CS221: Algorithms and Data Structures

Priority Queues and Heaps

Alan J. Hu

(Borrowing slides from Steve Wolfman)

Learning Goals

After this unit, you should be able to:

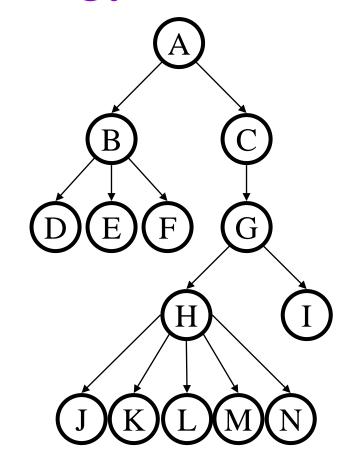
- Provide examples of appropriate applications for priority queues and heaps
- Manipulate data in heaps
- Describe and apply the Heapify algorithm, and analyze its complexity

Today's Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
 - Implementing Priority Queue ADT
 - Focus on Create: Heapify
 - Brief introduction to d-Heaps

Tree Terminology

root:
leaf:
child:
parent:
sibling:
ancestor:
descendent:
subtree:



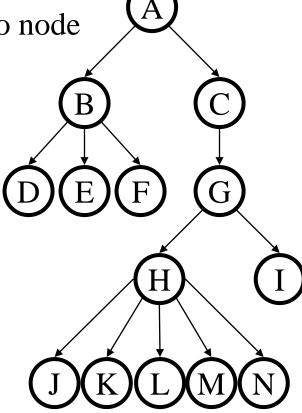
Tree Terminology Reference

root: the single node with no parent leaf: a node with no children child: a node pointed to by me parent: the node that points to me sibling: another child of my parent

ancestor: my parent or my parent's ancestor
descendent: my child or my child's descendent
subtree: a node and its descendents

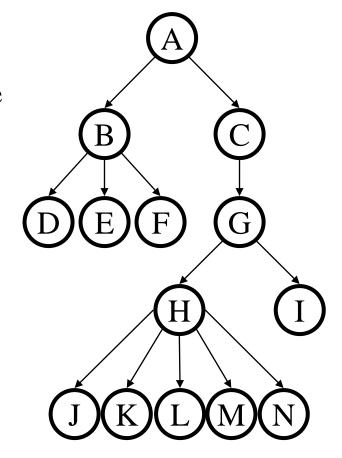
We sometimes use degenerate versions of these definitions that allow NULL as the empty tree. (This can be *very* handy for recursive base cases!)

depth: # of edges along path from root to node *depth of H?*

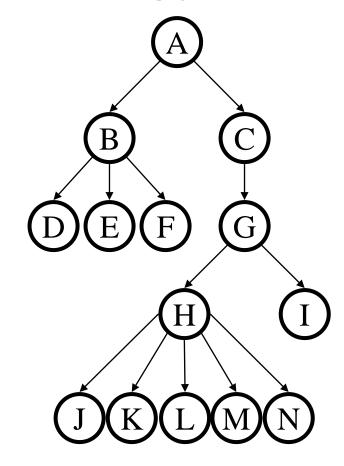


height: # of edges along longest path from node to leaf or, for whole tree, from root to leaf

height of tree?

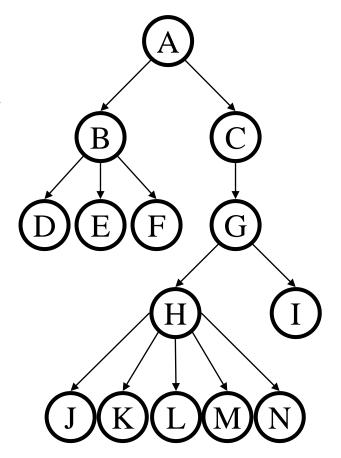


degree: # of children of a node degree of B?



branching factor: maximum degree of any node in the tree

2 for binary trees,our usual concern;5 for this weird tree

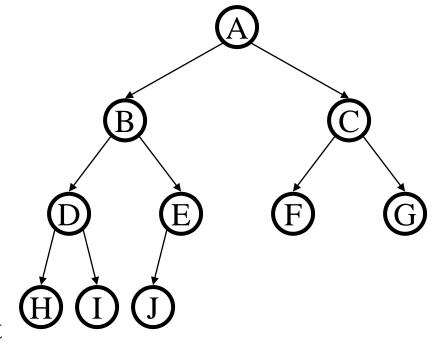


One More Tree Terminology Slide

binary: branching factor of 2 (each child has at most 2 children)

n-ary: branching factor of n

complete: "packed" binary tree; as many nodes as possible for its height



nearly complete: complete plus some nodes on the left at the bottom

Trees and (Structural) Recursion

A tree is either:

- the empty tree
- a root node and an ordered list of subtrees

Trees are a recursively defined structure, so it makes sense to operate on them recursively.

