CPSC 221: Data Structures Hashing

Alan J. Hu
(Using mainly Steve Wolfman’s Old Slides)

Learning Goals

After this unit, you should be able to:

- Define various forms of the pigeonhole principle; recognize and solve the specific types of counting and hashing problems to which they apply.
- Provide examples of the types of problems that can benefit from a hash data structure.
- Compare and contrast open addressing and chaining.
- Evaluate collision resolution policies.
- Describe the conditions under which hashing can degenerate from $O(1)$ expected complexity to $O(n)$.
- Identify the types of search problems that do not benefit from hashing (e.g. range searching) and explain why.
- Manipulate data in hash structures both irrespective of implementation and also within a given implementation.

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

Reminder: Dictionary ADT

- Dictionary operations
- create
- destroy
- insert
- find
- delete
- midterm
- would be tastier with brownies
- prog-project
- so painful... who invented templates?
- wolf
- the perfect mix of oomph and Scrabble value
- Stores values associated with user-specified keys
- values may be any (homogenous) type
- keys may be any (homogenous) comparable type

Implementations So Far

insert
 find
 delete

- Unsorted list
- Sorted Array
- AVL Trees
- B+Trees

$O(1)$	$O(n)$	$O(n)$
$O(n)$	$O(\log n)$	$O(n)$
$O(\log n)$	$O(\log n)$	$O(\log n)$
$O(\log n)$	$O(\log n)$	$O(\log n)$

Implementations So Far

insert find delete

- Unsorted list
- Sorted Array
- AVL Trees
- B+Trees

$O(1)$	$O(n)$	$O(n)$
$O(n)$	$O(\log n)$	$O(n)$
$O(\log n)$	$O(\log n)$	$O(\log n)$
$O(\log n)$	$O(\log n)$	$O(\log n)$

- Array:
$\mathrm{O}(1)$
$\mathrm{O}(1)$
$\mathrm{O}(1)$
But only for the special case of integer keys between 0 and size-1

How about O(1) insert/find/delete for any key type?

Hash Table Goal

We want to do:
a ["Steve"] = some data

Aside: How do arrays do that?

Q: If I know houses on a certain block in Vancouver are on 33-foot-wide lots, where is the $5^{\text {th }}$ house?
A: It's from (5-1)*33 to $5 * 33$ feet from the start of the block.
element_type a[SIZE];
Q: Where is a[i]?
A: start of a + i*sizeof(element_type)
Aside: This is why array elements have to be the same size, and why we start the indices from 0 .

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

Hash Table Approach

Hash Table

Dictionary Data Structure

- Hash function: maps keys to integers
- result: can quickly find the right spot for a given entry
- Unordered and sparse table
- result: cannot efficiently list all entries, definitely cannot

efficiently list all entries in order or list entries between one value and another (a "range" query)

Hash Table Terminology

Hash Table Code First Pass

```
Value & find(Key & key) {
    int index = hash(key) % tableSize;
    return Table[index];
}
```

What should the hash function be?

How should we resolve collisions?

What should the table size be?

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

A Good (Perfect?) Hash Function...

...is easy (fast) to compute ($\mathrm{O}(1)$ and fast in practice).
...distributes the data evenly (hash(a) \% size \neq hash(b) \% size).
....uses the whole hash table (for all $0 \leq \mathrm{k}<$ size, there's an i such that hash(i) \% size = k).

Aside: a Bit of 121 Theory

...is easy (fast) to compute ($\mathrm{O}(1)$ and fast in practice).
...distributes the data evenly (hash(a) \% size \neq hash(b) \% size).
... uses the whole hash table (for all $0 \leq \mathrm{k}<$ size, there's an i such that hash(i) \% size = k).

Onto (surjective)

Ideally, one-toone (injective)

Good Hash Function for Integers

- Choose
- tableSize is prime
- hash(n) = n
- Example:
- tableSize $=7$
insert(4)
insert(17)
find(12)
insert(9)
delete(17)

Good Hash Function for Strings?

