
CPSC 221 Hashing Page 1

Hassan Khosravi
January – April 2015

CPSC 221
Basic Algorithms and Data Structures

Hashing

Textbook References:
Koffman: Chapter 9
EPP 3rd edition: 7.3
EPP 4th edition: 9.4

CPSC 221 Hashing Page 2

Abstract Data Types

Data Structures

Stack Queue

Array Circular
Array

Linked list

Tools

Asymptotic analysis

CPSC 221 Journey

Priority Queue

Binary Heap

Recursion, induction
Loop invariants

Algorithms

Sorting Dictionary

BST

AVL

Hashing

CPSC 221 Hashing Page 3

Learning Goals
After this unit, you should be able to:
•  Define various forms of the pigeonhole principle;

recognize and solve the specific types of counting and
hashing problems to which they apply.

•  Provide examples of the types of problems that can
benefit from a hash data structure.

•  Compare and contrast open addressing and chaining.
•  Evaluate collision resolution policies.
•  Describe the conditions under which hashing can

degenerate from O(1) expected complexity to O(n).
•  Identify the types of search problems that do not benefit

from hashing (e.g. range searching) and explain why.
•  Manipulate data in hash structures both irrespective of

implementation and also within a given implementation.

CPSC 221 Hashing Page 4

CPSC 221 Administrative Notes
•  Written Assignment 2 is due tomorrow(5pm)

•  Lab 9 is posted, which is on Hashing
•  (Mar 20 – Mar 26)

•  PeerWise Call #4 is due Monday March 23.

CPSC 221 Hashing Page 5

Reminder: Dictionary ADT

•  Dictionary operations
–  create
–  destroy
–  insert
–  find
–  delete

•  Stores values associated with user-specified keys
–  values may be any (homogenous) type
–  keys may be any (homogenous) comparable type

•  midterm
–  would be tastier with

brownies
•  prog-project

–  so painful… who invented
templates?

•  wolf
–  the perfect mix of oomph

and Scrabble value

insert

find(wolf)

•  brownies
 - tasty

•  wolf
 - the perfect mix of oomph
 and Scrabble value

CPSC 221 Hashing Page 6

Implementations So Far

•  Unsorted list O(1) O(n) O(n)
•  Sorted Array O(n) O(log n) O(n)
•  AVL Trees O(log n) O(log n) O(log n)

insert delete find

Can we do better? O(1)?

CPSC 221 Hashing Page 7

Example 1 (natural, numeric keys)
•  In a small company of 100 employees, each employee is

assigned an Emp_ID number in the range 0 – 99.
•  To store the employee’s records in an array, each

employee’s Emp_ID number acts as an index into the
array where this employee’s record will be stored as
shown in figure

KEY ARRAY OF EMPLOYEE’S RECORD
Key 0 [0] Record of employee having Emp_ID 0
Key 1 [1] Record of employee having Emp_ID 1
………………………… …………………………………………..
Key 99 [99] Record of employee having Emp_ID 99

CPSC 221 Hashing Page 8

Follow-up example
•  Let’s assume that the same company uses a five digit Emp_ID

number as the primary key. In this case, key values will range
from 00000 to 99999. If we want to use the same technique as
above, we will need an array of size 100,000, of which only
100 elements will be used.

•  It is impractical to waste that much storage just to ensure that
each employee’s record is in a unique and predictable
location.

KEY ARRAY OF EMPLOYEE’S RECORD
Key 00000 [0] Record of employee having Emp_ID 00000
………………………… ………………………………………….
Key n [n] Record of employee having Emp_ID n
………………………… …………………………………………..
Key 99999 [99999] Record of employee having Emp_ID 99999

CPSC 221 Hashing Page 9

First Pass: Resizable Vectors

0

1

2 ‘a’

3

4

Insert <2, ‘a’> Insert <7, ‘c’>

0

1

2 ‘a’

3

4

5

6

7 ‘c’

0

1

2

3

4

CPSC 221 Hashing Page 10

What’s Wrong with Our First Pass?

0

1

2 ‘a’

3

4

Insert <2, ‘a’> Insert <7, ‘c’>

0

1

2 ‘a’

3

4

5

6

7 ‘c’

0

1

2

3

4

Give example commands (insert, find, remove)
that illustrate what’s wrong!

CPSC 221 Hashing Page 11

Hash Table Goal

some
data

…

We can do:

a[2] = some data

k-1

3

2

1

0

some
data

…

We want to do:

a[“Steve”] = some data

“Martin”

“Ed”

“Steve”

“Hassan”

“Alan”

“Will”

How will insert, find,
 and delete work?

