
CPSC 221: Data Structures
Dictionary ADT

Binary Search Trees

Alan J. Hu
(Using Steve Wolfman’s Slides)

Learning Goals

After this unit, you should be able to...
• Determine if a given tree is an instance of a particular type

(e.g. binary search tree, heap, etc.)
• Describe and use pre-, in- and post-order traversal

algorithms
• Describe the properties of binary trees, binary search trees,

and more general trees; Implement iterative and recursive
algorithms for navigating them in C++

• Compare and contrast ordered versus unordered trees in
terms of complexity and scope of application

• Insert and delete elements from a binary tree

Today’s Outline

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions

Binary Trees
• Binary tree is

– an empty tree (NULL, in our case)
– or, a root node with two subtrees

• Properties
– max # of leaves:
– max # of nodes:

• Representation:

A

B

D E

C

F

HG

JIData
right

pointer
left

pointer

recursive definition!

Binary Trees
• Binary tree is

– an empty tree (NULL, in our case)
– or, a root node with two subtrees

• Properties
– max # of leaves: 2h

– max # of nodes: 2h+1-1

• Representation:

A

B

D E

C

F

HG

JIData
right

pointer
left

pointer

recursive definition!

Representation
A

right
pointer

left
pointer

A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

struct Node {
KTYPE key;
DTYPE data;
Node * left;
Node * right;

};

Today’s Outline

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions

What We Can Do So Far

• Stack
– Push
– Pop

• Queue
– Enqueue
– Dequeue

What’s wrong with Lists?

• List
– Insert
– Remove
– Find

• Priority Queue
– Insert
– DeleteMin

Dictionary ADT
• Dictionary operations

– create
– destroy
– insert
– find
– delete

• Stores values associated with user-specified keys
– values may be any (homogenous) type
– keys may be any (homogenous) comparable type

• midterm
– would be tastier with

brownies
• prog-project

– so painful… who invented
templates?

• wolf
– the perfect mix of oomph

and Scrabble value

insert

find(wolf)

• brownies
- tasty

• wolf
- the perfect mix of oomph

and Scrabble value

Search/Set ADT
• Dictionary operations

– create
– destroy
– insert
– find
– delete

• Stores keys
– keys may be any (homogenous) comparable
– quickly tests for membership

• Berner
• Whippet
• Alsatian
• Sarplaninac
• Beardie
• Sarloos
• Malamute
• Poodle

insert

find(Wolf)

• Min Pin

NOT FOUND

A Modest Few Uses

• Arrays and “Associative” Arrays
• Sets
• Dictionaries
• Router tables
• Page tables
• Symbol tables
• C++ Structures
• Python’s __dict__ that stores fields/methods

Desiderata

• Fast insertion
– runtime:

• Fast searching
– runtime:

• Fast deletion
– runtime:

Naïve Implementations

• Linked list

• Unsorted array

• Sorted array

insert deletefind

Naïve Implementations

• Linked list

• Unsorted array

• Sorted array

insert deletefind

so close!

Today’s Outline

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions

Binary Search Tree
Dictionary Data Structure

4

121062

115

8

14

13

7 9

• Binary tree property
– each node has 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Search tree property
– all keys in left subtree

smaller than root’s key
– all keys in right subtree

larger than root’s key
– result:

• easy to find any given key

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

In Order Listing

2092

155

10

307 17

In order listing:
25791015172030

struct Node {
// constructors omitted
KTYPE key;
DTYPE data;
Node *left, *right;

};

Aside: Traversals

• Pre-Order Traversal: Process the data at the node
first, then process left child, then process right
child.

• Post-Order Traversal: Process left child, then
process right child, then process data at the node.

• In-Order Traversal: Process left child, then
process data at the node, then process right child.

Code?
19

Aside: Traversals

• Pre-Order Traversal: Process the data at the node
first, then process left child, then process right
child.

• Post-Order Traversal: Process left child, then
process right child, then process data at the node.

• In-Order Traversal: Process left child, then
process data at the node, then process right child.

Who cares? These are the most common ways in
which code processes trees.

