                      [0] Record of employee having Emp_ID 0 
Key 1                      [1] Record of employee having Emp_ID 1 
………………………… ………………………………………….. 
Key 99                    [99] Record of employee having Emp_ID 99 



CPSC 221                 Hashing                                                       Page 8 

Follow-up example 
•  Let’s assume that the same company uses a five digit Emp_ID 

number as the primary key. In this case, key values will range 
from 00000 to 99999. If we want to use the same technique as 
above, we will need an array of size 100,000, of which only 
100 elements will be used. 

•  It is impractical to waste that much storage just to ensure that 
each employee’s record is in a unique and predictable 
location.  

KEY ARRAY OF EMPLOYEE’S RECORD 
Key 00000                       [0]  Record of employee having Emp_ID 00000 
………………………… …………………………………………. 
Key n                                [n]  Record of employee having Emp_ID n 
………………………… ………………………………………….. 
Key 99999                    [99999] Record of employee having Emp_ID 99999 
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First Pass: Resizable Vectors 

0 

1 

2 ‘a’ 

3 

4 

Insert <2, ‘a’> Insert <7, ‘c’> 

0 

1 

2 ‘a’ 

3 

4 

5 

6 

7 ‘c’ 

0 

1 

2 

3 

4 
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What’s Wrong with Our First Pass? 

0 

1 

2 ‘a’ 

3 

4 

Insert <2, ‘a’> Insert <7, ‘c’> 

0 

1 

2 ‘a’ 

3 

4 

5 

6 

7 ‘c’ 

0 

1 

2 

3 

4 

Give example commands (insert, find, remove)  
that illustrate what’s wrong! 
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Hash Table Goal 

some 
data 

…
 

We can do: 
 
a[2] = some data 

k-1 

3 

2 

1 

0 

some 
data 

…
 

We want to do: 
 
a[“Steve”] = some data 

“Martin” 

“Ed” 

“Steve” 

“Hassan” 

“Alan” 

“Will” 

How will insert, find, 
 and delete work? 
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Aside:  How do arrays do that? 
Q:  If I know houses on a certain block in 
Vancouver are on 33-foot-wide lots, 
where is the 5th house? 
A:  It’s from (5-1)*33 to 5*33 feet from 
the start of the block. 
 
element_type a[SIZE]; 
 
Q:  Where is a[i]? 
A:  start of a + i*sizeof(element_type) 
 
Aside:  This is why array elements have to 
be the same size, and why we start the 
indices from 0. 

some 
data 

…
 

We can do: 
 
a[2] = some data 

k-1 

3 

2 

1 

0 
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What is the 25th Element? 

0 

1 

2 ‘a’ 

3 

4 

5 

6 

7 ‘c’ 
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What is the 25th Element Now? 

0 

1 

2 ‘a’ 

3 

4 

5 

6 

7 ‘c’ 

considered as  
a circular array 

0 

1 

2 

3 

7 

6 

5 

4 

‘a’ 

‘c’ 
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Second Pass: Circular Array  
(For the Win?) 

0 

1 

2 

3 

7 

6 

5 

4 

Insert <37, ‘i’> 

0 

1 

2 

3 

7 

6 

5 

4 
Does this solve our memory usage problem? 

‘i’ 
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What’s Wrong with our Second Pass? 
0 

1 

2 

3 

7 

6 

5 

4 

Let’s insert  2 and 258? 
258 % 8 = 2 
258 % 16 = 2 
258 % 32 = 2 
258 % 64 = 2 
258 % 128 = 2 
258 % 256 = 2 

Solutions:  
•  Prime table sizes helps 
•  Some way to handle these collisions without resizing? 

Resize until they don’t? 
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Third Pass: 
Punt to Another Dictionary? 

0 

1 

2 

3 

7 

6 

5 

4 

Insert <13, ‘o’> 
Insert <37, ‘i’> 

0 

1 

2 

3 

7 

6 

5 

4 

<13, ‘o’> 
<37, ‘i’> 

BST, AVL, linked list, 
or other dictionary 

When should we 
resize in this case? 
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How Do We Turn Strings into Numbers? 

