
CPSC 221: Data Structures
Hashing

Alan J. Hu
(Using mainly Steve Wolfman’s Old Slides)

Learning Goals
After this unit, you should be able to:
• Define various forms of the pigeonhole principle;

recognize and solve the specific types of counting and
hashing problems to which they apply.

• Provide examples of the types of problems that can benefit
from a hash data structure.

• Compare and contrast open addressing and chaining.
• Evaluate collision resolution policies.
• Describe the conditions under which hashing can

degenerate from O(1) expected complexity to O(n).
• Identify the types of search problems that do not benefit

from hashing (e.g. range searching) and explain why.
• Manipulate data in hash structures both irrespective of

implementation and also within a given implementation. 2

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

Reminder: Dictionary ADT
• Dictionary operations

– create
– destroy
– insert
– find
– delete

• Stores values associated with user-specified keys
– values may be any (homogenous) type
– keys may be any (homogenous) comparable type

• midterm
– would be tastier with

brownies
• prog-project

– so painful… who invented
templates?

• wolf
– the perfect mix of oomph

and Scrabble value

insert

find(wolf)

• brownies
- tasty

• wolf
- the perfect mix of oomph

and Scrabble value

Implementations So Far

• Unsorted list O(1) O(n) O(n)
• Sorted Array O(n) O(log n) O(n)
• AVL Trees O(log n) O(log n) O(log n)
• B+Trees O(log n) O(log n) O(log n)
• …

insert deletefind

Implementations So Far

• Unsorted list O(1) O(n) O(n)
• Sorted Array O(n) O(log n) O(n)
• AVL Trees O(log n) O(log n) O(log n)
• B+Trees O(log n) O(log n) O(log n)

• Array: O(1) O(1) O(1)
But only for the special case of integer keys
between 0 and size-1

insert deletefind

How about O(1) insert/find/delete for any key type?

Hash Table Goal

some
data

…

We can do:

a[2] = some data

k-1

3

2

1

0

some
data

…

We want to do:

a[“Steve”] = some data

“Martin”

“Ed”

“Steve”

“Kim”

“Alan”

“Will”

Aside: How do arrays do that?

some
data

…

We can do:

a[2] = some data

k-1

3

2

1

0 Q: If I know houses on a certain block in
Vancouver are on 33-foot-wide lots,
where is the 5th house?
A: It’s from (5-1)*33 to 5*33 feet from
the start of the block.

element_type a[SIZE];

Q: Where is a[i]?
A: start of a + i*sizeof(element_type)

Aside: This is why array elements have to
be the same size, and why we start the
indices from 0.

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

Hash Table Approach

But… is there a problem in this pipe-dream?

f(x)

Alan
Steve
Kim
Will

Ed

Hash Table
Dictionary Data Structure

• Hash function: maps keys
to integers
– result: can quickly find the

right spot for a given entry

• Unordered and sparse
table
– result: cannot efficiently list

all entries, definitely cannot
efficiently list all entries in
order or list entries between
one value and another (a
“range” query)

f(x)
Alan

Steve
Kim
Will

Ed

Hash Table Terminology

f(x)

Alan
Steve
Kim
Will

Ed

hash function

collision

keys
load factor λ = # of entries in table

tableSize

Hash Table Code
First Pass

Value & find(Key & key) {
int index = hash(key) % tableSize;
return Table[index];

}

What should the hash
function be?

What should the table size
be?

How should we resolve
collisions?

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

A Good (Perfect?)
Hash Function…

…is easy (fast) to compute (O(1) and fast in practice).
…distributes the data evenly (hash(a) % size ≠ hash(b) % size).
…uses the whole hash table (for all 0 ≤ k < size, there’s an i

such that hash(i) % size = k).

Aside: a Bit of 121 Theory

…is easy (fast) to compute (O(1) and fast in practice).
…distributes the data evenly (hash(a) % size ≠ hash(b) % size).
…uses the whole hash table (for all 0 ≤ k < size, there’s an i

such that hash(i) % size = k).

Ideally, one-to-
one (injective)

Onto (surjective)

Good Hash Function for Integers
• Choose

– tableSize is prime
– hash(n) = n

• Example:
– tableSize = 7

insert(4)
insert(17)
find(12)
insert(9)
delete(17)

3

2

1

0

6

5

4

Good Hash Function for Strings?
• Let s = s0s1s2s3…sn-1: choose

– hash(s) = s0 + s131 + s2312 + s3313 + … + sn-131n-1

• Problems:
– hash(“really, really big”) = well… something really, really big

– hash(“one thing”) % 31 = hash(“other thing”) % 31

Think of the string as a base 31 number.