CPSC 221 Hashing Page 12

Aside: How do arrays do that?
Q: If I know houses on a certain block in
Vancouver are on 33-foot-wide lots,
where is the 5th house?
A: It’s from (5-1)*33 to 5*33 feet from
the start of the block.

element_type a[SIZE];

Q: Where is a[i]?
A: start of a + i*sizeof(element_type)

Aside: This is why array elements have to
be the same size, and why we start the
indices from 0.

some
data

…

We can do:

a[2] = some data

k-1

3

2

1

0

CPSC 221 Hashing Page 13

What is the 25th Element?

0

1

2 ‘a’

3

4

5

6

7 ‘c’

CPSC 221 Hashing Page 14

What is the 25th Element Now?

0

1

2 ‘a’

3

4

5

6

7 ‘c’

considered as
a circular array

0

1

2

3

7

6

5

4

‘a’

‘c’

CPSC 221 Hashing Page 15

Second Pass: Circular Array
(For the Win?)

0

1

2

3

7

6

5

4

Insert <37, ‘i’>

0

1

2

3

7

6

5

4
Does this solve our memory usage problem?

‘i’

CPSC 221 Hashing Page 16

What’s Wrong with our Second Pass?
0

1

2

3

7

6

5

4

Let’s insert 2 and 258?
258 % 8 = 2
258 % 16 = 2
258 % 32 = 2
258 % 64 = 2
258 % 128 = 2
258 % 256 = 2

Solutions:
•  Prime table sizes helps
•  Some way to handle these collisions without resizing?

Resize until they don’t?

CPSC 221 Hashing Page 17

Third Pass:
Punt to Another Dictionary?

0

1

2

3

7

6

5

4

Insert <13, ‘o’>
Insert <37, ‘i’>

0

1

2

3

7

6

5

4

<13, ‘o’>
<37, ‘i’>

BST, AVL, linked list,
or other dictionary

When should we
resize in this case?

CPSC 221 Hashing Page 18

How Do We Turn Strings into Numbers?

0

1

2

3

7

6

5

4

Insert <“eep”, ‘i’>

0

1

2

3

7

6

5

4

What should we do?

CPSC 221 Hashing Page 19

Fourth Pass: Strings ARE Numbers

0

1

2

3

7

6

5

4

Insert <“eep”, ‘i’>

0

1

2

3

7

6

5

4

e e p
01100101 01100101 01110000 = 6,645,104

6,645,104 % 8 = 0

‘i’

CPSC 221 Hashing Page 20

Fourth Pass: Strings ARE Numbers

0

1

2

3

7

6

5

4

Insert <“eep”, ‘i’>

0

1

2

3

7

6

5

4

e e p
01100101 01100101 01110000 = 6,645,104

6,645,104 % 8 = 0

‘i’

Those numbers get REALLY big
antidisestablishmentarianism. Just saying.

CPSC 221 Hashing Page 21

Fifth Pass: Hashing!
•  We only need perhaps a 64 (128?) bit number. There’s no

point in forming a huge number.

•  We need a function to turn the strings into numbers,
typically on a bounded range…

antidisestablishmentarianism 1,097,757,801

Maybe we can only use some parts of the string

CPSC 221 Hashing Page 22

Schlemiel, Schlemazel,
Trouble for Our Hash Table?

•  Let’s try out:
–  “schlemiel” and “schlemazel”?
–  “microscopic” and “telescopic”?
–  “abcdefghijklmnopqrstuvwxyzyxwvutsrqponmlkjihgfedcba” and

“abcdefghijklmnopqrstuvwxyzzyxwvutsrqponmlkjihgfedcba”

•  Which bits of the string should we keep? Does our hash table care?

That’s hashing! Take our data and turn it into a sorta-random number,
 ideally one that spreads out similar strings far apart!

CPSC 221 Hashing Page 23

Third Pass, Take Two:
Punt to Another Slot?

0

1

2

3

7

6

5

4

Insert <13, ‘o’>
Insert <37, ‘i’>

0

1

2

3

7

6

5

4

‘o’

‘i’

Slot 5 is full, but no “dictionaries in each slot” this time.
Overflow to slot 6? When should we resize?

CPSC 221 Hashing Page 24

Hash Table Approach

But… is there a problem in this pipe-dream?

f(x)

Alan
Steve

Hassan
Will

Ed

CPSC 221 Hashing Page 25

Hash Table Dictionary Data Structure
•  Hash function: maps keys to

integers
–  result: can quickly find the

right spot for a given entry

•  Unordered and sparse table
–  result: cannot efficiently list

all entries, definitely cannot
efficiently list all entries in
order or list entries between
one value and another (a
“range” query)

f(x)

Alan
Steve

Hassan
Will

Ed

CPSC 221 Hashing Page 26

Hash Table Terminology

f(x)

Alan
Steve
Hassan
Will

Ed

hash function

collision

keys
load factor λ = # of entries in table

 tableSize

CPSC 221 Hashing Page 27

Hash Table Code First Pass

•  What should the hash function be?
•  What should the table size be?
•  How should we resolve collisions?