- Let $\mathrm{s}=\mathrm{s}_{0} \mathrm{~S}_{1} \mathrm{~S}_{2} \mathrm{~S}_{3} \ldots \mathrm{~S}_{\mathrm{n}-1}$: choose
$-\operatorname{hash}(\mathrm{s})=\mathrm{s}_{0}+\mathrm{s}_{1} 31+\mathrm{s}_{2} 31^{2}+\mathrm{s}_{3} 31^{3}+\ldots+\mathrm{s}_{\mathrm{n}-1} 31^{\mathrm{n}-1}$
Think of the string as a base 31 number.
- Problems:
- hash("really, really big") = well... something really, really big
- hash("one thing") \% 31 = hash("other thing") \% 31

Why 31? It's prime. It's not a power of 2. It works pretty well.

Making the String Hash Easy to Compute

- Use Horner’s Rule
int hash(String s) \{
h = 0;
for (i = s.length() - 1; i >= 0; i--) \{ h = ($\left.\mathrm{s}_{\mathrm{i}}+31 * \mathrm{~h}\right)$ \% tableSize;
\}
return h;
\}

Making the String Hash Cause Few Conflicts

- Ideas?

Making the String Hash Cause Few Conflicts

- Ideas?

Make sure tableSize is not a multiple of 31 .

Hash Function Summary

- Goals of a hash function
- reproducible mapping from key to table entry
- evenly distribute keys across the table
- separate commonly occurring keys (neighboring keys?)
- complete quickly
- Sample hash functions:
$-h(n)=n \%$ size
- h(n) = string as base 31 number \% size
- Multiplication hash: compute percentage through the table
- Universal hash function \#1: dot product with random vector
- Universal hash function \#2: next pseudo-random number

How to Design a Hash Function

- Know what your keys are or
- Study how your keys are distributed.
- Try to include all important information in a key in the construction of its hash.
- Try to make "neighboring" keys hash to very different places.
- Prune the features used to create the hash until it runs "fast enough" (application dependent).

How to Design a Hash Function

- Know what vour kevs are or

In real life, use a standard hash function that people have already shown works well in practice!

 different places.- Prune the features used to create the hash until it runs "fast enough" (application dependent).

Extra Slides: Some Other Hashing Methods

Good Hashing: Multiplication Method

- Hash function is defined by some positive number A

$$
h_{A}(k)=(A * k) \% \text { size }
$$

- Example: A = 7, size = 10 $\mathrm{h}_{\mathrm{A}}(50)=7 * 50 \bmod 10=350 \bmod 10=0$
- choose A to be relatively prime to size
- more computationally intensive than a single mod
- (This is simplified from a more general, theoretical case.)

Good Hashing:

Universal Hash Function

- Parameterized by prime size and vector:
$\mathrm{a}=<\mathrm{a}_{0} \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{r}}>$ where $0<=\mathrm{a}_{\mathrm{i}}<$ size
- Represent each key as $\mathrm{r}+1$ integers where $\mathrm{k}_{\mathrm{i}}<$ size
- size = 11, key = 39752 ==> <3,9,7,5,2>
- size = 29, key = "hello world" ==>
$<8,5,12,12,15,23,15,18,12,4>$

$$
\mathrm{h}_{\mathrm{a}}(\mathrm{k})=\left(\sum_{i=0}^{r} a_{i} k_{i}\right) \bmod \operatorname{size}
$$

Universal Hash Function: Example

- Context: hash strings of length 3 in a table of size 131 let $\mathrm{a}=<35,100,21>$ $h_{a}($ "xyz") $=(35 * 120+100 * 121+21 * 122) \% 131$ = 129

Universal Hash Function

- Strengths:
- works on any type as long as you can form k_{i} 's
- if we're building a static table, we can try many a's
- a random a has guaranteed good properties no matter what we're hashing
- Weaknesses
- must choose prime table size larger than any k_{i}
- slower to compute than simpler hash functions