Today's Outline

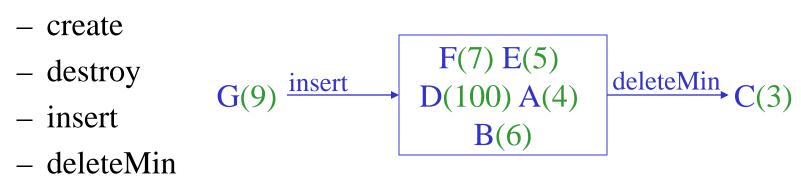
- Trees, Briefly
- Priority Queue ADT
- Heaps
 - Implementing Priority Queue ADT
 - Focus on Create: Heapify
 - Brief introduction to d-Heaps

Back to Queues

- Some applications
 - ordering CPU jobs
 - simulating events
 - picking the next search site
- Problems?
 - short jobs should go first
 - earliest (simulated time) events should go first
 - most promising sites should be searched first

Remember AD151 Priority Queue ADT

Priority Queue operations



- isEmpty
- Priority Queue property: for two elements in the queue, *x* and *y*, if *x* has a lower priority value than *y*, *x* will be deleted before *y*

Applications of the Priority Q

- Hold jobs for a printer in order of length
- Store packets on network routers in order of urgency
- Simulate events
- Select symbols for compression
- Sort numbers
- Anything *greedy*: an algorithm that makes the "locally best choice" at each step

Naïve Priority Q Data Structures

- Unsorted list:
 - insert:
 - deleteMin:
- Sorted list:
 - insert:
 - deleteMin:

- a. $O(\lg n)$
- b. O(n)
- c. $O(n \lg n)$
- d. $O(n^2)$
- e. Something else

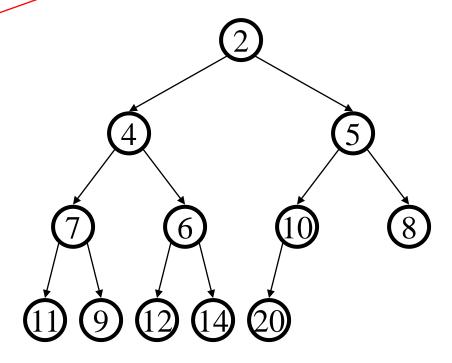
Today's Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
 - Implementing Priority Queue ADT
 - Focus on Create: Heapify
 - Brief introduction to d-Heaps

Binary Heap Priority Q Data Structure

- Heap-order property
 - parent's key is less than or equal to children's keys
 - result: minimum is always at the top
- Structure property
 - "nearly complete tree"
 - result: depth is always
 O(log n); next open location
 always known

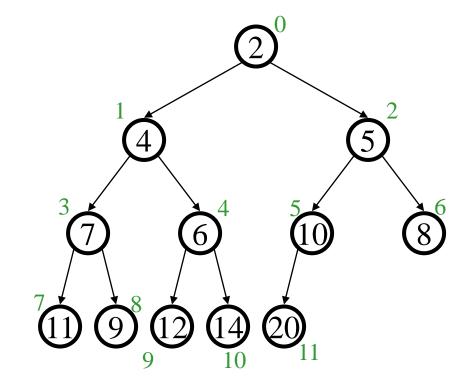
Look! Invariants!



WARNING: this has *NO SIMILARITY* to the "heap" you hear about when people say "objects you create with **new** go on the heap". ¹⁸

Nifty Storage Trick

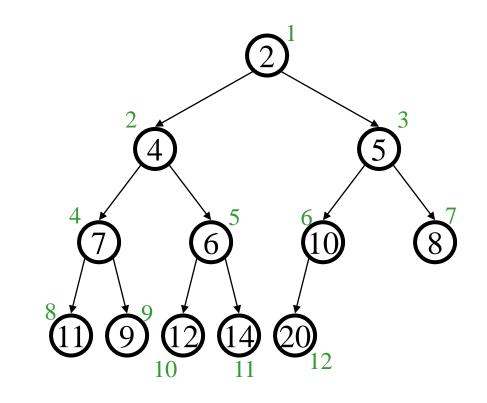
- Calculations:
 - child:
 - parent:
 - root:
 - next free:



0	1	2	3	4	5	6	7	8	9	10	11	
2	4	5	7	6	10	8	11	9	12	14	20	

(Aside: Steve numbers from 1.)

