
A Sophomoric Introduction to Shared-Memory
Parallelism and Concurrency

Lecture 1
Introduction to Multithreading & Fork-Join Parallelism

Steve Wolfman, based on work by Dan Grossman
(with tiny tweaks by Alan Hu)

Learning Goals

By the end of this unit, you should be able to:
•Distinguish between parallelism—improving performance by
exploiting multiple processors—and concurrency—managing
simultaneous access to shared resources.
•Explain and justify the task-based (vs. thread-based) approach to
parallelism. (Include asymptotic analysis of the approach and its
practical considerations, like "bottoming out" at a reasonable level.)
•Define “map” and “reduce”, and explain how they can be useful.
•Define work, span, speedup, and Amdahl’s Law.
•Write simple fork-join and divide-and-conquer programs in C++11
and with OpenMP.

2Sophomoric Parallelism and Concurrency, Lecture 1

Outline

• History and Motivation
• Parallelism and Concurrency Intro
• Counting Matches

– Parallelizing
– Better, more general parallelizing

3Sophomoric Parallelism and Concurrency, Lecture 1

4

Chart by Wikimedia user: Wgsimon
Creative Commons Attribution-Share Alike 3.0 Unported

What happens as the
transistor count goes up?

5

Chart by Wikimedia user: Wgsimon
Creative Commons Attribution-Share Alike 3.0 Unported

(zoomed in)

(Goodbye to) Sequential Programming

One thing happens at a time.
The next thing to happen is “my” next instruction.

Removing this assumption creates major challenges & opportunities
– Programming: Divide work among threads of execution and

coordinate (synchronize) among them
– Algorithms: How can parallel activity provide speed-up?

(more throughput: work done per unit time)
– Data structures: May need to support concurrent access

(multiple threads operating on data at the same time)

6Sophomoric Parallelism and Concurrency, Lecture 1

A simplified view of history
Writing multi-threaded code in common languages like Java and C

is more difficult than single-threaded (sequential) code.

So, as long as possible (~1980-2005), desktop computers’ speed
running sequential programs doubled every ~2 years.

Although we keep making transistors/wires smaller,
we don’t know how to continue the speed increases:
– Increasing clock rate generates too much heat
– Relative cost of memory access is too high

Solution, not faster but smaller and more…

7Sophomoric Parallelism and Concurrency, Lecture 1

(Sparc T3 micrograph
from Oracle; 16 cores.)

A simplified view of history
Writing multi-threaded code in common languages like Java and C

is more difficult than single-threaded (sequential) code.

So, as long as possible (~1980-2005), desktop computers’ speed
running sequential programs doubled every ~2 years.

Although we keep making transistors/wires smaller,
we don’t know how to continue the speed increases:
– Increasing clock rate generates too much heat
– Relative cost of memory access is too high

Solution, not faster but smaller and more…

8Sophomoric Parallelism and Concurrency, Lecture 1

What to do with multiple processors?

• Run multiple totally different programs at the same time
(Already doing that, but with time-slicing.)

• Do multiple things at once in one program
– Requires rethinking everything from asymptotic complexity to

how to implement data-structure operations

9Sophomoric Parallelism and Concurrency, Lecture 1

Outline

• History and Motivation
• Parallelism and Concurrency Intro
• Counting Matches

– Parallelizing
– Better, more general parallelizing

10Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes, Parallelism

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers to peel
10,000 potatoes?

11Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes, Parallelism

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers to peel
10,000 potatoes?

12Sophomoric Parallelism and Concurrency, Lecture 1

Parallelism: using extra resources to
solve a problem faster.

Note: these definitions of “parallelism” and
“concurrency” are not yet standard but the
perspective is essential to avoid confusion!

Parallelism Example
Parallelism: Use extra computational resources to solve a problem

faster (increasing throughput via simultaneous execution)

Pseudocode for counting matches
– Bad style for reasons we’ll see, but may get roughly 4x speedup

13Sophomoric Parallelism and Concurrency, Lecture 1

int cm_parallel(int arr[], int len, int target){
res = new int[4];
FORALL(i=0; i < 4; i++) { //parallel iterations

res[i] = count_matches(arr + i*len/4,
(i+1)*len/4 – i*len/4,
target);

}
return res[0]+res[1]+res[2]+res[3];

}
int count_matches(int arr[], int len, int target)

{
// normal sequential code to count matches of
// target.