Alan's Aside: Bit-Level Universal Hash Function

- Strengths: Use the bits of the key!
- works on any type as long as you can form k_{i} 's
- if we're building a static table, we can try many a's
- a random a has guaranteed good properties no matter what we're hashing
- Weaknesses
- must choose prime table size larger than any k_{i}

Can use a power of 2

Good Hashing:

Bit-Level Universal Hash Function

- Parameterized by prime size and vector:

$$
\mathrm{a}=<\mathrm{a}_{0} \mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{r}}>\text { where } 0<=\mathrm{a}_{\mathrm{i}}<\text { size }
$$

- Represent each key as r + 1 bits

$$
\mathrm{h}_{\mathrm{a}}(\mathrm{k})=\left(\sum_{i=0}^{r} a_{i} k_{i}\right) \bmod \operatorname{size}
$$

Alternate Universal Hash Function

- Parameterized by p, a, and b:
- p is a big prime (several times bigger than table size)
-a and b are arbitrary integers in [1,p-1]

$$
\mathrm{H}_{\mathrm{p}, \mathrm{a}, \mathrm{~b}}(\mathrm{x})=(a \cdot x+b) \bmod p
$$

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

The Pigeonhole Principle (informal)

You can't put $\mathrm{k}+1$ pigeons into k holes without putting two pigeons in the same hole.

Image by en:User:McKay, used under CC attr/share-alike.

Collisions

- Pigeonhole principle says we can’t avoid all collisions - try to hash without collision m keys into n slots with $m>n$
- try to put 6 pigeons into 5 holes

Collisions

- Pigeonhole principle says we can’t avoid all collisions
- try to hash without collision m keys into n slots with $m>n$
- try to put 6 pigeons into 5 holes

Alan's Aside: This is actually somewhat misleading. Collisions are a problem even when $\mathrm{m}<\mathrm{n}$. So this tie-in of collisions and the pigeonhole principle isn't really fundamental. It's just a nice chance to introduce the pigeonhole principle...

The Pigeonhole Principle (formal)

Let X and Y be finite sets where $|\mathrm{X}|>|\mathrm{Y}|$.
If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, then $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)$ for some x_{1}, x_{2} in X , where $x_{1} \neq x_{2}$.

The Pigeonhole Principle (Example \#1)

Suppose we have 5 colours of Halloween candy, and that there's lots of candy in a bag. How many pieces of candy do we have to pull out of the bag if we want to be sure to get 2 of the same colour?
a. 2
b. 4
c. 6
d. 8
e. None of these

The Pigeonhole Principle (?) (Example \#2)

If there are 1000 pieces of each colour, how many do we need to pull to guarantee that we'll get 2 black pieces of candy (assuming that black is one of the 5 colours)?
a. 2
b. 6
c. 4002
d. 5001
e. None of these

The Pigeonhole Principle (No!) (Example \#2)

If there are 1000 pieces of each colour, how many do we need to pull to guarantee that we'll get 2 black pieces of candy (assuming that black is one of the 5 colours)?
a. 2
b. 6
c. 4002
d. 5001
e. None of these

The PhP doesn't tell us which hole has two pigeons.

The Pigeonhole Principle (Example \#3)

If 5 points are placed in a $6 \mathrm{~cm} \times 8 \mathrm{~cm}$ rectangle, argue that there are two points that are not more than 5 cm apart.

8 cm

Hint: How long is the diagonal?

The Pigeonhole Principle (Example \#4)

For integers a, b, we write a divides b as $a \mid b$, meaning there exists integer c such that $b=a c$.

Consider $n+1$ distinct positive integers, each $\leq 2 n$. Show that one of them must divide one of the others.

For example, if $n=4$, consider the following sets: $\{1,2,3,7,8\}\{2,3,4,7,8\}\{2,3,5,7,8\}$

Hint: Any integer can be written as $\mathrm{q}^{*} 2^{\mathrm{k}}$ where k is a nonnegative integer and q is odd. E.g., $129=2^{0 * 129 ; ~} 60=2^{2 *} 15$.