0 

1 

2 

3 

7 

6 

5 

4 

Insert <“eep”, ‘i’> 

0 

1 

2 

3 

7 

6 

5 

4 

What should we do? 
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Fourth Pass:  Strings ARE Numbers 

0 

1 

2 

3 

7 

6 

5 

4 

Insert <“eep”, ‘i’> 

0 

1 

2 

3 

7 

6 

5 

4 

e e p 
01100101 01100101 01110000 = 6,645,104 

6,645,104 % 8 = 0 

‘i’ 
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Fourth Pass:  Strings ARE Numbers 

0 

1 

2 

3 

7 

6 

5 

4 

Insert <“eep”, ‘i’> 

0 

1 

2 

3 

7 

6 

5 

4 

e e p 
01100101 01100101 01110000 = 6,645,104 

6,645,104 % 8 = 0 

‘i’ 

Those numbers get REALLY big 
antidisestablishmentarianism. Just saying. 
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Fifth Pass: Hashing! 
•  We only need perhaps a 64 (128?) bit number. There’s no 

point in forming a huge number. 

•  We need a function to turn the strings into numbers, 
typically on a bounded range… 

antidisestablishmentarianism 1,097,757,801 

Maybe we can only use some parts of the string 
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Schlemiel, Schlemazel,  
Trouble for Our Hash Table? 

•  Let’s try out: 
–  “schlemiel” and “schlemazel”? 
–  “microscopic” and “telescopic”? 
–  “abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba” and 

“abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba” 

•  Which bits of the string should we keep? Does our hash table care? 

 

That’s hashing! Take our data and turn it into a sorta-random number, 
  ideally one that spreads out similar strings far apart! 
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Third Pass, Take Two: 
Punt to Another Slot? 

0 

1 

2 

3 

7 

6 

5 

4 

Insert <13, ‘o’> 
Insert <37, ‘i’> 

0 

1 

2 

3 

7 

6 

5 

4 

‘o’ 

‘i’ 

Slot 5 is full, but no “dictionaries in each slot” this time.  
Overflow to slot 6? When should we resize? 
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Hash Table Approach 

But… is there a problem in this pipe-dream? 

f(x) 

Alan 
Steve 

Hassan 
Will 

Ed 
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Hash Table Dictionary Data Structure 
•  Hash function: maps keys to 

integers 
–  result: can quickly find the 

right spot for a given entry 

•  Unordered and sparse table 
–  result: cannot efficiently list 

all entries, definitely cannot 
efficiently list all entries in 
order or list entries between 
one value and another (a 
“range” query) 

f(x) 

Alan 
Steve 

Hassan 
Will 

Ed 



CPSC 221                 Hashing                                                       Page 26 

Hash Table Terminology 

f(x) 

Alan 
Steve 
Hassan 
Will 

Ed 

hash function 

collision 

keys 
load factor λ = # of entries in table 

                          tableSize 
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Hash Table Code First Pass 

•  What should the hash function be? 
•  What should the table size be? 
•  How should we resolve collisions? 
 

Value & find(Key & key) { !
  int index = hash(key) % tableSize; !
  return Table[index]; !
} !
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A Good (Perfect?) Hash Function… 
•  is easy (fast) to compute 

–  O(1) and fast in practice. 

•  distributes the data evenly  
– hash(a) % size ≠ hash(b) % size. 

•  uses the whole hash table. for all 0 ≤ k < size, 
there’s an i such that  
– hash(i) % size = k. 
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Good Hash Function for Integers 
•  Choose  

–  tableSize is  
• prime for good spread 
• power of two for fast 

calculations/convenient 
size 

–  hash(n) = n (fast and good 
enough?) 

Insert 2 
Insert 5 
Insert 10 
Find 10 
Insert 14 
Insert -1 

3 

2 

1 

0 

6 

5 

4 

2 

5 

10 

14 

-1 
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Suppose we have a table capable of holding 5000 records, and 
whose keys consist of strings that are 6 characters long.  We can 
apply numeric operations to the ASCII codes of the characters in 
the string in order to determine a hash index: 

  int hash(char * key){ !
  int  hashCode = 0; !
  int  index    = 0; !
  while (key[index] != ‘\0’){ !
    hashCode += (int)key[index]; !
    index++; !
  } !
  return  hashCode % 5000; !
} !
 

C A M E C O /0 
C  = 67 
A  = 65  
M = 77 
E  = 69 
C  = 67 
O = 79 
   = 424  

CAMECO 

0 4999 424 

Good Hash Function for Strings? 