Value & find(Key & key) { !
 int index = hash(key) % tableSize; !
 return Table[index]; !
} !

CPSC 221 Hashing Page 28

A Good (Perfect?) Hash Function…
•  is easy (fast) to compute

–  O(1) and fast in practice.

•  distributes the data evenly
– hash(a) % size ≠ hash(b) % size.

•  uses the whole hash table. for all 0 ≤ k < size,
there’s an i such that
– hash(i) % size = k.

CPSC 221 Hashing Page 29

Good Hash Function for Integers
•  Choose

–  tableSize is
• prime for good spread
• power of two for fast

calculations/convenient
size

–  hash(n) = n (fast and good
enough?)

Insert 2
Insert 5
Insert 10
Find 10
Insert 14
Insert -1

3

2

1

0

6

5

4

2

5

10

14

-1

CPSC 221 Hashing Page 30

Suppose we have a table capable of holding 5000 records, and
whose keys consist of strings that are 6 characters long. We can
apply numeric operations to the ASCII codes of the characters in
the string in order to determine a hash index:

 int hash(char * key){ !
 int hashCode = 0; !
 int index = 0; !
 while (key[index] != ‘\0’){ !
 hashCode += (int)key[index]; !
 index++; !
 } !
 return hashCode % 5000; !
} !

C A M E C O /0
C = 67
A = 65
M = 77
E = 69
C = 67
O = 79
 = 424

CAMECO

0 4999 424

Good Hash Function for Strings?

Is this a
good idea?

CPSC 221 Hashing Page 31

Good Hash Function for Strings?
•  What is a significant problem with this approach?
•  Hash of any string with the same 6 letters is the same

•  ASCII values have a max of 255
•  6*255 = 1530, which means [1531 – 4999] are wasted

•  Alternative approach
•  Let s = s1s2s3s4…s5: choose

–  hash(s) = s1 + s2128 + s31282 + s41283 + … + sn128n

•  Problems:
–  hash(“really, really big”) is really, really big!
–  hash(“one thing”) % 128 = hash(“other thing”) % 128

CPSC 221 Hashing Page 32

Making the String Hash Easy to Compute

•  Use Horner’s Rule (Qin’s Rule?)

int hash(string s) { !
 h = 0; !
 for (i = s.length() - 1; i >= 0; i--) { !
 h = (si + 31*h) % tableSize; !
 } !
 return h; !
} !

hash(help) = h+31(e+31(l+31*p))

You would also need to %

a + bx +cx2 = a + x(b + xc)

CPSC 221 Hashing Page 33

Hash Function Summary

•  Goals of a hash function
– reproducible mapping from key to table entry
– evenly distribute keys across the table
– separate commonly occurring keys

(neighbouring keys?)
– complete quickly

CPSC 221 Hashing Page 34

How to Design a Hash Function
•  Know what your keys are or

Study how your keys are distributed.
•  Try to include all important information in a key in the

construction of its hash.
•  Try to make “neighbouring” keys hash to very different

places.
•  Balance complexity/runtime of the hash function against

spread of keys (very application dependent).

CPSC 221 Hashing Page 35

The Pigeonhole Principle (informal)

You can’t put k+1 pigeons into k holes without
putting two pigeons in the same hole.

Image by
en:User:McKay,
used under CC

 attr/share-alike.

This place
just isn’t coo

anymore.

CPSC 221 Hashing Page 36

Clicker question

 Suppose we have 5 colours of Halloween candy, and that
there’s lots of candy in a bag. How many pieces of
candy do we have to pull out of the bag if we want to be
sure to get 2 of the same colour?

a.  2
b.  4
c.  6
d.  8
e.  None of these

CPSC 221 Hashing Page 37

Clicker question (answer)

 Suppose we have 5 colours of Halloween candy, and that
there’s lots of candy in a bag. How many pieces of
candy do we have to pull out of the bag if we want to be
sure to get 2 of the same colour?

a.  2
b.  4
c.  6
d.  8
e.  None of these

CPSC 221 Hashing Page 38

The Pigeonhole Principle (formal)
Let X and Y be finite sets where |X| > |Y|.
If f : X→Y, then f(x1) = f(x2) for some x1, x2 ∈ X,

where x1 ≠ x2.