The Pigeonhole Principle (Full Glory)

Let X and Y be finite sets with $|\mathrm{X}|=n,|\mathrm{Y}|=m$, and $k=\lceil n / m\rceil$.

If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, then there exist k values $x_{1}, x_{2}, \ldots, x_{k}$ in X such that $\mathrm{f}\left(x_{1}\right)=\mathrm{f}\left(x_{2}\right)=\ldots=\mathrm{f}\left(x_{k}\right)$.

Informally: If n pigeons fly into m holes, at least 1 hole contains at least $k=\lceil n / m\rceil$ pigeons.

Proof: Assume there's no such hole. Then, there are at most $(\lceil n / m\rceil-1)^{\star} m$ pigeons in all the holes, which is fewer than $(n / m+1-1)^{\star} m=n / m^{\star} m=n$, but that is a contradiction. QED

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

Collision Resolution

- Pigeonhole principle says we can’t avoid all collisions - try to hash without collision m keys into n slots with $m>n$
- try to put 6 pigeons into 5 holes
- What do we do when two keys hash to the same entry?
- chaining: put little dictionaries in each entry
\downarrow shove extra pigeons in one hole!
- open addressing: pick a next entry to try

(Alan Aside) Collision Resolution

- Pigeonhole principle says we can’t avoid all collisions
- try to hash without collision m keys into n slots with $m>n$
- try to put 6 pigeons into 5 holes
- What do we do when two keys hash to the same entry?
- chaining (AKA open hashing or closed addressing): put little dictionaries in each entry
\downarrow shove extra pigeons in one hole!
- open addressing (AKA closed hashing): pick a next entry to try

Hashing with Chaining

- Put a little dictionary at each entry
- choose type as appropriate
- common case is unordered linked list (chain)
- Properties
$-\lambda$ can be greater than 1
- performance degrades
 with length of chains

Chaining Code

```
Dictionary & findBucket(const Key & k) {
    return table[hash(k)%table.size];
}
{
    findBucket(k).insert(k,v);
}
```

void insert(const Key \& k, const Value \& v)

```
    findBucket(k).delete(k);
}
Value & find(const Key & k)
{
    return findBucket(k).find(k);
}
```

void delete(const Key \& k)

Load Factor in Chaining

- Search cost
- unsuccessful search:
- successful search:
- Desired load factor:

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

Open Addressing / Closed Hashing

What if we only allow one key at each entry?

- two objects that hash to the same spot can't both go there
- first one there gets the spot
- next one must go in another spot
- Properties
$-\lambda \leq 1$
- performance degrades with difficulty of finding right spot

Probing

- Probing how to:
- First probe - given a key k, hash to h(k)
- Second probe - if $h(k)$ is occupied, try $h(k)+f(1)$
- Third probe - if $h(k)+f(1)$ is occupied, try $h(k)+f(2)$
- And so forth
- Probing properties
- the $i^{\text {th }}$ probe is to $(h(k)+f(i))$ mod size \quad where $f(0)=0$
- if i reaches size, the insert has failed
- depending on $f()$, the insert may fail sooner
- long sequences of probes are costly!

Linear Probing $f(i)=i$

- Probe sequence is
- h(k) mod size
$-h(k)+1 \bmod$ size
$-h(k)+2$ mod size
- findEntry using linear probing: bool findEntry(const Key \& k, Entry *\& entry) \{ int probePoint $=$ hash $_{1}(k)$;
int i=0;
do \{
entry = \&table[(probePoint+(i++)) \% size];
\} while (!entry->isEmpty() \&\& entry->key != k); return !entry->isEmpty();
\}