Why 31? It’s prime. It’s not a power of 2. It works pretty well.

Making the String Hash
Easy to Compute

• Use Horner’s Rule
int hash(String s) {
h = 0;
for (i = s.length() - 1; i >= 0; i--) {
h = (si + 31*h) % tableSize;

}
return h;

}

Making the String Hash
Cause Few Conflicts

• Ideas?

Making the String Hash
Cause Few Conflicts

• Ideas?
Make sure tableSize is not a multiple of 31.

Hash Function Summary

• Goals of a hash function
– reproducible mapping from key to table entry
– evenly distribute keys across the table
– separate commonly occurring keys (neighboring keys?)
– complete quickly

• Sample hash functions:
– h(n) = n % size
– h(n) = string as base 31 number % size
– Multiplication hash: compute percentage through the table
– Universal hash function #1: dot product with random vector
– Universal hash function #2: next pseudo-random number

How to Design a Hash Function

• Know what your keys are or
• Study how your keys are distributed.
• Try to include all important information in a key

in the construction of its hash.
• Try to make “neighboring” keys hash to very

different places.
• Prune the features used to create the hash until it

runs “fast enough” (application dependent).

How to Design a Hash Function

• Know what your keys are or
• Study how your keys are distributed.
• Try to include all important information in a key

in the construction of its hash.
• Try to make “neighboring” keys hash to very

different places.
• Prune the features used to create the hash until it

runs “fast enough” (application dependent).

In real life, use a standard hash
function that people have already
shown works well in practice!

Extra Slides:
Some Other Hashing Methods

Good Hashing:
Multiplication Method

• Hash function is defined by some positive number A
hA(k) = (A * k) % size

• Example: A = 7, size = 10
hA(50) = 7*50 mod 10 = 350 mod 10 = 0

– choose A to be relatively prime to size
– more computationally intensive than a single mod
– (This is simplified from a more general, theoretical case.)

Good Hashing:
Universal Hash Function

• Parameterized by prime size and vector:
a = <a0 a1 … ar> where 0 <= ai < size

• Represent each key as r + 1 integers where ki < size
– size = 11, key = 39752 ==> <3,9,7,5,2>
– size = 29, key = “hello world” ==>

<8,5,12,12,15,23,15,18,12,4>

ha(k) = sizeka
r

i
ii mod

0

∑
=

Universal Hash Function:
Example

• Context: hash strings of length 3 in a table of size 131
let a = <35, 100, 21>
ha(“xyz”) = (35*120 + 100*121 + 21*122) % 131

= 129

Universal Hash Function

• Strengths:
– works on any type as long as you can form ki’s
– if we’re building a static table, we can try many a’s
– a random a has guaranteed good properties no matter

what we’re hashing
• Weaknesses

– must choose prime table size larger than any ki

– slower to compute than simpler hash functions

Alan’s Aside: Bit-Level Universal
Hash Function

• Strengths:
– works on any type as long as you can form ki’s
– if we’re building a static table, we can try many a’s
– a random a has guaranteed good properties no matter

what we’re hashing
• Weaknesses

– must choose prime table size larger than any ki

Use the bits of the key!

Can use a power of 2

Good Hashing:
Bit-Level Universal Hash Function

• Parameterized by prime size and vector:
a = <a0 a1 … ar> where 0 <= ai < size

• Represent each key as r + 1 bits

ha(k) = sizeka
r

i
ii mod

0

∑
=

Alternate Universal Hash Function

• Parameterized by p, a, and b:
– p is a big prime (several times bigger than table size)
– a and b are arbitrary integers in [1,p-1]

Hp,a,b(x) = () pbxa mod+⋅

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

The Pigeonhole Principle
(informal)

You can’t put k+1 pigeons into k holes without
putting two pigeons in the same hole.

This place
just isn’t coo

anymore.

Image by en:User:McKay,
used under CC attr/share-alike.

http://en.wikipedia.org/wiki/User:McKay

Collisions

• Pigeonhole principle says we can’t avoid all collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

Collisions

• Pigeonhole principle says we can’t avoid all collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

Alan’s Aside: This is actually somewhat misleading.
Collisions are a problem even when m < n.
So this tie-in of collisions and the pigeonhole principle
isn’t really fundamental. It’s just a nice chance to
introduce the pigeonhole principle…

The Pigeonhole Principle
(formal)

Let X and Y be finite sets where |X| > |Y|.
If f : X→Y, then f(x1) = f(x2) for some x1, x2 in X,

where x1 ≠ x2.