X Y

f

x1

x2

f(x1) = f(x2)

Now that’s
coo!

CPSC 221 Hashing Page 39

The Pigeonhole Principle (Example #2)
If there are 1000 pieces of each colour, how many

do we need to pull to guarantee that we’ll get 2
black pieces of candy (assuming that black is one
of the 5 colours)?

a.  2
b.  6
c.  4002
d.  5001
e.  None of these

CPSC 221 Hashing Page 40

The Pigeonhole Principle (Example #2)
If there are 1000 pieces of each colour, how many

do we need to pull to guarantee that we’ll get 2
black pieces of candy (assuming that black is one
of the 5 colours)?

a.  2
b.  6
c.  4002
d.  5001
e.  None of these

This is not an appropriate problem
for the pigeonhole principle! We
don’t know which hole has two
pigeons!

CPSC 221 Hashing Page 41

The Pigeonhole Principle (Example #3)
If 5 points are placed in a 6cm x 8cm rectangle,

argue that there are two points that are not more
than 5 cm apart.

6cm

8cm

Hint: How long
is the diagonal?

CPSC 221 Hashing Page 42

The Pigeonhole Principle (Example #4)
For a, b ∈ Z, we write a divides b as a|b, meaning
∃ c ∈ Z such that b = ac.
Consider n +1 distinct positive integers, each ≤ 2n.
Show that one of them must divide on of the others.
For example, if n = 4, consider the following sets:
{1, 2, 3, 7, 8} {2, 3, 4, 7, 8} {2, 3, 5, 7, 8}

Hint: Any integer can be written as 2k * q where k is an integer and q
is odd. E.g., 129 = 20 * 129; 60 = 22 * 15.

CPSC 221 Hashing Page 43

The Pigeonhole Principle (Example #4)
For a, b ∈ Z, we write a divides b as a|b, meaning
∃ c ∈ Z such that b = ac.

Consider n +1 distinct positive integers, each ≤ 2n. Show
that one of them must divide on of the others.
Hint: Any integer can be written as 2k * q where k is an integer and q is odd. E.g.,
129 = 20 * 129; 60 = 22 * 15.

•  x1, x2, x3, … xn+1 à xi = 2ki
 * qi

•  Holes = Odd numbers ≤ 2n (n)
•  Pigeons = qi s (n+1)

•  By the PHP, with n+1 numbers there exists qi = qj
•  Therefore, one is some multiple of 2 times the other.
•  xi|xj or xj|xi

2ki qi
2kj q j

CPSC 221 Hashing Page 44

Example revisited
•  In a small company of 100 employees, each employee is

assigned an Emp_ID number in the range 00000 - 99999.
– U (number of potential keys)=100,000
– m (number of keys) = 100
–  n (space allocated) =?

• Hopefully not much bigger than m
• Maybe 200 or 300

•  By the Pigeonhole Principle(PHP) multiple potential
keys are mapped to the same slot, which introduces the
possibility of collisions.

•  As m gets larger there is a higher probability of collision.

CPSC 221 Hashing Page 45

Clicker question
•  Consider n people with random birthdays (i.e.,

with each day of the ear equally likely). How
large does n need to be before there is at least a
50% chance that two people have the same
birthday.

A: 23
B: 57
C: 184
D: 367
E: None of the above

CPSC 221 Hashing Page 46

Clicker question (Birthday Paradox)
•  Consider n people with random birthdays. How large

does n need to be before there is at least a 50% chance
that two people have the same birthday.

A: 23 à 50%
B: 57 à 99%
C: 184
D: 367 à 100%
E: None of the above

•  Corollary: Even if we randomly hash only keys into
m slots, we get a collision with probability > 0.5.

2m

CPSC 221 Hashing Page 47

Department of Computer Science
Undergraduate Events

More details @
https://my.cs.ubc.ca/students/development/events

CSSS	 Boat	 Cruise	
	

Sat.,	 Apr	 4	
6	 pm	 –	 10:30	 pm	
501	 Denman	 St.	
Tickets	 on	 sale	 in	 CSSS	
Office,	
ICCS	 021	

Industry	 Panel:	 CulGvaGng	
a	 Career	 	
In	 Vancouver’s	 Thriving	
Tech	 Sector	
	

Wed.	 Mar	 25	
5:30	 pm	 –	 6:30	 pm	
DMP	 310	

CPSC 221 Hashing Page 48

CPSC 221 Administrative Notes
•  Programming project #1 is marked

– Feedback on your mark will be emailed to you

•  Programming Project #2 is posted
– Due date: Tue, 07 Apr @ 21.00
– No Milestones but make sure you start early

•  Sample solution for Assignment #2 is posted

•  PeerWise #4

CPSC 221 Hashing Page 49

So, Where Were We?
•  Benefits of Hashing

– O(1) Access

•  Good Hash functions
–  is easy (fast) to compute
–  distributes data evenly
– Uses the whole hash table

•  The Pigeonhole Principle
– Examples of how to do proofs with it
– How it is related to hashing

•  The Birthday Paradox

CPSC 221 Hashing Page 50

Collision Resolution

•  What do we do when two keys hash to the same
entry?
–  chaining: put little dictionaries in each entry

–  open addressing: pick a next entry to try

shove extra pigeons in one hole!