Is this a  
good idea? 
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Good Hash Function for Strings? 
•  What is a significant problem with this approach? 
•  Hash of any string with the same 6 letters is the same 

•   ASCII values have a max of 255 
•  6*255 = 1530, which means [1531 – 4999] are wasted 

•  Alternative approach 
•  Let s = s1s2s3s4…s5: choose  

–  hash(s) = s1 + s2128 + s31282 + s41283 + … + sn128n 

•  Problems: 
–  hash(“really, really big”) is really, really big! 
–  hash(“one thing”) % 128 = hash(“other thing”) % 128 
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Making the String Hash Easy to Compute 

•  Use Horner’s Rule (Qin’s Rule?) 

int hash(string s) { !
  h = 0; !
  for (i = s.length() - 1; i >= 0; i--) { !
    h = (si + 31*h) % tableSize; !
  } !
  return h; !
} !

hash(help) = h+31(e+31(l+31*p)) 

You would also need to % 

a + bx +cx2 = a + x(b + xc) 
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Hash Function Summary 

•  Goals of a hash function 
– reproducible mapping from key to table entry 
– evenly distribute keys across the table 
– separate commonly occurring keys 

(neighbouring keys?) 
– complete quickly 
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How to Design a Hash Function 
•  Know what your keys are or 

Study how your keys are distributed. 
•  Try to include all important information in a key in the 

construction of its hash. 
•  Try to make “neighbouring” keys hash to very different 

places. 
•  Balance complexity/runtime of the hash function against 

spread of keys (very application dependent). 
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The Pigeonhole Principle (informal) 

You can’t put k+1 pigeons into k holes without 
putting two pigeons in the same hole. 

Image by 
en:User:McKay, 
used under CC 

 attr/share-alike. 

This place 
just isn’t coo 

anymore. 
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Clicker question 

    Suppose we have 5 colours of Halloween candy, and that 
there’s lots of candy in a bag.  How many pieces of 
candy do we have to pull out of the bag if we want to be 
sure to get 2 of the same colour?  

a.  2 
b.  4 
c.  6 
d.  8 
e.  None of these 
 



CPSC 221                 Hashing                                                       Page 37 

Clicker question (answer) 

    Suppose we have 5 colours of Halloween candy, and that 
there’s lots of candy in a bag.  How many pieces of 
candy do we have to pull out of the bag if we want to be 
sure to get 2 of the same colour?  

a.  2 
b.  4 
c.  6 
d.  8 
e.  None of these 
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The Pigeonhole Principle (formal) 
Let X and Y be finite sets where |X| > |Y|.   
If f : X→Y, then f(x1) = f(x2) for some x1, x2 ∈ X, 

where x1 ≠ x2. 

X Y 

f 

x1 

x2 

f(x1) = f(x2) 

Now that’s 
coo! 
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The Pigeonhole Principle (Example #2) 
If there are 1000 pieces of each colour, how many 

do we need to pull to guarantee that we’ll get 2 
black pieces of candy (assuming that black is one 
of the 5 colours)? 

a.  2 
b.  6 
c.  4002 
d.  5001 
e.  None of these 
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The Pigeonhole Principle (Example #2) 
If there are 1000 pieces of each colour, how many 

do we need to pull to guarantee that we’ll get 2 
black pieces of candy (assuming that black is one 
of the 5 colours)? 

a.  2 
b.  6 
c.  4002 
d.  5001 
e.  None of these 

This is not an appropriate problem 
for the pigeonhole principle!  We 
don’t know which hole has two 
pigeons! 
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The Pigeonhole Principle (Example #3) 
If 5 points are placed in a 6cm x 8cm rectangle, 

argue that there are two points that are not more 
than 5 cm apart. 

6cm 

8cm 

Hint: How long  
is the diagonal? 
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The Pigeonhole Principle (Example #4) 
For a, b ∈ Z, we write a divides b as a|b, meaning  
∃ c ∈ Z such that b = ac. 
Consider n +1 distinct positive integers, each ≤ 2n.  
Show that one of them must divide on of the others. 
For example, if n = 4, consider the following sets:  
{1, 2, 3, 7, 8}  {2, 3, 4, 7, 8}  {2, 3, 5, 7, 8} 
 
Hint: Any integer can be written as 2k * q where k is an integer and q 
is odd.  E.g., 129 = 20 * 129;  60 = 22 * 15. 
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The Pigeonhole Principle (Example #4) 
For a, b ∈ Z, we write a divides b as a|b, meaning  
∃ c ∈ Z such that b = ac. 

Consider n +1 distinct positive integers, each ≤ 2n.  Show 
that one of them must divide on of the others. 
Hint: Any integer can be written as 2k * q where k is an integer and q is odd.  E.g., 
129 = 20 * 129;  60 = 22 * 15. 

