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Learning Goals

After this unit, you should be able to...
• Determine if a given tree is an instance of a particular type 

(e.g. binary search tree, heap, etc.)
• Describe and use pre-, in- and post-order traversal 

algorithms
• Describe the properties of binary trees, binary search trees, 

and more general trees; Implement iterative and recursive 
algorithms for navigating them in C++

• Compare and contrast ordered versus unordered trees in 
terms of complexity and scope of application

• Insert and delete elements from a binary tree



Today’s Outline

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions



Binary Trees
• Binary tree is

– an empty tree (NULL, in our case)
– or, a root node with two subtrees

• Properties
– max # of leaves: 
– max # of nodes:

• Representation:
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Binary Trees
• Binary tree is

– an empty tree (NULL, in our case)
– or, a root node with two subtrees

• Properties
– max # of leaves: 2h

– max # of nodes:  2h+1-1
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Representation
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struct Node {
KTYPE key;
DTYPE data;
Node * left;
Node * right;

};



Today’s Outline

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions



What We Can Do So Far

• Stack
– Push
– Pop

• Queue
– Enqueue
– Dequeue

What’s wrong with Lists?

• List
– Insert
– Remove
– Find

• Priority Queue
– Insert
– DeleteMin



Dictionary ADT
• Dictionary operations

– create
– destroy
– insert
– find
– delete

• Stores values associated with user-specified keys
– values may be any (homogenous) type
– keys may be any (homogenous) comparable type

• midterm
– would be tastier with 

brownies
• prog-project

– so painful… who invented 
templates?

• wolf
– the perfect mix of oomph 

and Scrabble value

insert

find(wolf)

• brownies
- tasty

• wolf
- the perfect mix of oomph 

and Scrabble value



Search/Set ADT
• Dictionary operations

– create
– destroy
– insert
– find
– delete

• Stores keys
– keys may be any (homogenous) comparable
– quickly tests for membership

• Berner
• Whippet
• Alsatian
• Sarplaninac
• Beardie
• Sarloos
• Malamute
• Poodle

insert

find(Wolf)

• Min Pin

NOT FOUND



A Modest Few Uses

• Arrays and “Associative” Arrays
• Sets
• Dictionaries
• Router tables
• Page tables
• Symbol tables
• C++ Structures
• Python’s __dict__ that stores fields/methods



Desiderata

• Fast insertion
– runtime:

• Fast searching
– runtime:

• Fast deletion
– runtime:



Naïve Implementations

• Linked list

• Unsorted array

• Sorted array

insert deletefind



Naïve Implementations

• Linked list

• Unsorted array

• Sorted array

insert deletefind

so close!
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Binary Search Tree 
Dictionary Data Structure
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• Binary tree property
– each node has  2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Search tree property
– all keys in left subtree 

smaller than root’s key
– all keys in right subtree 

larger than root’s key
– result:

• easy to find any given key



Example and Counter-Example
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In Order Listing
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In order listing:
25791015172030

struct Node {
// constructors omitted
KTYPE key;
DTYPE data;
Node *left, *right;

};



Aside:  Traversals

• Pre-Order Traversal:  Process the data at the node 
first, then process left child, then process right 
child.

• Post-Order Traversal:  Process left child, then 
process right child, then process data at the node.

• In-Order Traversal:  Process left child, then 
process data at the node, then process right child.

Code?
19



Aside:  Traversals

• Pre-Order Traversal:  Process the data at the node 
first, then process left child, then process right 
child.

• Post-Order Traversal:  Process left child, then 
process right child, then process data at the node.

• In-Order Traversal:  Process left child, then 
process data at the node, then process right child.

Who cares?  These are the most common ways in 
which code processes trees.