}

KP Duty: Peeling Potatoes, Concurrency

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 2 people with 1 potato peeler to peel 10,000
potatoes?

14Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes, Concurrency

How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 2 people with 1 potato peeler to peel 10,000
potatoes?

15Sophomoric Parallelism and Concurrency, Lecture 1

Concurrency: Correctly and efficiently
manage access to shared resources

(Better example: Lots of cooks in one
kitchen, but only 4 stove burners.
Want to allow access to all 4 burners,
but not cause spills or incorrect
burner settings.) Note: these definitions of “parallelism” and

“concurrency” are not yet standard but the
perspective is essential to avoid confusion!

Concurrency Example
Concurrency: Correctly and efficiently manage access to shared

resources (from multiple possibly-simultaneous clients)

Pseudocode for a shared chaining hashtable
– Prevent bad interleavings (correctness)
– But allow some concurrent access (performance)

16Sophomoric Parallelism and Concurrency, Lecture 1

template <typename K, typename V>
class Hashtable<K,V> {

…
void insert(K key, V value) {

int bucket = …;
prevent-other-inserts/lookups in table[bucket]
do the insertion
re-enable access to table[bucket]

}
V lookup(K key) {

(like insert, but can allow concurrent
lookups to same bucket)

}
}

Will return to this in a few lectures!

Models of Computation

• When you first learned to program in a sequential language like
Java, C, C++, etc., you had an abstract model of a computer:
– CPU processes data
– Memory stores data

Models of Computation

• When you first learned to program in a sequential language like
Java, C, C++, etc., you had an abstract model of a computer:
– CPU processes data

• Fetch-Decode-Execute Cycle: Grab instructions one at a
time, and do them.

• Program Counter: Keep track of where you are in the
code.

– Memory stores data
• Local Variables
• Global Variables
• Heap-Allocated Objects

Models of Computation

• When you first learned to program in a sequential language like
Java, C, C++, etc., you had an abstract model of a computer:
– CPU processes data

• Fetch-Decode-Execute Cycle: Grab instructions one at a
time, and do them.

• Program Counter: Keep track of where you are in the
code. (Also a call stack to track of function calls.)

– Memory stores data
• Local Variables (Stored in stack frame on call stack).
• Global Variables
• Heap-Allocated Objects

Models of Parallel Computation

• There are many different ways to model parallel computation,
which model which of these are shared or distinct…
– CPU processes data

• Fetch-Decode-Execute Cycle: Grab instructions one at a
time, and do them.

• Program Counter: Keep track of where you are in the code.
(Also a call stack to track of function calls.)

– Memory stores data
• Local Variables (Stored in stack frame on call stack).
• Global Variables
• Heap-Allocated Objects

Models of Parallel Computation

• In this course, we will work with the shared memory model of
parallel computation.
– This is currently the most widely used model.

• Communicate by reading/writing variables – nothing special
needed.

• Therefore, fast, lightweight communication
• Close to how hardware behaves on small multiprocessors

– However, there are good reasons why many people argue that
this isn’t a good model over the long term:

• Easy to make subtle mistakes
• Not how hardware behaves on big multiprocessors –

memory isn’t truly shared.

OLD Memory Model

22Sophomoric Parallelism and Concurrency, Lecture 1

…

pc=…

The Stack

The Heap

Local variables
Control flow info

Dynamically
allocated

data.

(pc = program counter, address of current instruction)

Shared Memory Model
We assume (and C++11 specifies) shared memory w/explicit threads

NEW story:

23Sophomoric Parallelism and Concurrency, Lecture 1

The Heap

Dynamically
allocated

data.

…

pc=…

…

pc=…

…

pc=…

…

PER THREAD:
Local variables
Control flow info

A Stack

A Stack

A Stack

Shared Memory Model
We assume (and C++11 specifies) shared memory w/explicit threads

NEW story:

24Sophomoric Parallelism and Concurrency, Lecture 1

The Heap

Dynamically
allocated

data.