•  x1, x2, x3, … xn+1   à xi = 2ki
 * qi  

•  Holes = Odd numbers ≤ 2n  (n) 
•  Pigeons = qi s (n+1) 

•  By the PHP, with n+1 numbers there exists qi = qj  
•  Therefore, one is some multiple of 2 times the other. 
•  xi|xj or xj|xi 

2ki qi
2kj q j
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Example revisited 
•  In a small company of 100 employees, each employee is 

assigned an Emp_ID number in the range 00000 - 99999.  
– U  (number of potential keys)=100,000 
– m (number of keys) = 100 
–  n (space allocated) =? 

• Hopefully not much bigger than m  
• Maybe 200 or 300 

•  By the Pigeonhole Principle(PHP) multiple potential 
keys are mapped to the same slot, which introduces the 
possibility of collisions.  

•  As m gets larger there is a higher probability of collision.  
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Clicker question 
•  Consider n people with random birthdays (i.e., 

with each day of the ear equally likely). How 
large does n need to be before there is at least a 
50% chance that two people have the same 
birthday. 

A: 23 
B: 57 
C: 184 
D: 367 
E: None of the above 
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Clicker question (Birthday Paradox) 
•  Consider n people with random birthdays. How large 

does n need to be before there is at least a 50% chance 
that two people have the same birthday. 

A: 23 à 50% 
B: 57 à 99% 
C: 184 
D: 367 à 100% 
E: None of the above 

•  Corollary: Even if we randomly hash only         keys into 
m slots, we get a collision with probability > 0.5. 

 

2m
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Department of Computer Science 
Undergraduate Events  

More details @ 
https://my.cs.ubc.ca/students/development/events 

 
CSSS	  Boat	  Cruise	  
	  

Sat.,	  Apr	  4	  
6	  pm	  –	  10:30	  pm	  
501	  Denman	  St.	  
Tickets	  on	  sale	  in	  CSSS	  
Office,	  
ICCS	  021	  

Industry	  Panel:	  CulGvaGng	  
a	  Career	  	  
In	  Vancouver’s	  Thriving	  
Tech	  Sector	  
	  

Wed.	  Mar	  25	  
5:30	  pm	  –	  6:30	  pm	  
DMP	  310	  
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CPSC 221 Administrative Notes 
•  Programming project #1 is marked 

– Feedback on your mark will be emailed to you 
 

•  Programming Project #2 is posted 
– Due date: Tue, 07 Apr @ 21.00 
– No Milestones but make sure you start early 

•  Sample solution for Assignment #2 is posted 

•  PeerWise #4 
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So, Where Were We? 
•  Benefits of Hashing  

– O(1) Access 

•  Good Hash functions 
–  is easy (fast) to compute 
–  distributes data evenly 
– Uses the whole hash table 

•  The Pigeonhole Principle  
– Examples of how to do proofs with it 
– How it is related to hashing 

•  The Birthday Paradox 
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Collision Resolution 

•  What do we do when two keys hash to the same 
entry? 
–  chaining: put little dictionaries in each entry 

–  open addressing: pick a next entry to try 

shove extra pigeons in one hole! 
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3 

2 

1 

0 

6 

5 

4 

a d 

e b 

c 

Hashing with Chaining 

•  Put a little dictionary at 
each entry 
–  choose type as 

appropriate 
–  common case is 

unordered move-to-front 
linked list (chain) 

•  Properties 

– λ can be greater than 1 
–  performance degrades 

with length of chains 

h(a) = h(d) 
h(e) = h(b) 

load factor λ = # of entries in table 

                          tableSize 
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Example:  Suppose h(x) = ⎣x/10⎦ mod 5 

                 Hash: 12540, 51288, 90100, 41233, 54991, 45329, 14236 

0
1
2
3
4 12540 

51288 

90100 

41233 
54991 

45329 
14236 

In-class exercise 

Example: find node with key 14236 
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Deleting when using chaining 

 
 

 

Example:  Suppose h(x) = ⎣x/10⎦ mod 5 

                 Hash: 12540, 51288, 41233, 54991, 14236 

3
4 12540 

51288 41233 
54991 

14236 

•  Delete 41233 

•  Remove 41233 from the linked list 

  
3
4 12540 

51288 
54991 
14236 
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Chaining Code 
Dictionary & findBucket(const Key & k) { !
  return table[hash(k)%table.size]; !
} 

void insert(const Key & k, const Value & v){ !
  findBucket(k).insert(k,v); !
} 

void delete(const Key & k){ !
  findBucket(k).delete(k); !
} 

Value & find(const Key & k){ !
  return findBucket(k).find(k); !
} 
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Load Factor in Chaining 
•  Search cost 