CPSC 221 Hashing Page 51

3

2

1

0

6

5

4

a d

e b

c

Hashing with Chaining

•  Put a little dictionary at
each entry
–  choose type as

appropriate
–  common case is

unordered move-to-front
linked list (chain)

•  Properties

– λ can be greater than 1
–  performance degrades

with length of chains

h(a) = h(d)
h(e) = h(b)

load factor λ = # of entries in table

 tableSize

CPSC 221 Hashing Page 52

Example: Suppose h(x) = ⎣x/10⎦ mod 5

 Hash: 12540, 51288, 90100, 41233, 54991, 45329, 14236

0
1
2
3
4 12540

51288

90100

41233
54991

45329
14236

In-class exercise

Example: find node with key 14236

CPSC 221 Hashing Page 53

Deleting when using chaining

Example: Suppose h(x) = ⎣x/10⎦ mod 5

 Hash: 12540, 51288, 41233, 54991, 14236

3
4 12540

51288 41233
54991

14236

•  Delete 41233

•  Remove 41233 from the linked list

3
4 12540

51288
54991
14236

CPSC 221 Hashing Page 54

Chaining Code
Dictionary & findBucket(const Key & k) { !
 return table[hash(k)%table.size]; !
}

void insert(const Key & k, const Value & v){ !
 findBucket(k).insert(k,v); !
}

void delete(const Key & k){ !
 findBucket(k).delete(k); !
}

Value & find(const Key & k){ !
 return findBucket(k).find(k); !
}

CPSC 221 Hashing Page 55

Load Factor in Chaining
•  Search cost

–  unsuccessful search:

• On average λ

–  successful search:

• On average ~λ/2 +1 (what the book says)
• More precisely

•  Desired load factor:
•  between 1/2 and 1.

load factor λ = # of entries in table

 tableSize

1+ n−1
2m =1+ λ

2 −
λ
2n (n-1)/m are

in this slot

CPSC 221 Hashing Page 56

Advantages of Chaining:

•  The size s of the hash table can be smaller than the number of

items n hashed. Why is this often a good thing?
•  Fewer blank/wasted cells (especially in the case where

the number of cells greatly exceeds the number of keys).
•  Collision handling can be O(1).
•  Can accommodate overflows

Disadvantages of Chaining:
•  Search time can become O(n) due to long chains.

Pros and cons of chaining

CPSC 221 Hashing Page 57

Open Addressing

What if we only allow one Key at
each entry?
–  two objects that hash to the same

spot can’t both go there
–  first one there gets the spot
–  next one must go in another spot

•  Properties
–  λ ≤ 1
–  performance degrades with

difficulty of finding right spot

a

c

e 3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b
load factor λ = # of entries in table

 tableSize

CPSC 221 Hashing Page 58

Probing

•  Probing how to:
–  First probe - given a key k, hash to h(k)
–  Second probe - if h(k) is occupied, try h(k) + f(1)
–  Third probe - if h(k) + f(1) is occupied, try h(k) + f(2)
–  And so forth

•  Probing properties

–  the ith probe is to (h(k) + f(i)) mod size where f(0) = 0
–  if i reaches size, the insert has failed
–  depending on f(), the insert may fail sooner
–  long sequences of probes are costly!

CPSC 221 Hashing Page 59

Linear Probing, f(i) = i
 •  Probe sequence is

–  h(k) mod size
–  h(k) + 1 mod size
–  h(k) + 2 mod size
– …

•  findEntry using linear probing:
bool findEntry(const Key & k, Entry *& entry) { !
 int probePoint = hash1(k); !
 do { !
 entry = &table[probePoint]; !
 probePoint = (probePoint + 1) % size; !
 } while (!entry->isEmpty() && entry->key != k); !
 return !entry->isEmpty(); !
}

CPSC 221 Hashing Page 60

probes:

47

93

40

10 3

2

1

0

6

5

4

insert(55)
55%7 = 6

3
76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1
76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