…

pc=…

…

pc=…

…

pc=…

…

PER THREAD:
Local variables
Control flow info

A Stack

A Stack

A Stack

Note: we can share local variables by sharing pointers to their locations.

Other models
We will focus on shared memory, but you should know several

other models exist and have their own advantages

• Message-passing: Each thread has its own collection of objects.
Communication is via explicitly sending/receiving messages
– Cooks working in separate kitchens, mail around ingredients

• Dataflow: Programmers write programs in terms of a DAG.
A node executes after all of its predecessors in the graph
– Cooks wait to be handed results of previous steps

• Data parallelism: Have primitives for things like “apply function
to every element of an array in parallel”

25Sophomoric Parallelism and Concurrency, Lecture 1

Outline

• History and Motivation
• Parallelism and Concurrency Intro
• Counting Matches

– Parallelizing
– Better, more general parallelizing

26Sophomoric Parallelism and Concurrency, Lecture 1

Problem: Count Matches of a Target
• How many times does the number 3 appear?

27Sophomoric Parallelism and Concurrency, Lecture 1

3 5 9 3 2 0 4 6 1 3

// Basic sequential version.
int count_matches(int array[], int len, int target) {

int matches = 0;
for (int i = 0; i < len; i++) {

if (array[i] == target)
matches++;

}
return matches;

}

How can we take advantage of parallelism?

First attempt (wrong.. but grab the code!)

28Sophomoric Parallelism and Concurrency, Lecture 1

void cmp_helper(int * result, int array[],
int lo, int hi, int target) {

*result = count_matches(array + lo, hi - lo, target);
}

int cm_parallel(int array[], int len, int target) {
int divs = 8;

std::thread workers[divs];
int results[divs];
for (int d = 0; d < div; d++)

workers[d] = std::thread(&cmp_helper,
&results[d], array, (d*len)/divs,
((d+1)*len)/divs, target);

int matches = 0;
for (int d = 0; d < divs; d++)

matches += results[d];

return matches;
}

Notice: we use a pointer to shared memory to communicate across threads!

Shared memory?

Beware sharing memory like the pointer to an element of the
matchesPer array!

– Race condition: What happens if multiple threads try to write it
at once (or one tries to write while others read)?
KABOOM (possibly silently!)

– Scope problems: What happens if the child thread is still using
the variable when it is deallocated (goes out of scope) in the
parent? KABOOM (possibly silently!)

So… what’s C++’s problem, and why did it give us an error?

29Sophomoric Parallelism and Concurrency, Lecture 1

Join (not the most descriptive word)

• The thread class defines various methods you could not
implement on your own
– For example, the constructor calls its argument in a new thread

• The join method helps coordinate this kind of computation
– Caller blocks until/unless the receiver is done executing

(i.e., its constructor’s argument function returns)
– Else we have a race condition accessing matchesPer[d]

• This style of parallel programming is called “fork/join”

That should kill two birds with one stone.
Fix the code and do some timings!

30Sophomoric Parallelism and Concurrency, Lecture 1

First attempt (patched!)

31Sophomoric Parallelism and Concurrency, Lecture 1

int cm_parallel(int array[], int len, int target) {
int divs = 8;

std::thread workers[divs];
int results[divs];
for (int d = 0; d < div; d++)

workers[d] = std::thread(&cmp_helper, &results[d],
array, (d*len)/divs, ((d+1)*len)/divs,
target);

int matches = 0;
for (int d = 0; d < divs; d++) {

workers[d].join();
matches += results[d];

}

return matches;
}

Outline

• History and Motivation
• Parallelism and Concurrency Intro
• Counting Matches

– Parallelizing
– Better, more general parallelizing

32Sophomoric Parallelism and Concurrency, Lecture 1

Success! Are we done?

Answer these:
– What happens if I run my code on an old-fashioned one-core

machine?

– What happens if I run my code on a machine with more
cores in the future?

(Done? Think about how to fix it and do so in the code.)

33Sophomoric Parallelism and Concurrency, Lecture 1

Chopping (a Bit) Too Fine

34Sophomoric Parallelism and Concurrency, Lecture 1

1
2

s
e
c
s

o
f

w
o
r
k

3
s

We thought there were 4
processors available.

3
s

3
s

3
s

But there’s only 3.
Result?