–  unsuccessful search: 

• On average λ 

–  successful search: 

• On average ~λ/2 +1 (what the book says) 
• More precisely  

 

•  Desired load factor: 
•  between 1/2 and 1. 

load factor λ = # of entries in table 

                          tableSize 

1+ n−1
2m =1+ λ

2 −
λ
2n (n-1)/m  are  

in this slot 
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Advantages of Chaining: 
 
•  The size s of the hash table can be smaller than the number of 

items n hashed.  Why is this often a good thing? 
•  Fewer blank/wasted cells (especially in the case where 

the number of cells greatly exceeds the number of keys). 
•  Collision handling can be O(1). 
•  Can accommodate overflows 

 
Disadvantages of Chaining: 
•   Search time can become O(n) due to long chains. 

 
 

Pros and cons of chaining 
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Open Addressing 

What if we only allow one Key at 
each entry? 
–  two objects that hash to the same 

spot can’t both go there 
–  first one there gets the spot 
–  next one must go in another spot 

•  Properties 
–  λ ≤ 1 
–  performance degrades with 

difficulty of finding right spot 

a 

c 

e 3 

2 

1 

0 

6 

5 

4 

h(a) = h(d) 
h(e) = h(b) 

d 

b 
load factor λ = # of entries in table 

                          tableSize 
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Probing 

•  Probing how to: 
–  First probe - given a key k, hash to h(k)  
–  Second probe - if h(k) is occupied, try h(k) + f(1) 
–  Third probe - if h(k) + f(1) is occupied, try h(k) + f(2) 
–  And so forth 

•  Probing properties 

–  the ith probe is to (h(k) + f(i)) mod size      where f(0) = 0 
–  if i reaches size, the insert has failed 
–  depending on f(), the insert may fail sooner 
–  long sequences of probes are costly! 
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Linear Probing, f(i) = i 
 •  Probe sequence is 

–  h(k) mod size 
–  h(k) + 1 mod size 
–  h(k) + 2 mod size 
– …  

•  findEntry using linear probing: 
bool findEntry(const Key & k, Entry *& entry) { !
  int probePoint = hash1(k); !
  do { !
    entry = &table[probePoint]; !
    probePoint = (probePoint + 1) % size; !
  } while (!entry->isEmpty() && entry->key != k); !
  return !entry->isEmpty(); !
} 
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probes: 

47 

93 

40 

10 3 

2 

1 

0 

6 

5 

4 

insert(55) 
55%7 = 6 

3 
76 

3 

2 

1 

0 

6 

5 

4 

insert(76) 
76%7 = 6 

1 
76 

3 

2 

1 

0 

6 

5 

4 

insert(93) 
93%7 = 2 

1 

93 

76 

3 

2 

1 

0 

6 

5 

4 

insert(40) 
40%7 = 5 

1 

93 

40 

76 

3 

2 

1 

0 

6 

5 

4 

insert(47) 
47%7 = 5 

3 

47 

93 

40 

76 

10 3 

2 

1 

0 

6 

5 

4 

insert(10) 
10%7 = 3 

1 

55 

76 

93 

40 

47 

In-class exercise 
 •  Using the hash function h(x) = x % 7 insert the following values 

using linear probing: 76, 93, 40, 47, 10, 55  
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Load Factor in Linear Probing 

•  For any λ < 1, linear probing will find an empty slot 
•  Search cost (for large table sizes) 

–  successful search: 
 
 
 
 

–  unsuccessful search: 
•  How performance degrades as λ gets bigger 

( ) ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

load factor λ = # of entries in table 

                          tableSize 

λ=0.25 λ=0.5 λ=0.75 λ=0.9 
Avg # slots searched 1.4 2.5 8.5 50.5 

λ=0.25 λ=0.5 λ=0.75 λ=0.9 
Avg # slots searched 1.17 1.5 2.5 5.5 
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Load Factor in Linear Probing 

•  For any λ < 1, linear probing will find an empty slot 
•  Search cost (for large table sizes) 

–  successful search: 
 
 

–  unsuccessful search: 

•  Linear probing suffers from primary clustering 
•  Performance quickly degrades for λ > 1/2 

 

( ) ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

load factor λ = # of entries in table 

                          tableSize 

Values hashed 
close to each 
other probe 

the same slots. 
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Quadratic Probing, f(i) = i2 