3

47

93

40

76

10 3

2

1

0

6

5

4

insert(10)
10%7 = 3

1

55

76

93

40

47

In-class exercise
 •  Using the hash function h(x) = x % 7 insert the following values

using linear probing: 76, 93, 40, 47, 10, 55

CPSC 221 Hashing Page 61

Load Factor in Linear Probing

•  For any λ < 1, linear probing will find an empty slot
•  Search cost (for large table sizes)

–  successful search:

–  unsuccessful search:
•  How performance degrades as λ gets bigger

() ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

()⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

load factor λ = # of entries in table

 tableSize

λ=0.25 λ=0.5 λ=0.75 λ=0.9
Avg # slots searched 1.4 2.5 8.5 50.5

λ=0.25 λ=0.5 λ=0.75 λ=0.9
Avg # slots searched 1.17 1.5 2.5 5.5

CPSC 221 Hashing Page 62

Load Factor in Linear Probing

•  For any λ < 1, linear probing will find an empty slot
•  Search cost (for large table sizes)

–  successful search:

–  unsuccessful search:

•  Linear probing suffers from primary clustering
•  Performance quickly degrades for λ > 1/2

() ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+ 21

11
2
1

λ

()⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

λ1
11

2
1

load factor λ = # of entries in table

 tableSize

Values hashed
close to each
other probe

the same slots.

CPSC 221 Hashing Page 63

Quadratic Probing, f(i) = i2

•  Probe sequence is
–  h(k) mod size
–  (h(k) + 1) mod size
–  (h(k) + 4) mod size
–  (h(k) + 9) mod size
–  …

•  findEntry using quadratic probing:
bool findEntry(const Key & k, Entry *& entry) { !
 int probePoint = hash1(k), i = 0; !
 do { !
 entry = &table[(probePoint + i*i) % size]; !
 i++; !
 } while (!entry->isEmpty() && entry->key != key); !
 return !entry->isEmpty(); !
} !

CPSC 221 Hashing Page 64

Quadratic Probing, (more efficient code)
•  Probe sequence is

–  h(k) mod size
–  (h(k) + 1) mod size
–  (h(k) + 4) mod size
–  (h(k) + 9) mod size

•  findEntry using quadratic probing:
!
bool findEntry(const Key & k, Entry *& entry) { !
 int probePoint = hash1(k), i = 0; !
 do { !
 entry = &table[probePoint]; !
 i++; !
 probePoint = (probePoint + 2*i - 1) % size; !
 } while (!entry->isEmpty() && entry->key != key); !
 return !entry->isEmpty(); !
} !

CPSC 221 Hashing Page 65

Quadratic Probing Example J

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40 40

76

3

2

1

0

6

5

4

insert(48)
48%7 = 6

2

48 48

40

76

3

2

1

0

6

5

4

insert(5)
5%7 = 5

3

5 5

40

55 3

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

48

•  Using the hash function h(x) = x % 7 insert the following values
using quadratic probing: 76, 40, 48, 5, 55

CPSC 221 Hashing Page 66

Quadratic Probing Example L

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

35

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93 93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40

93

40

76

3

2

1

0

6

5

4

insert(35)
35%7 = 0

1

35

•  Using the hash function h(x) = x % 7 insert the following values
using quadratic probing: 76, 93, 40, 35, 47

∞

CPSC 221 Hashing Page 67

Quadratic Probing Succeeds (for λ ≤ ½)
•  Claim: If size is prime, the first size/2 probes are distinct
•  Proof (By contradiction) Suppose for some 0 ≤ i< j ≤ size/2

(h(x) + i2) mod size= (h(x) + j2) mod size
 i2 mod size = j2 mod size
(i2 - j2) mod size= 0
[(i + j)(i - j)] mod size= 0

but how can i + j = 0 or i + j = size when

 i ≠ j and i,j ≤ size/2?
same for i - j mod size = 0

•  Result: If size is prime and λ ≤ ½, then quadratic probing will find
an empty slot in size/2 probes or fewer

CPSC 221 Hashing Page 68

Load Factor in Quadratic Probing
•  For any λ ≤ ½, quadratic probing will find an

empty slot; for greater λ, quadratic probing may
find a slot

•  Quadratic probing does not suffer from primary
clustering

•  Quadratic probing does suffer from secondary
clustering
– How could we possibly solve this? Values hashed

to the SAME
index probe

the same slots.