- Calculations:
 - child:
 - parent:
 - root:
 - next free:

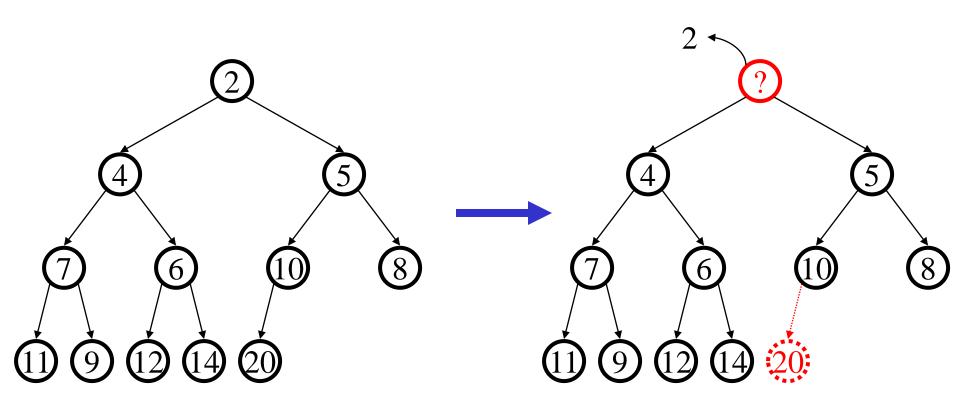


0	1	2	3	4	5	6	7	8	9	10	11	12	
	2	4	5	7	6	10	8	11	9	12	14	20	

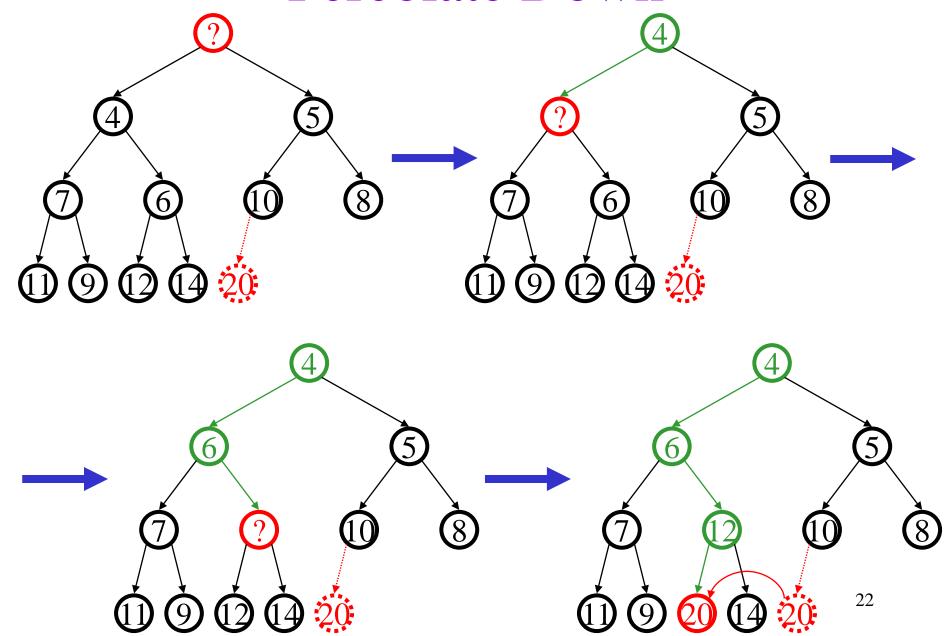
Steve like to just skip using entry 0 in the array, so the root is at index 1. For a binary heap, this makes the calculations slightly shorter.

DeleteMin

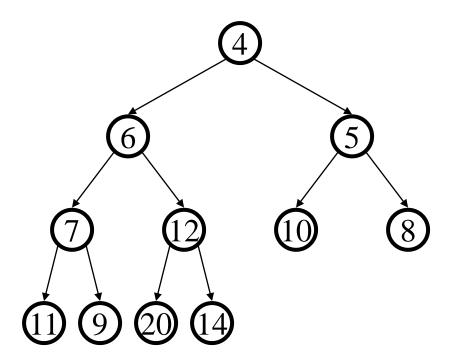
pqueue.deleteMin()



Percolate Down



Finally...