Chopping Just Right

35Sophomoric Parallelism and Concurrency, Lecture 1

1
2

s
e
c
s

o
f

w
o
r
k

4
s

We thought there were 3
processors available. And there are.

Result?

4
s

4
s

Success! Are we done?

Answer these:
– What happens if I run my code on an old-fashioned one-core

machine?

– What happens if I run my code on a machine with more
cores in the future?

– Let’s fix these!

(Note: std::thread::hardware_concurrency() and omp_get_num_procs().)

36Sophomoric Parallelism and Concurrency, Lecture 1

Success! Are we done?

Answer these:
– Might your prof somehow get better parallel performance

than you? Why? (Note: your prof has arranged for a
machine that no one else can log into. Nyah, nyah!)

– Might your performance vary as the whole class tries
problems, depending on when you start your run?

(Done? Think about how to fix it and do so in the code.)

37Sophomoric Parallelism and Concurrency, Lecture 1

Is there a “Just Right”?

38Sophomoric Parallelism and Concurrency, Lecture 1

1
2

s
e
c
s

o
f

w
o
r
k

4
s

We thought there were 3
processors available. And there are.

Result?

4
s

4
s

I’m busy.

I’m busy.

Chopping So Fine It’s Like Sand or Water

39Sophomoric Parallelism and Concurrency, Lecture 1

1
2

s
e
c
s

o
f

w
o
r
k

We chopped into lots of
pieces. And there are a few processors.

Result?

I’m busy.

I’m busy.

(of course, we can’t predict the busy times!)

A Better Approach
Counterintuitive solution: use far more threads than # of processors

– For constant-factor reasons, we will abandon C++’s threads.
From here on out, we call these “tasks” instead b/c they’re
assignable to threads but not necessarily threads themselves.

40Sophomoric Parallelism and Concurrency, Lecture 1

ans0 ans1 … ansN
ans

1. Forward-portable: Lots of helpers each doing a small task.
2. Processors available: Hand out tasks as you go

• If 3 processors available and have 100 tasks, then ignoring
constant-factor overheads, extra time is < 3%

3. Load imbalance: If one task actually takes much more time?
No problem if scheduled early enough, and variation (factor of 10x?)
probably small if tasks are small

Success! Are we done?

Answer these:
– Might your prof somehow get better parallel performance

than you? Why? (Note: your prof has arranged for a
machine that no one else can log into. Nyah, nyah!)

– Might your performance vary as the whole class tries
problems, depending on your typing speed?

– Let’s fix these!

41Sophomoric Parallelism and Concurrency, Lecture 1

Chopping Too Fine Again

42Sophomoric Parallelism and Concurrency, Lecture 1

1
2

s
e
c
s

o
f

w
o
r
k

We chopped into n pieces
(n == array length). Result?

KP Duty: Peeling Potatoes,
Parallelism Remainder
How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 100 people with 100 potato peelers to peel
10,000 potatoes?

43Sophomoric Parallelism and Concurrency, Lecture 1

KP Duty: Peeling Potatoes,
Parallelism Problem
How long does it take a person to peel one potato? Say: 15s
How long does it take a person to peel 10,000 potatoes?
~2500 min = ~42hrs = ~one week full-time.

How long would it take 10,000 people with 10,000 potato peelers to
peel 10,000 potatoes?

How about 5,000 people with 5,000 peelers?

44Sophomoric Parallelism and Concurrency, Lecture 1

OpenMP Library

• Even with all this care, C++11’s threads are usually too
“heavyweight” (implementation dependent).

• OpenMP is a standard library that provides very lightweight
threads, so we can chop tasks up very finely.

• We will see OpenMP code soon, but first, we want to see a better
way to divide up a job into smaller tasks…

45Sophomoric Parallelism and Concurrency, Lecture 1

How Do We Infect the Living World?

Problem: A group of (non-Computer Scientist) zombies asks for
your help infecting the living. Each time a zombie bites a human, it
also gets to transfer a program.

Currently, the new zombie in town has the humans line up and
proceeds from one to the next, biting and transferring the null
program (do nothing, except say “Eat Brains!!”).

Analysis?

How do they do better?

46Sophomoric Parallelism and Concurrency, Lecture 1

Asymptotic analysis
was so much easier

with a brain!