Linear Probing (More Efficient Code) $f(i)=i$

- Probe sequence is
- h(k) mod size
$-h(k)+1$ mod size
$-h(k)+2$ mod size
- findEntry using linear probing:

```
bool findEntry(const Key & k, Entry *& entry) {
    int probePoint = hash_(k);
    do {
        entry = &table[probePoint];
        probePoint = (probePoint + 1) % size;
    } while (!entry->isEmpty() && entry->key != k);
    return !entry->isEmpty();
}
```


Linear Probing Example

insert(76) insert(93) insert(40) insert(47) insert(10) insert(55) $76 \% 7=6 \quad 93 \% 7=2 \quad 40 \% 7=5 \quad 47 \% 7=5 \quad 10 \% 7=3 \quad 55 \% 7=6$

probes:

1

1

3

1

3

Load Factor in Linear Probing

- For any $\lambda<1$, linear probing will find an empty slot
- Search cost (for large table sizes)
- successful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)}\right)
$$

- unsuccessful search:

$$
\frac{1}{2}\left(1+\frac{1}{(1-\lambda)^{2}}\right)
$$

Values hashed close to each other probe the same slots.

- Linear probing suffers from primary clustering
- Performance quickly degrades for $\lambda>1 / 2$

Quadratic Probing $f(i)=i^{2}$

- Probe sequence is
- h(k) mod size
$-(\mathrm{h}(\mathrm{k})+1)$ mod size
$-(h(k)+4)$ mod size
- (h(k) + 9) mod size
- findEntry using quadratic probing: bool findEntry(const Key \& k, Entry *\& entry) \{ int probePoint $=h_{1} \mathbf{h a s h}_{1}(k)$, $i=0$;
do \{
entry = \&table[(probePoint + i*i) \% size];
i++;
\} while (!entry->isEmpty() \&\& entry->key != key); return !entry->isEmpty();

Quadratic Probing (more efficient code)

$$
\mathrm{f}(\mathrm{i})=\mathrm{i}^{2}
$$

- Probe sequence is
- h(k) mod size
$-(h(k)+1)$ mod size
$-(\mathrm{h}(\mathrm{k})+4)$ mod size
- (h(k) + 9) mod size
- findEntry using quadratic probing: bool findEntry(const Key \& k, Entry *\& entry) \{ int probePoint $=$ hash $_{1}(k)$, $i=0$;
do \{
entry = \&table[probePoint];
i++;
probePoint = (probePoint + 2*i - 1) \% size;
\} while (!entry->isEmpty() \&\& entry->key != key);
return !entry->isEmpty();
\}

Quadratic Probing Example ;)

Quadratic Probing Example ©

Quadratic Probing Succeeds (for $\lambda \leq 1 / 2$)

- If size is prime and $\lambda \leq 1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all $\mathbf{0} \leq \mathbf{i}, \mathbf{j} \leq$ size/2 and $\mathbf{i} \neq \mathbf{j}$

$$
\left(h(x)+i^{2}\right) \bmod \text { size } \neq\left(h(x)+j^{2}\right) \bmod \text { size }
$$

- this means that the size/2 probes must all land in different places, so at least one must succeed if $\lambda \leq 1 / 2$

Quadratic Probing Succeeds (for $\lambda \leq 1 / 2$)

- If size is prime and $\lambda \leq 1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all $0 \leq i, j \leq s i z e / 2$ and $\mathbf{i} \neq \mathbf{j}$

$$
\left(h(x)+i^{2}\right) \bmod \text { size } \neq\left(h(x)+j^{2}\right) \bmod \text { size }
$$

- by contradiction: suppose that for some i, j :
$\left(h(x)+i^{2}\right) \bmod$ size $=\left(h(x)+j^{2}\right) \bmod$ size
$i^{2} \bmod$ size $=j^{2} \bmod$ size
$\left(i^{2}-j^{2}\right) \bmod$ size $=0$
$[(i+j)(i-j)] \bmod$ size $=0$
- but how can $\mathbf{i}+\mathbf{j}=\mathbf{0}$ or $\mathbf{i}+\mathbf{j}=$ size when
$\mathbf{i} \neq \mathbf{j}$ and $\mathbf{i}, \mathbf{j} \leq$ size/2?
- same for $\mathbf{i}-\mathbf{j} \bmod$ size $=\mathbf{0}$

Quadratic Probing May Fail (for $\lambda>1 / 2$)

- For any i larger than size/2, there is some j smaller than i that adds with i to equal size (or a multiple of size). D'oh!