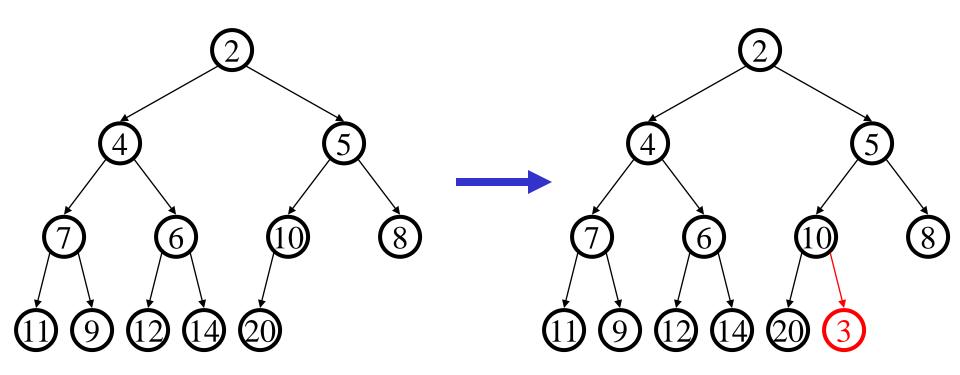
DeleteMin Code

```
Object deleteMin() {
                                int percolateDown(int hole,
                                                   Object val) {
  assert(!isEmpty());
                                while (2*hole+1 < size) {</pre>
  returnVal = Heap[0];
                                    left = 2*hole + 1;
  size--;
                                    right = left + 1;
  newPos =
                                    if (right < size &&
    percolateDown(0,
                                        Heap[right] < Heap[left])</pre>
                                      target = right;
        Heap[size]);
                                    else
  Heap[newPos] =
                                      target = left;
    Heap[size];
  return returnVal;
                                    if (Heap[target] < val) {</pre>
                                      Heap[hole] = Heap[target];
                                      hole = target;
                                    else
runtime:
                                      break;
                                  return hole;
```

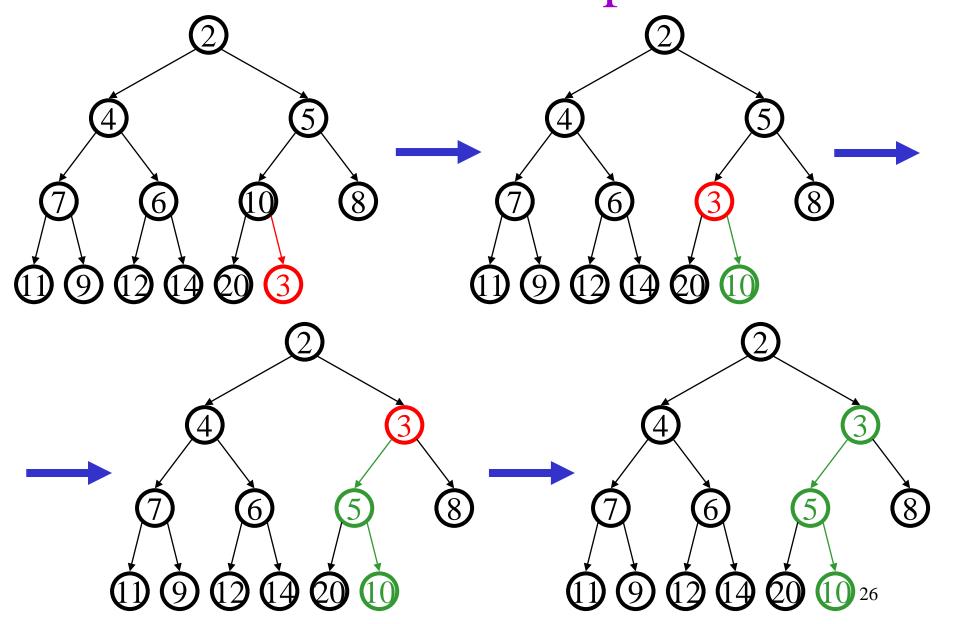
24

Insert

pqueue.insert(3)