How Do We Divide Up the Work?

The metaphor is not perfect. Each time we “infect” a processor, it
goes off and does useful work. However, the analysis still holds:

Let n be the array size and P be the number of processors.

Time to divide up/recombine (linear loop version):
(n steps to perform, and each depends on the last)

Time to solve the subproblems (linear loop version):
(n steps to perform, independent of each other)

47Sophomoric Parallelism and Concurrency, Lecture 1

A better idea

The zombie apocalypse is straightforward using divide-and-conquer
parallelism for the recursive calls

48Sophomoric Parallelism and Concurrency, Lecture 1

+ + + + + + + +

+ + + +

+ +
+

Note: a natural way to code it is to fork a bunch of tasks, join them, and
get results.
But… the natural zombie way is to bite one human and then each “recurse”.
As is so often the case, the zombie way is better!

How Do We Divide Up the Work?

The metaphor is not perfect. Each time we “infect” a processor, it
goes off and does useful work. However, the analysis still holds:

Let n be the array size and P be the number of processors.

Time to divide up/recombine (divide-and-conquer version):
(n steps to perform, arranged in a balanced tree)

Time to solve the subproblems (divide-and-conquer version):
(n steps to perform, independent of each other)

49Sophomoric Parallelism and Concurrency, Lecture 1

Divide-and-conquer really works
• The key is divide-and-conquer parallelizes the result-combining

– If you have enough processors, total time is height of the tree:
O(log n) (optimal, exponentially faster than sequential O(n))

– Next lecture: study reality of P << n processors

• Will write all our parallel algorithms in this style
– But using a special library engineered for this style

• Takes care of scheduling the computation well
– Often relies on operations being associative (like +)

50Sophomoric Parallelism and Concurrency, Lecture 1

+ + + + + + + +

+ + + +

+ +
+

Being realistic

Creating one task per element still so expensive that it wipes out
parallelism savings.

So, use a sequential cutoff, typically ~500-1000. (This is like
switching from quicksort to insertion sort for small subproblems.)

Exercise: If there are 1,000,000 (~220) elements in the array and
our cutoff is 1, about how many tasks do we create? (I.e., nodes in
the tree.)

Exercise: If there are 1,000,000 (~220) elements in the array and
our cutoff is 1,000 (~210), about how many tasks do we create?

51Sophomoric Parallelism and Concurrency, Lecture 1

That library, finally

• Even with all this care, C++11’s threads are usually too
“heavyweight” (implementation dependent).

• OpenMP 3.0’s main contribution was to meet the needs of divide-
and-conquer fork-join parallelism
– Available in recent g++’s.
– See provided code and notes for details.
– Efficient implementation is a fascinating but advanced topic!

52Sophomoric Parallelism and Concurrency, Lecture 1

Example: final version

53Sophomoric Parallelism and Concurrency, Lecture 1

int cmp_helper(int array[], int len, int target) {
const int SEQUENTIAL_CUTOFF = 1000;
if (len <= SEQUENTIAL_CUTOFF)

return count_matches(array, len, target);

int left, right;
#pragma omp task untied shared(left)

left = cmp_helper(array, len/2, target);
right = cmp_helper(array+len/2, len-(len/2), target);

#pragma omp taskwait

return left + right;
}

int cm_parallel(int array[], int len, int target) {
int result;

#pragma omp parallel
#pragma omp single

result = cmp_helper(array, len, target);

return result;
}

OMP fork/join Cheat Sheet

• Just before a statement/block where you want parallelism:
#pragma omp parallel
#pragma omp single

• Just before a statement/block that is forking off a new task:
#pragma omp task shared(…)

where you list the result variables that are coming back.
• When you want to join (wait for) the other tasks:

#pragma omp taskwait

• Pragmas are instructions to the compiler. Code will still run
even if pragmas are ignored.

C++11 fork/join Cheat Sheet

• C++11 threads are much more expensive than OMP tasks, so
you’ll need a much larger sequential cut-off.

• To fork a new thread, create a C++11 std::thread object and
pass it the function to run in its own thread:

std::thread foo;
foo = std::thread(&function_name, arguments, …);

• When you want to join (wait for) a thread:
foo.join();