Load Factor in Quadratic Probing

- For any $\lambda \leq 1 / 2$, quadratic probing will find an empty slot; for greater λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering
- Quadratic probing does suffer from secondary clustering
- How could we possibly solve this?

Values hashed to the SAME index probe the same
slots.

Double Hashing $\mathrm{f}(\mathrm{i})=\mathrm{i} \cdot$ hash $_{2}(\mathrm{k})$

- Probe sequence is
$-\mathrm{h}_{1}(\mathrm{k})$ mod size
$-\left(h_{1}(\mathrm{k})+1 \cdot \mathrm{~h}_{2}(\mathrm{k})\right)$ mod size
$-\left(h_{1}(k)+2 \cdot h_{2}(k)\right) \bmod$ size
- Code for finding the next linear probe: bool findEntry(const Key \& k, Entry *\& entry) \{ int probePoint $=$ hash $h_{1}(k)$, hashIncr $=$ hash $_{2}(k)$; do \{
entry = \&table[probePoint];
probePoint = (probePoint + hashIncr) \% size;
\} while (!entry->isEmpty() \&\& entry->key != k); return !entry->isEmpty();
\}

A Good Double Hash Function...

...is quick to evaluate.
...differs from the original hash function.
...never evaluates to 0 (mod size).

One good choice is to choose a prime $\mathrm{R}<$ size and: $\operatorname{hash}_{2}(\mathrm{x})=\mathrm{R}-(\mathrm{x} \bmod \mathrm{R})$

Double Hashing Example

insert(76) insert(93) insert(40) insert(47) insert(10) insert(55)
$76 \% 7=6 \quad 93 \% 7=2 \quad 40 \% 7=5 \quad 47 \% 7=5 \quad 10 \% 7=3 \quad 55 \% 7=6$ $5-(47 \% 5)=3 \quad 5-(55 \% 5)=5$

probes: 1

1

1

0	
1	
1	47
2	93
3	93
3	10
4	
5	
	40
6	76

1

2

Load Factor in Double Hashing

- For any $\lambda<1$, double hashing will find an empty slot (given appropriate table size and hash ${ }_{2}$)
- Search cost appears to approach optimal (random hash):
- successful search:

$$
\frac{1}{\lambda} \ln \frac{1}{1-\lambda}
$$

- unsuccessful search:

$$
\frac{1}{1-\lambda}
$$

- No primary clustering and no secondary clustering
- One extra hash calculation

Outline

- Constant-Time Dictionaries?
- Hash Table Overview
- Hash Functions
- Collisions and the Pigeonhole Principle
- Collision Resolution:
- Chaining
- Open-Addressing
- Deletion and Rehashing

Deletion in Open Addressing

- Must use lazy deletion!
- On insertion, treat a deleted item as an empty slot

The "Squished Pigeon Principle"

- An insert using open addressing cannot work with a load factor of 1 or more.
- An insert using open addressing with quadratic probing may not work with a load factor of $1 / 2$ or more.
- Whether you use chaining or open addressing, large load factors lead to poor performance!
- How can we relieve the pressure on the pigeons?

Hint: think resizable arrays!

Rehashing

- When the load factor gets "too large" (over a constant threshold on λ), rehash all the elements into a new, larger table:
- takes $\mathrm{O}(\mathrm{n})$, but amortized $\mathrm{O}(1)$ as long as we (just about) double table size on the resize
- spreads keys back out, may drastically improve performance
- gives us a chance to retune parameterized hash functions
- avoids failure for open addressing techniques
- allows arbitrarily large tables starting from a small table
- clears out lazily deleted items