X Y

f

x1

x2

f(x1) = f(x2)

Now
that’s coo!

The Pigeonhole Principle
(Example #1)

Suppose we have 5 colours of Halloween candy, and
that there’s lots of candy in a bag. How many
pieces of candy do we have to pull out of the bag
if we want to be sure to get 2 of the same colour?

a. 2
b. 4
c. 6
d. 8
e. None of these

The Pigeonhole Principle (?)
(Example #2)

If there are 1000 pieces of each colour, how many
do we need to pull to guarantee that we’ll get 2
black pieces of candy (assuming that black is one
of the 5 colours)?

a. 2
b. 6
c. 4002
d. 5001
e. None of these

The Pigeonhole Principle (No!)
(Example #2)

If there are 1000 pieces of each colour, how many
do we need to pull to guarantee that we’ll get 2
black pieces of candy (assuming that black is one
of the 5 colours)?

a. 2
b. 6
c. 4002
d. 5001
e. None of these

The PhP doesn’t tell us which hole has two pigeons.

The Pigeonhole Principle
(Example #3)

If 5 points are placed in a 6cm x 8cm rectangle,
argue that there are two points that are not more
than 5 cm apart.

6cm

8cm

Hint: How long
is the diagonal?

The Pigeonhole Principle
(Example #4)

For integers a, b, we write a divides b as a|b,
meaning there exists integer c such that b = ac.

Consider n +1 distinct positive integers, each ≤ 2n.
Show that one of them must divide one of the others.

For example, if n = 4, consider the following sets:

{1, 2, 3, 7, 8} {2, 3, 4, 7, 8} {2, 3, 5, 7, 8}

Hint: Any integer can be written as q*2k where k is a non-
negative integer and q is odd. E.g., 129 = 20 * 129; 60 = 22 * 15.

The Pigeonhole Principle
(Full Glory)

Let X and Y be finite sets with |X| = n, |Y| = m, and
k = n/m.

If f : X → Y, then there exist k values x1, x2, …, xk
in X such that f(x1) = f(x2) = … =f(xk).

Informally: If n pigeons fly into m holes, at least 1
hole contains at least k = n/m pigeons.

Proof: Assume there’s no such hole. Then, there are
at most (n/m – 1)*m pigeons in all the holes,
which is fewer than (n/m + 1 – 1)*m = n/m*m = n,
but that is a contradiction. QED

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

Collision Resolution

• Pigeonhole principle says we can’t avoid all collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

• What do we do when two keys hash to the same entry?
– chaining: put little dictionaries in each entry

– open addressing: pick a next entry to try
shove extra pigeons in one hole!

(Alan Aside) Collision Resolution

• Pigeonhole principle says we can’t avoid all collisions
– try to hash without collision m keys into n slots with m > n
– try to put 6 pigeons into 5 holes

• What do we do when two keys hash to the same entry?
– chaining (AKA open hashing or closed addressing): put little

dictionaries in each entry

– open addressing (AKA closed hashing): pick a next entry to
try

shove extra pigeons in one hole!

3

2

1

0

6

5

4

a d

e b

c

Hashing with Chaining

• Put a little dictionary at
each entry
– choose type as

appropriate
– common case is

unordered linked list
(chain)

• Properties
– λ can be greater than 1
– performance degrades

with length of chains

h(a) = h(d)
h(e) = h(b)

Chaining Code

Dictionary & findBucket(const Key & k) {
return table[hash(k)%table.size];

}

void insert(const Key & k,
const Value & v)

{
findBucket(k).insert(k,v);

}

void delete(const Key & k)
{

findBucket(k).delete(k);
}

Value & find(const Key & k)
{

return findBucket(k).find(k);
}

Load Factor in Chaining

• Search cost
– unsuccessful search:

– successful search:

• Desired load factor:

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

Open Addressing / Closed Hashing

What if we only allow one key at
each entry?
– two objects that hash to the same

spot can’t both go there
– first one there gets the spot
– next one must go in another spot

• Properties
– λ ≤ 1
– performance degrades with

difficulty of finding right spot

a

c

e3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b

Probing
• Probing how to:

– First probe - given a key k, hash to h(k)
– Second probe - if h(k) is occupied, try h(k) + f(1)
– Third probe - if h(k) + f(1) is occupied, try h(k) + f(2)
– And so forth

• Probing properties
– the ith probe is to (h(k) + f(i)) mod size where f(0) = 0

– if i reaches size, the insert has failed
– depending on f(), the insert may fail sooner
– long sequences of probes are costly!