CPSC 221 Hashing Page 69

Double Hashing, f(i) = i ⋅ hash2(x)
•  Probe sequence is

–  h1(k) mod size
–  (h1(k) + 1 ⋅ h2(x)) mod size
–  (h1(k) + 2 ⋅ h2(x)) mod size
–  …

bool findEntry(const Key & k, Entry *& entry) { !
 int probePoint = hash1(k), hashIncr = hash2(k); !
 do { !
 entry = &table[probePoint]; !
 probePoint = (probePoint + hashIncr) % size; !
 } while (!entry->isEmpty() && entry->key != k); !
 return !entry->isEmpty(); !
}

CPSC 221 Hashing Page 70

A Good Double Hash Function…
•  is quick to evaluate.
•  differs from the original hash function.
•  never evaluates to 0 (mod size).

•  One good choice is to choose a prime R < size

–  hash2(x) = R - (x mod R)

CPSC 221 Hashing Page 71

Double Hashing Example

probes:

insert(55)
55%7 = 6

5 - (55%5) = 5

insert(76)
76%7 = 6

76

3

2

1

0

6

5

4

1

insert(93)
93%7 = 2

insert(40)
40%7 = 5

insert(47)
47%7 = 5

5 - (47%5) = 3

insert(10)
10%7 = 3

47

93

40

76

10 3

2

1

0

6

5

4

1

93

55

40

10 3

2

1

0

6

5

4

2

47

76 76

3

2

1

0

6

5

4

1

93 93

76

3

2

1

0

6

5

4

1

40

93

40

76

3

2

1

0

6

5

4

2

47

•  Using the hash functions h1(x) = x % 7 and h2(x)=5 - (x % 5) insert
the following values using double hashing 76, 93, 40, 47, 10, 55

CPSC 221 Hashing Page 72

The primary hash function is: h1(k) = (2k + 5) mod 11.
The secondary hash function is: h2(k) = 7 – (k mod 7)

Hash these keys, in this order: 12, 44, 13, 88, 23, 94, 11.
Which cell in the array does key 11 hash to?

A. 0
B. 2
C. 3
D. 4
E. 10

0
1
2
3
4
5
6
7
8
9
1
0

Clicker question

CPSC 221 Hashing Page 73

h1(k) = (2k + 5) mod 11. h2(k) = 7 – (k mod 7)

12, 44, 13, 88, 23, 94, 11. Which cell in the array does
key 11 hash to?

0
1
2
3
4
5
6
7
8
9
1
0

Clicker question (answer)

h(12) = (2(12) + 5) % 11 = 7

h(44) = (2(44) + 5) % 11 = 5

h(13) = (2(13) + 5) % 11 = 9

h(88) = (2(88) + 5) % 11 = 5 +7 – 88%7 = 8

h(23) = (2(23) + 5) % 11 = 7 + 7 – 23%7 = 12

h(94) = (2(94) + 5) % 11 = 6

h(11) = (2(11) + 5) % 11 = 5 +2(7 – 11%7) = 11

A. 0
B. 2
C. 3
D. 4
E. 10

12

44

13
88

23

94

11

CPSC 221 Hashing Page 74

Load Factor in Double Hashing
•  For any λ < 1, double hashing will find an empty

slot (given appropriate table size and hash2)
•  Search cost appears to approach optimal (random

hash):
–  successful search:

–  unsuccessful search:

•  No primary clustering and no secondary clustering
•  One extra hash calculation

λ−1
1

λλ −1
1ln1

λ=0.25 λ=0.5 λ=0.75 λ=0.9
Avg # slots searched 1.3 2 4 10

λ=0.25 λ=0.5 λ=0.75 λ=0.9
Avg # slots searched 1.5 1.4 1.8 2.6

CPSC 221 Hashing Page 75

Deleting when using probing
Example:
•  Suppose locations [97] to [101] are occupied in our hash table:

[0] [1] … [97] [98] [99] [100] [101] [102] …

•  Suppose a new key hashes to [97]. Assuming a linear collision

resolution policy, the key goes to 102.

•  Later, suppose we delete the key that was hashed to [98].

•  Add a tombstone (i.e., flag, marker) for 2 reasons:
1.  If searching, keep going when you hit a tombstone.

2.  If inserting, stop and add the item here.

This means that table entries can be occupied, deleted, or free

 dog cat goat owl deer

CPSC 221 Hashing Page 76

The Squished Pigeon Principle

•  An insert using open addressing cannot work
with a load factor of 1 or more.

•  An insert using open addressing with quadratic
probing may not work with a load factor of ½
or more.

•  Whether you use chaining or open addressing,
large load factors lead to poor performance!

•  How can we relieve the pressure on the
pigeons?

Hint: think resizable arrays!