20

Finding a Node
Node *& find(Comparable key,

Node *& root) {
if (root == NULL)
return root;

else if (key < root->key)
return find(key,

root->left);
else if (key > root->key)
return find(key,

root->right);
else
return root;

}

2092

155

10

307 17

runtime:

a. O(1)
b. O(lg n)
c. O(n)
d. O(n lg n)
e. None of these

Finding a Node
Node *& find(Comparable key,

Node *& root) {
if (root == NULL)
return root;

else if (key < root->key)
return find(key,

root->left);
else if (key > root->key)
return find(key,

root->right);
else
return root;

}

2092

155

10

307 17

WARNING: Much fancy footwork with
refs (&) coming. You can do all of this
without refs... just watch out for special
cases.

Iterative Find
Node * find(Comparable key,

Node * root) {
while (root != NULL &&

root->key != key) {
if (key < root->key)
root = root->left;

else
root = root->right;

}

return root;
}

Look familiar?

2092

155

10

307 17

(It’s trickier to get the ref return to work here. We won’t worry.)

Insert

2092

155

10

307 17

runtime:

void insert(Comparable key,
Node *& root) {

Node *& target(find(key,
root));

assert(target == NULL);

target = new Node(key);
}

Funky game we can play with the *& version.

Reminder:
Value vs. Reference Parameters

• Value parameters (Object foo)
– copies parameter
– no side effects

• Reference parameters (Object & foo)
– shares parameter
– can affect actual value
– use when the value needs to be changed

• Const reference parameters (const Object & foo)
– shares parameter
– cannot affect actual value
– use when the value is too intricate for pass-by-value

BuildTree for BSTs

• Suppose the data 1, 2, 3, 4, 5, 6, 7, 8, 9 is inserted
into an initially empty BST:
– in order

– in reverse order

– median first, then left median, right median, etc.

Analysis of BuildTree

• Worst case: O(n2) as we’ve seen
• Average case assuming all orderings equally likely

turns out to be O(n lg n).

Bonus: FindMin/FindMax

• Find minimum

• Find maximum 2092

155

10

307 17

Double Bonus: Successor
Find the next larger node
in this node’s subtree.

// Note: If no succ, returns (a useful) NULL.
Node *& succ(Node *& root) {
if (root->right == NULL)

return root->right;
else

return min(root->right);
}

Node *& min(Node *& root) {
if (root->left == NULL) return root;
else return min(root->left);

}

2092

155

10

307 17

More Double Bonus: Predecessor
Find the next smaller node
in this node’s subtree.

Node *& pred(Node *& root) {
if (root->left == NULL)

return root->left;
else

return max(root->left);
}

Node *& max(Node *& root) {
if (root->right == NULL) return root;
else return max(root->right);

}

2092

155

10

307 17

Today’s Outline

• Some Tree Review
(here for reference, not discussed)

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions

Deletion

2092

155

10

307 17

Why might deletion be harder than insertion?

Lazy Deletion (“Tombstones”)

• Instead of physically deleting
nodes, just mark them as
deleted
+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
– extra memory for “tombstone”
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

Lazy Deletion

2092

155

10

307 17

Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

Real Deletion - Leaf Case

2092

155

10

307 17

Delete(17)

Real Deletion - One Child Case

2092

155

10

307

Delete(15)

Real Deletion - Two Child Case

3092

205

10

7

Delete(5)

Finally…

3092

207

10

Delete Code
void delete(Comparable key, Node *& root) {
Node *& handle(find(key, root));
Node * toDelete = handle;
if (handle != NULL) {
if (handle->left == NULL) { // Leaf or one child
handle = handle->right;

} else if (handle->right == NULL) { // One child
handle = handle->left;

} else { // Two child case
Node *& successor(succ(handle));
handle->data = successor->data;
toDelete = successor;
successor = successor->right; // Succ has <= 1 child

}
}
delete toDelete;

}
Refs make this short and “elegant”…

but could be done without them with a bit more work.

Today’s Outline

• Binary Trees
• Dictionary ADT
• Binary Search Trees
• Deletion
• Some troubling questions

Thinking about
Binary Search Trees

• Observations
– Each operation views two new elements at a time
– Elements (even siblings) may be scattered in memory
– Binary search trees are fast if they’re shallow

• Realities
– For large data sets, disk accesses dominate runtime
– Some deep and some shallow BSTs exist for any data

One more piece of bad news: what happens to a
balanced tree after many insertions/deletions?

Solutions?

• Reduce disk accesses?

• Keep BSTs shallow?

Coming Up

• Self-balancing Binary Search Trees
• Huge Search Tree Data Structure