X-FILES

Linear Probing

• Probe sequence is
– h(k) mod size
– h(k) + 1 mod size
– h(k) + 2 mod size
– …

• findEntry using linear probing:

f(i) = i

bool findEntry(const Key & k, Entry *& entry) {
int probePoint = hash1(k);
int i=0;
do {
entry = &table[(probePoint+(i++)) % size];

} while (!entry->isEmpty() && entry->key != k);
return !entry->isEmpty();

}

Linear Probing (More Efficient Code)

• Probe sequence is
– h(k) mod size
– h(k) + 1 mod size
– h(k) + 2 mod size
– …

• findEntry using linear probing:

f(i) = i

bool findEntry(const Key & k, Entry *& entry) {
int probePoint = hash1(k);
do {
entry = &table[probePoint];
probePoint = (probePoint + 1) % size;

} while (!entry->isEmpty() && entry->key != k);
return !entry->isEmpty();

}

Linear Probing Example

probes:

47

93

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

3

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

55

76

93

40

47

Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot
• Search cost (for large table sizes)

– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering
• Performance quickly degrades for λ > 1/2

()

−

+ 21
11

2
1

λ

()

−

+
λ1

11
2
1

Values hashed
close to each
other probe

the same
slots.

Quadratic Probing

• Probe sequence is
– h(k) mod size
– (h(k) + 1) mod size
– (h(k) + 4) mod size
– (h(k) + 9) mod size
– …

• findEntry using quadratic probing:

f(i) = i2

bool findEntry(const Key & k, Entry *& entry) {
int probePoint = hash1(k), i = 0;
do {
entry = &table[(probePoint + i*i) % size];
i++;

} while (!entry->isEmpty() && entry->key != key);
return !entry->isEmpty();

}

Quadratic Probing (more efficient code)

• Probe sequence is
– h(k) mod size
– (h(k) + 1) mod size
– (h(k) + 4) mod size
– (h(k) + 9) mod size
– …

• findEntry using quadratic probing:

f(i) = i2

bool findEntry(const Key & k, Entry *& entry) {
int probePoint = hash1(k), i = 0;
do {
entry = &table[probePoint];
i++;
probePoint = (probePoint + 2*i - 1) % size;

} while (!entry->isEmpty() && entry->key != key);
return !entry->isEmpty();

}

Quadratic Probing Example

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40 40

76

3

2

1

0

6

5

4

insert(48)
48%7 = 6

2

48 47

40

76

3

2

1

0

6

5

4

insert(5)
5%7 = 5

3

5 5

40

553

2

1

0

6

5

4

insert(55)
55%7 = 6

3

76

47

Quadratic Probing Example

probes:

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

35

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

∞

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93 93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

40

93

40

76

3

2

1

0

6

5

4

insert(35)
35%7 = 0

1

35

Quadratic Probing Succeeds
(for λ ≤ ½)

• If size is prime and λ ≤ ½, then quadratic probing
will find an empty slot in size/2 probes or fewer.
– show for all 0 ≤ i, j ≤ size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size
– this means that the size/2 probes must all
land in different places, so at least one
must succeed if λ ≤ ½

Quadratic Probing Succeeds
(for λ ≤ ½)

• If size is prime and λ ≤ ½, then quadratic probing
will find an empty slot in size/2 probes or fewer.
– show for all 0 ≤ i, j ≤ size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i, j:
(h(x) + i2) mod size = (h(x) + j2) mod size
i2 mod size = j2 mod size
(i2 - j2) mod size = 0
[(i + j)(i - j)] mod size = 0

– but how can i + j = 0 or i + j = size when
i ≠ j and i,j ≤ size/2?

– same for i - j mod size = 0

Quadratic Probing May Fail
(for λ > ½)

• For any i larger than size/2, there is some j smaller
than i that adds with i to equal size (or a multiple
of size). D’oh!

Load Factor in Quadratic Probing
• For any λ ≤ ½, quadratic probing will find an empty

slot; for greater λ, quadratic probing may find a slot
• Quadratic probing does not suffer from primary

clustering
• Quadratic probing does suffer from secondary

clustering
– How could we possibly solve this? Values hashed

to the SAME
index probe

the same
slots.

Double Hashing
f(i) = i ⋅ hash2(k)

• Probe sequence is
– h1(k) mod size
– (h1(k) + 1 ⋅ h2(k)) mod size
– (h1(k) + 2 ⋅ h2(k)) mod size
– …

• Code for finding the next linear probe:
bool findEntry(const Key & k, Entry *& entry) {
int probePoint = hash1(k), hashIncr = hash2(k);
do {
entry = &table[probePoint];
probePoint = (probePoint + hashIncr) % size;

} while (!entry->isEmpty() && entry->key != k);
return !entry->isEmpty();

}

A Good Double Hash Function…

…is quick to evaluate.
…differs from the original hash function.
…never evaluates to 0 (mod size).