Percolate Up



Insert Code

```
void insert(Object o) {
   assert(!isFull());
   newPos =
        percolateUp(size,o);
   size++;
   Heap[newPos] = o;
}

int percolateUp(int hole,
        Object val) {
   while (hole > 0 &&
        val < Heap[(hole-1)/2])
   Heap[hole] = Heap[(hole-1)/2];
   hole = (hole-1)/2;
}

return hole;
}</pre>
```

runtime:

Today's Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
 - Implementing Priority Queue ADT
 - Focus on Create: Heapify
 - Brief introduction to d-Heaps

Closer Look at Creating Heaps

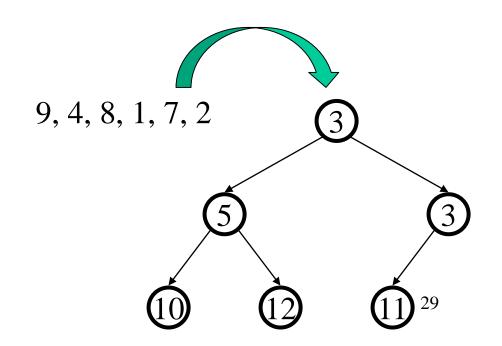
To create a heap given a list of items:

Create an empty heap.

For each item: insert into heap.

Time complexity?

- a. $O(\lg n)$
- b. O(n)
- c. O(n lg n)
- d. $O(n^2)$
- e. None of these



A Better BuildHeap

Floyd's Method. Thank you, Floyd.

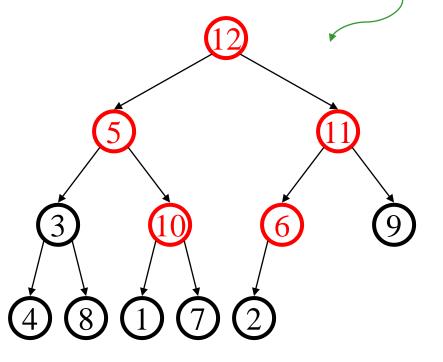
12	5	11	3	10	6	9	4	8	1	7	2

pretend it's a heap and fix the heap-order property!

Invariant violated!

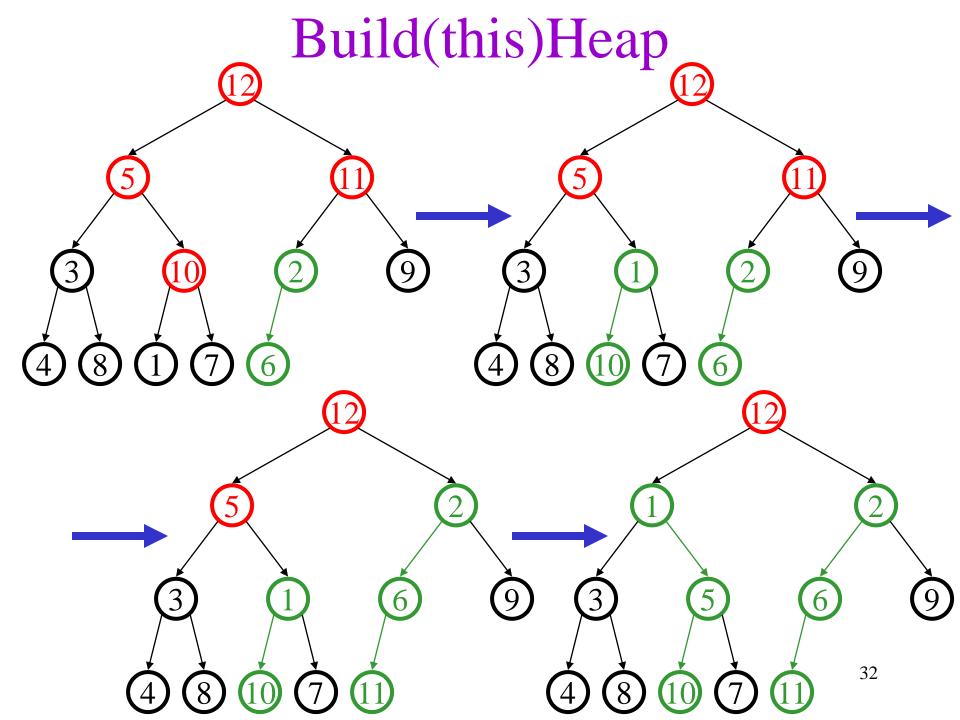
Where can the order invariant be violated in general?