20



Finding a Node
Node *& find(Comparable key,

Node *& root) {
if (root == NULL)
return root;

else if (key < root->key)
return find(key,

root->left);
else if (key > root->key)
return find(key,

root->right);
else
return root;

}
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runtime:

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e. None of these



Finding a Node
Node *& find(Comparable key,

Node *& root) {
if (root == NULL)
return root;

else if (key < root->key)
return find(key,

root->left);
else if (key > root->key)
return find(key,

root->right);
else
return root;

}
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WARNING: Much fancy footwork with 
refs (&) coming.  You can do all of this 
without refs... just watch out for special 
cases.



Iterative Find
Node * find(Comparable key,

Node * root) {
while (root != NULL &&

root->key != key) {
if (key < root->key)
root = root->left;

else 
root = root->right;

}

return root;
}

Look familiar?
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(It’s trickier to get the ref return to work here. We won’t worry.)



Insert
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runtime:

void insert(Comparable key,
Node *& root) {

Node *& target(find(key,
root));

assert(target == NULL);

target = new Node(key);
}

Funky game we can play with the *& version.



Reminder: 
Value vs. Reference Parameters

• Value parameters (Object foo)
– copies parameter
– no side effects

• Reference parameters (Object & foo)
– shares parameter
– can affect actual value
– use when the value needs to be changed

• Const reference parameters (const Object & foo)
– shares parameter
– cannot affect actual value
– use when the value is too intricate for pass-by-value



BuildTree for BSTs

• Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted 
into an initially empty BST:
– in order

– in reverse order

– median first, then left median, right median, etc. 



Analysis of BuildTree

• Worst case: O(n2) as we’ve seen
• Average case assuming all orderings equally likely 

turns out to be O(n lg n).



Bonus: FindMin/FindMax

• Find minimum

• Find maximum 2092
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Double Bonus: Successor
Find the next larger node
in this node’s subtree.

// Note: If no succ, returns (a useful) NULL.
Node *& succ(Node *& root) {
if (root->right == NULL)

return root->right;
else

return min(root->right);
}

Node *& min(Node *& root) {
if (root->left == NULL) return root;
else return min(root->left);

}
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More Double Bonus: Predecessor
Find the next smaller node
in this node’s subtree.

Node *& pred(Node *& root) {
if (root->left == NULL)

return root->left;
else

return max(root->left);
}

Node *& max(Node *& root) {
if (root->right == NULL) return root;
else return max(root->right);

}
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Today’s Outline

• Some Tree Review 
(here for reference, not discussed)

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions



Deletion
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Why might deletion be harder than insertion?



Lazy Deletion (“Tombstones”)

• Instead of physically deleting 
nodes, just mark them as 
deleted
+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
– extra memory for “tombstone”
– many lazy deletions slow finds
– some operations may have to be 

modified (e.g., min and max)
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Lazy Deletion
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Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)



Real Deletion - Leaf Case
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Delete(17)



Real Deletion - One Child Case
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Real Deletion - Two Child Case
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Delete(5)



Finally… 

3092

207

10



Delete Code
void delete(Comparable key, Node *& root) {
Node *& handle(find(key, root));
Node * toDelete = handle;
if (handle != NULL) {
if (handle->left == NULL) {         // Leaf or one child
handle = handle->right;

} else if (handle->right == NULL) { // One child
handle = handle->left;

} else {                            // Two child case
Node *& successor(succ(handle));
handle->data = successor->data;
toDelete = successor;
successor = successor->right;     // Succ has <= 1 child

}
}
delete toDelete;

}
Refs make this short and “elegant”… 

but could be done without them with a bit more work.
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Thinking about 
Binary Search Trees

• Observations
– Each operation views two new elements at a time
– Elements (even siblings) may be scattered in memory
– Binary search trees are fast if they’re shallow

• Realities
– For large data sets, disk accesses dominate runtime
– Some deep and some shallow BSTs exist for any data

One more piece of bad news: what happens to a 
balanced tree after many insertions/deletions?



Solutions?

• Reduce disk accesses?

• Keep BSTs shallow?



Coming Up

• Self-balancing Binary Search Trees
• Huge Search Tree Data Structure