•  Probe sequence is 
–  h(k) mod size 
–  (h(k) + 1) mod size 
–  (h(k) + 4) mod size 
–  (h(k) + 9) mod size 
–  …  

•  findEntry using quadratic probing: 
bool findEntry(const Key & k, Entry *& entry) { !
  int probePoint = hash1(k), i = 0; !
  do { !
    entry = &table[(probePoint + i*i) % size]; !
    i++; !
  } while (!entry->isEmpty() && entry->key != key); !
  return !entry->isEmpty(); !
} !
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Quadratic Probing, (more efficient code) 
•  Probe sequence is 

–  h(k) mod size 
–  (h(k) + 1) mod size 
–  (h(k) + 4) mod size 
–  (h(k) + 9) mod size 

•  findEntry using quadratic probing: 
!
bool findEntry(const Key & k, Entry *& entry) { !
  int probePoint = hash1(k), i = 0; !
  do { !
    entry = &table[probePoint]; !
    i++; !
    probePoint = (probePoint + 2*i - 1) % size; !
  } while (!entry->isEmpty() && entry->key != key); !
  return !entry->isEmpty(); !
} !
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Quadratic Probing Example J 

probes: 

76 

3 

2 

1 

0 

6 

5 

4 

insert(76) 
76%7 = 6 

1 

76 

3 

2 

1 

0 

6 

5 

4 

insert(40) 
40%7 = 5 

1 

40 40 

76 

3 

2 

1 

0 

6 

5 

4 

insert(48) 
48%7 = 6 

2 

48 48 

40 

76 

3 

2 

1 

0 

6 

5 

4 

insert(5) 
5%7 = 5 

3 

5 5 

40 

55 3 

2 

1 

0 

6 

5 

4 

insert(55) 
55%7 = 6 

3 

76 

48 

•  Using the hash function h(x) = x % 7 insert the following values 
using quadratic probing: 76, 40, 48, 5, 55  
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Quadratic Probing Example L 

probes: 

76 

3 

2 

1 

0 

6 

5 

4 

insert(76) 
76%7 = 6 

1 

35 

93 

40 

76 

3 

2 

1 

0 

6 

5 

4 

insert(47) 
47%7 = 5 

76 

3 

2 

1 

0 

6 

5 

4 

insert(93) 
93%7 = 2 

1 

93 93 

76 

3 

2 

1 

0 

6 

5 

4 

insert(40) 
40%7 = 5 

1 

40 

93 

40 

76 

3 

2 

1 

0 

6 

5 

4 

insert(35) 
35%7 = 0 

1 

35 

•  Using the hash function h(x) = x % 7 insert the following values 
using quadratic probing: 76, 93, 40, 35, 47  

∞ 
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Quadratic Probing Succeeds (for λ ≤ ½) 
•  Claim: If size is prime, the first size/2 probes are distinct 
•  Proof (By contradiction) Suppose for some 0 ≤ i< j ≤ size/2 

(h(x) + i2) mod size= (h(x) + j2) mod size 
 i2 mod size = j2 mod size 
(i2 - j2) mod size= 0 
[(i + j)(i - j)] mod size= 0 
 
but how can i + j = 0 or i + j = size when 

  i ≠ j and i,j ≤ size/2? 
same for i - j mod size = 0 
 

•  Result: If size is prime and λ ≤ ½, then quadratic probing will find 
an empty slot in size/2 probes or fewer 
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Load Factor in Quadratic Probing 
•  For any λ ≤ ½, quadratic probing will find an 

empty slot; for greater λ, quadratic probing may 
find a slot 

•  Quadratic probing does not suffer from primary 
clustering 

•  Quadratic probing does suffer from secondary 
clustering 
– How could we possibly solve this? Values hashed 

to the SAME 
index probe 

the same slots. 
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Double Hashing, f(i) = i ⋅ hash2(x) 
•  Probe sequence is 

–  h1(k) mod size 
–  (h1(k) + 1 ⋅ h2(x)) mod size 
–  (h1(k) + 2 ⋅ h2(x)) mod size 
–  …  

bool findEntry(const Key & k, Entry *& entry) { !
  int probePoint = hash1(k), hashIncr = hash2(k); !
  do { !
    entry = &table[probePoint]; !
    probePoint = (probePoint + hashIncr) % size; !
  } while (!entry->isEmpty() && entry->key != k); !
  return !entry->isEmpty(); !
} 
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A Good Double Hash Function…  
•  is quick to evaluate. 
•  differs from the original hash function. 
•  never evaluates to 0 (mod size). 
 