One good choice is to choose a prime R < size and:
hash2(x) = R - (x mod R)

Double Hashing Example

probes:

93

55

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

5 - (55%5) = 5

2

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

5 - (47%5) = 3

2

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

47

76

93

40

47

Load Factor in Double Hashing
• For any λ < 1, double hashing will find an empty

slot (given appropriate table size and hash2)
• Search cost appears to approach optimal (random

hash):
– successful search:

– unsuccessful search:

• No primary clustering and no secondary clustering
• One extra hash calculation

λ−1
1

λλ −1
1ln1

Outline

• Constant-Time Dictionaries?
• Hash Table Overview
• Hash Functions
• Collisions and the Pigeonhole Principle
• Collision Resolution:

– Chaining
– Open-Addressing

• Deletion and Rehashing

0
1
2
73

2

1

0

6

5

4

delete(2)
0
1

73

2

1

0

6

5

4

find(7)

Where is it?!

Deletion in Open Addressing

• Must use lazy deletion!
• On insertion, treat a deleted item as an empty slot

The “Squished Pigeon Principle”

• An insert using open addressing cannot work with a
load factor of 1 or more.

• An insert using open addressing with quadratic
probing may not work with a load factor of ½ or
more.

• Whether you use chaining or open addressing, large
load factors lead to poor performance!

• How can we relieve the pressure on the pigeons?

Hint: think resizable arrays!

Rehashing
• When the load factor gets “too large” (over a constant

threshold on λ), rehash all the elements into a new,
larger table:
– takes O(n), but amortized O(1) as long as we (just about)

double table size on the resize
– spreads keys back out, may drastically improve performance
– gives us a chance to retune parameterized hash functions
– avoids failure for open addressing techniques
– allows arbitrarily large tables starting from a small table
– clears out lazily deleted items

	CPSC 221: Data Structures�Hashing
	Learning Goals
	Outline
	Reminder: Dictionary ADT
	Implementations So Far
	Implementations So Far
	Hash Table Goal
	Aside: How do arrays do that?
	Outline
	Hash Table Approach
	Hash Table �Dictionary Data Structure
	Hash Table Terminology
	Hash Table Code�First Pass
	Outline
	A Good (Perfect?) �Hash Function…
	Aside: a Bit of 121 Theory
	Good Hash Function for Integers
	Good Hash Function for Strings?
	Making the String Hash�Easy to Compute
	Making the String Hash�Cause Few Conflicts
	Making the String Hash�Cause Few Conflicts
	Hash Function Summary
	How to Design a Hash Function
	How to Design a Hash Function
	Extra Slides:�Some Other Hashing Methods
	Good Hashing: �Multiplication Method
	Good Hashing:�Universal Hash Function
	Universal Hash Function: Example
	Universal Hash Function
	Alan’s Aside: Bit-Level Universal Hash Function
	Good Hashing:�Bit-Level Universal Hash Function
	Alternate Universal Hash Function
	Outline
	The Pigeonhole Principle�(informal)
	Collisions
	Collisions
	The Pigeonhole Principle�(formal)
	The Pigeonhole Principle�(Example #1)
	The Pigeonhole Principle (?)�(Example #2)
	The Pigeonhole Principle (No!)�(Example #2)
	The Pigeonhole Principle�(Example #3)
	The Pigeonhole Principle�(Example #4)
	The Pigeonhole Principle�(Full Glory)
	Outline
	Collision Resolution
	(Alan Aside) Collision Resolution
	Hashing with Chaining
	Chaining Code
	Load Factor in Chaining
	Outline
	Open Addressing / Closed Hashing
	Probing
	Linear Probing
	Linear Probing (More Efficient Code)
	Linear Probing Example
	Load Factor in Linear Probing
	Quadratic Probing
	Quadratic Probing (more efficient code)
	Quadratic Probing Example
	Quadratic Probing Example
	Quadratic Probing Succeeds �(for ½)
	Quadratic Probing Succeeds �(for ½)
	Quadratic Probing May Fail�(for > ½)
	Load Factor in Quadratic Probing
	Double Hashing
	A Good Double Hash Function…
	Double Hashing Example
	Load Factor in Double Hashing
	Outline
	Deletion in Open Addressing
	The “Squished Pigeon Principle”
	Rehashing