CPSC 221 Hashing Page 77

Rehashing

•  When the load factor gets “too large” (over a constant
threshold on λ), rehash all the elements into a new,
larger table:
–  takes O(n), but amortized O(1) as long as we (just about)

double table size on the resize
–  spreads keys back out, may drastically improve performance
–  gives us a chance to retune parameterized hash functions
–  avoids failure for open addressing techniques
–  allows arbitrarily large tables starting from a small table
–  clears out lazily deleted items

CPSC 221 Hashing Page 78

Practice: Open Addressing
(Try linear, quadratic, %7/(1-%5) double hashing.)

Insert 2
Insert 5
Insert 4
Insert 10
Insert 73
Find 10
Insert 14
Resize/Rehash
Insert -1
Insert 3

3

2

1

0

6

5

4

CPSC 221 Hashing Page 79

Application: De-Duplication
•  Given a “stream” of objects

– Linear scan through a huge file
– Objects arriving in real time

•  Goal: Remove duplicates (keep track of unique
objects)
– Report unique visitors to a web site
– Avoid duplicates in search results

•  Solution: When new object x arrives, look up h(x)
and if not found insert.

CPSC 221 Hashing Page 80

Application: The 2-Sum Problem
•  Given: Unsorted array of integers A, and a target sum t
•  Goal: Determine whether or not there are two numbers x

and y in A such that x+y=t

•  Naïve solution: O(n2) exhaustive search
•  Better solution:

–  Sort A O(n lg n)
–  For each x in A look for t-x O(n lg n)

•  Amazing solution:
–  Insert elements of A into hash table H O(n)
–  For each x in A, lookup t-x in H O(n)

CPSC 221 Hashing Page 81

CPSC Administrative Notes
•  Lab 10 Parallelism

– Starting tomorrow Mar 26 – Apr 2
– Marking Apr 7 – Apr 10 (Also doing Concept

Inventory)
– Your work on this concept inventory helps us improve

our courses! In particular, we use the inventory to
track how our approach to teaching foundations of
computing concepts affects students' learning over
time.

•  PeerWise Call #5 due Apr 2 (5pm)
–  The deadline for contributing to your “Answer Score”

and “Reputation score” is Monday April 20.

CPSC 221 Hashing Page 82

CPSC Administrative Notes
•  Programming project #2 due

– Apr Tue, 07 Apr @ 21.00
– How to work on programming projects in pairs?

•  We're making the following change to the old
scheme, which provides a great opportunity to
improve your final grade! The main purpose of
this change is to give you more incentive to study
for the final.
– Midterm Exam 10%
– Midterm or Final Exam (your best) 10%

CPSC 221 Hashing Page 83

The Pigeonhole Principle (Full Glory)
•  Let X and Y be finite sets with |X| = n, |Y| = m, and
k = ⎡n/m⎤.

If f : X → Y, then ∃ k values x1, x2, …, xk ∈ X such that
f(x1) = f(x2) = … f(xk).

Informally: If n pigeons fly into m holes, at least 1 hole
contains at least k = ⎡n/m⎤ pigeons.

Proof: Assume there’s no such hole. Then, there are at most
(⎡n/m⎤ – 1)*m pigeons in all the holes, which is fewer than
(n/m + 1 – 1)*m = n/m*m = n, but that is a contradiction.
QED

CPSC 221 Hashing Page 84

Pathological Data Sets
•  For good hash performance, we need a good hash

function
– Spreads data evenly across buckets

•  Ideal: Use super-clever hash function guaranteed
to spread every data set out evenly

•  Problem: Such a hash function does not exist
– For every hash function, there is a pathological data

set

CPSC 221 Hashing Page 85

Pathological Data Sets
•  Reason

– Fix a hash function h
– Let U be the potential number of keys
– Let n be the table size

•  There exists an array cell i, such that at least U/n
elements hash to i under h

•  If data set drawn only from these elements, then
everything collides.

•  This data set could be quite large since U >> n

CPSC 221 Hashing Page 86

Overview of Universal Hashing
•  For every deterministic hash function, there is a

pathological data set.
– Solution: Do not commit to a specific hash function

•  Use randomization

– Design a family H of hash functions, such that for
every data set S, most functions h ∈ H spread S out
“pretty evenly”

CPSC 221 Hashing Page 87

Learning Goals revisited
After this unit, you should be able to:
•  Define various forms of the pigeonhole principle;

recognize and solve the specific types of counting and
hashing problems to which they apply.

•  Provide examples of the types of problems that can
benefit from a hash data structure.

•  Compare and contrast open addressing and chaining.
•  Evaluate collision resolution policies.
•  Describe the conditions under which hashing can

degenerate from O(1) expected complexity to O(n).
•  Identify the types of search problems that do not benefit

from hashing (e.g. range searching) and explain why.
•  Manipulate data in hash structures both irrespective of

implementation and also within a given implementation.