•  One good choice is to choose a prime R < size 

–  hash2(x) = R - (x mod R) 
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Double Hashing Example 

probes: 

insert(55) 
55%7 = 6 

5 - (55%5) = 5 

insert(76) 
76%7 = 6 

76 

3 

2 

1 

0 

6 

5 

4 

1 

insert(93) 
93%7 = 2 

insert(40) 
40%7 = 5 

insert(47) 
47%7 = 5 

5 - (47%5) = 3 

insert(10) 
10%7 = 3 

47 

93 

40 

76 

10 3 

2 

1 

0 

6 

5 

4 

1 

93 

55 

40 

10 3 

2 

1 

0 

6 

5 

4 

2 

47 

76 76 

3 

2 

1 

0 

6 

5 

4 

1 

93 93 

76 

3 

2 

1 

0 

6 

5 

4 

1 

40 

93 

40 

76 

3 

2 

1 

0 

6 

5 

4 

2 

47 

•  Using the hash functions h1(x) = x % 7 and h2(x)=5 - (x % 5)  insert 
the following values using double hashing 76, 93, 40, 47, 10, 55  
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The primary hash function is:  h1(k)  = (2k + 5) mod 11. 
The secondary hash function is:  h2(k) = 7 – (k mod 7) 

Hash these keys, in this order: 12, 44, 13, 88, 23, 94, 11. 
Which cell in the array does key 11 hash to? 
 
A. 0 
B. 2 
C. 3 
D. 4 
E. 10 
 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1
0 

Clicker question 
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h1(k)  = (2k + 5) mod 11.     h2(k) = 7 – (k mod 7) 

12, 44, 13, 88, 23, 94, 11. Which cell in the array does 
key 11 hash to? 
 
 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1
0 

Clicker question (answer) 

h(12) =  (2(12) + 5 ) % 11 = 7 

h(44) =  (2(44) + 5 ) % 11 = 5 

h(13) =  (2(13) + 5 ) % 11 = 9 

h(88) =  (2(88) + 5 ) % 11 = 5 +7 – 88%7 = 8 

h(23) =  (2(23) + 5 ) % 11 = 7 + 7 – 23%7 = 12 

h(94) =  (2(94) + 5 ) % 11 = 6 

h(11) =  (2(11) + 5 ) % 11 = 5 +2( 7 – 11%7) = 11 

 
 
 
 
 
 

A. 0 
B. 2 
C. 3 
D. 4 
E. 10 

12 

44 

13 
88 

23 

94 

11 
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Load Factor in Double Hashing 
•  For any λ < 1, double hashing will find an empty 

slot (given appropriate table size and hash2) 
•  Search cost appears to approach optimal (random 

hash): 
–  successful search: 

 

–  unsuccessful search: 

 
•  No primary clustering and no secondary clustering 
•  One extra hash calculation 

λ−1
1

λλ −1
1ln1

λ=0.25 λ=0.5 λ=0.75 λ=0.9 
Avg # slots searched 1.3 2 4 10 

λ=0.25 λ=0.5 λ=0.75 λ=0.9 
Avg # slots searched 1.5 1.4 1.8 2.6 
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Deleting when using probing 
Example: 
•  Suppose locations [97] to [101] are occupied in our hash table: 

[0]     [1]       …    [97]   [98]  [99]  [100] [101] [102]   … 
 

 
•  Suppose a new key hashes to [97].  Assuming a linear collision 

resolution policy, the key goes to 102. 

•  Later, suppose we delete the key that was hashed to [98]. 

•  Add a tombstone (i.e., flag, marker) for 2 reasons: 
1.  If searching, keep going when you hit a tombstone. 

 
2.  If inserting, stop and add the item here. 

 
This means that table entries can be occupied, deleted, or free 

  

 dog   cat goat  owl deer 
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The Squished Pigeon Principle 

•  An insert using open addressing cannot work 
with a load factor of 1 or more. 

•  An insert using open addressing with quadratic 
probing may not work with a load factor of ½ 
or more. 

•  Whether you use chaining or open addressing, 
large load factors lead to poor performance! 

•  How can we relieve the pressure on the 
pigeons? 

Hint: think resizable arrays! 
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Rehashing 

•  When the load factor gets “too large” (over a constant 
threshold on λ), rehash all the elements into a new, 
larger table: 
–  takes O(n), but amortized O(1) as long as we (just about) 

double table size on the resize 
–  spreads keys back out, may drastically improve performance 
–  gives us a chance to retune parameterized hash functions 
–  avoids failure for open addressing techniques 
–  allows arbitrarily large tables starting from a small table 
–  clears out lazily deleted items  
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Practice: Open Addressing 
(Try linear, quadratic, %7/(1-%5) double hashing.) 

Insert 2 
Insert 5 
Insert 4 
Insert 10 
Insert 73 
Find 10 
Insert 14 
Resize/Rehash 
Insert -1 
Insert 3 

3 

2 

1 

0 

6 

5 

4 



CPSC 221                 Hashing                                                       Page 79 

Application: De-Duplication 
•  Given a  “stream” of objects 

– Linear scan through a huge file 
– Objects arriving in real time 

•  Goal: Remove duplicates (keep track of unique 
objects) 
– Report unique visitors to a web site 
– Avoid duplicates in search results 

•  Solution: When new object x arrives, look up h(x) 
and if not found insert. 
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Application: The 2-Sum Problem 
•  Given: Unsorted array of integers A, and a target sum t 
•  Goal: Determine whether or not there are two numbers x 

and y in A such that x+y=t 

•  Naïve solution: O(n2) exhaustive search 
•  Better solution:  

–  Sort A O(n lg n) 
–  For each x in A look for t-x  O(n lg n) 

•  Amazing solution: 
–  Insert elements of A into  hash table H O(n) 
–  For each x in A, lookup t-x in H O(n) 
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CPSC Administrative Notes 
•  Lab 10 Parallelism  

– Starting tomorrow Mar 26 – Apr 2 
– Marking Apr 7 – Apr 10 (Also doing Concept 

Inventory) 
– Your work on this concept inventory helps us improve 

our courses! In particular, we use the inventory to 
track how our approach to teaching foundations of 
computing concepts affects students' learning over 
time. 

•  PeerWise Call #5 due Apr 2 (5pm) 
–   The deadline for contributing to your “Answer Score” 

and “Reputation score” is Monday April 20. 
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CPSC Administrative Notes 
•  Programming project #2 due 

– Apr Tue, 07 Apr @ 21.00 
– How to work on programming projects in pairs? 

•  We're making the following change to the old 
scheme, which provides a great opportunity to 
improve your final grade! The main purpose of 
this change is to give you more incentive to study 
for the final. 
– Midterm Exam                        10% 
– Midterm or Final Exam (your best)       10% 
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The Pigeonhole Principle (Full Glory) 
•  Let X and Y be finite sets with |X| = n, |Y| = m, and  
k = ⎡n/m⎤.   

If  f : X → Y, then ∃ k values x1, x2, …, xk ∈ X such that 
f(x1) = f(x2) = … f(xk). 

Informally: If n pigeons fly into m holes, at least 1 hole 
contains at least k = ⎡n/m⎤ pigeons. 

Proof: Assume there’s no such hole.  Then, there are at most 
(⎡n/m⎤  – 1)*m pigeons in all the holes, which is fewer than 
(n/m + 1  – 1)*m = n/m*m = n, but that is a contradiction.  
QED 
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Pathological Data Sets 
•  For good hash performance, we need a good hash 

function 
– Spreads data evenly across buckets 

•  Ideal: Use super-clever hash function guaranteed 
to spread every data set out evenly 

•  Problem: Such a hash function does not exist 
– For every hash function, there is a pathological data 

set 
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Pathological Data Sets 
•  Reason 

– Fix a hash function h 
– Let U be the potential number of keys 
– Let n be the table size 

•  There exists an array cell i, such that at least U/n 
elements hash to i under h 

•  If data set drawn only from these elements, then 
everything collides.   

•  This data set could be quite large since U >> n 
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Overview of Universal Hashing 
•  For every deterministic hash function, there is a 

pathological data set. 
– Solution: Do not commit to a specific hash function 

 
•  Use randomization  

– Design a family H of hash functions, such that for 
every data set S, most functions h ∈ H spread S out 
“pretty evenly”  
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Learning Goals revisited 
After this unit, you should be able to: 
•  Define various forms of the pigeonhole principle; 

recognize and solve the specific types of counting and 
hashing problems to which they apply. 

•  Provide examples of the types of problems that can 
benefit from a hash data structure. 

•  Compare and contrast open addressing and chaining. 
•  Evaluate collision resolution policies. 
•  Describe the conditions under which hashing can 

degenerate from O(1) expected complexity to O(n). 
•  Identify the types of search problems that do not benefit 

from hashing (e.g. range searching) and explain why. 
•  Manipulate data in hash structures both irrespective of 

implementation and also within a given implementation. 
 