- a. Anywhere
- b. Non-leaves
- c. Non-roots

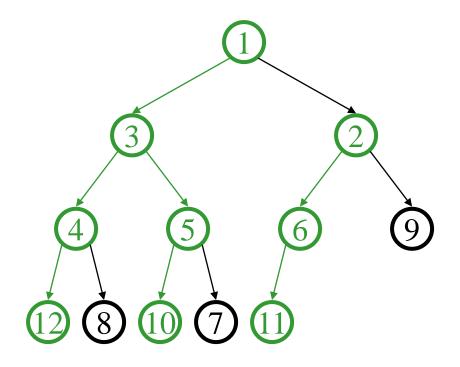


Alan's Aside:

- I don't really like the way Steve explains this.
- Heaps are recursive (mostly, except for structure):
 - A single node is a heap.
 - If parent value less than its child(ren), and child(ren) are heaps (except for "nearly complete" property).
- Think of enforcing the heap invariant from the bottom up!
 - Base Case: All nodes with no children are heaps already.
 - Inductive Case: My children are heaps. Percolate my value down, and that makes me a heap, too.

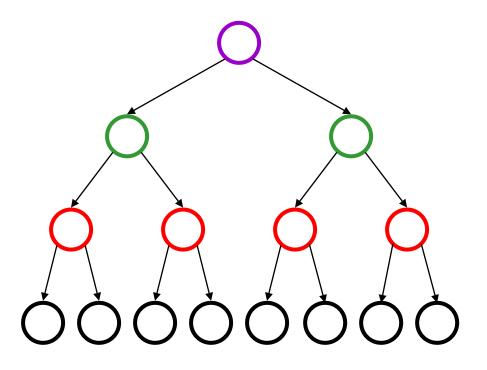


Finally...



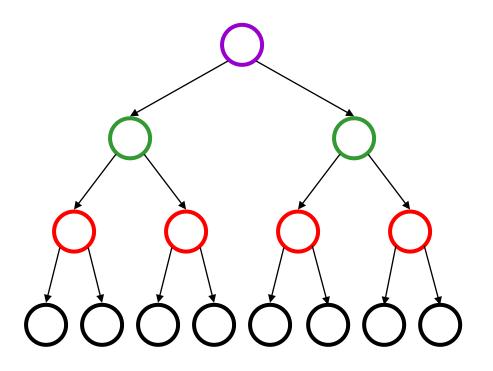
runtime:

Build(any)Heap



This is as many violations as we can get. How do we fix them? Let's play colouring games!

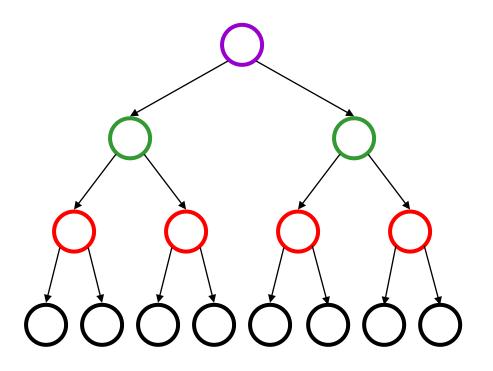
Build(any)Heap



Alan's Aside: I like to think of this instead as "charging" edges in the tree for the cost of the moves. We can work out a scheme where each edge pays only once.

(A 1-1 correspondence!)

Build(any)Heap



Alan's Aside: The proof that this always works is inductive. The inductive step is that both of my subtrees have an uncharged path (rightmost) to the leaves. I charge my cost to my left child, and my right child provides the 36 rightmost, uncharged path that I offer to my parent.

- Alternatively, we can do this with algebra.
- Consider a complete heap:
 - As we do percolate-down on bottom row, the cost is 0, each.
 There are roughly n/2 nodes on bottom row.
 - On next row up, the cost is 1, each. There are roughly n/4 nodes on second row.
 - On the kth row up, the cost is k-1 times $n/(2^k)$ nodes on that row.
 - row.

 Therefore, run time is $\sum_{i=1}^{\log n} (i-1) \frac{n}{2^i} \le \sum_{i=0}^{\infty} i \frac{n}{2^{i+1}} = \frac{n}{2} \sum_{i=0}^{\infty} \frac{i}{2^i} = n$

- The last sum is tricky...
- Think of the 2s as 1+1; the 3s, as 1+1+1; etc.
- Now, add up a "layer" of 1s for the whole tree.
- Then, add up a layer of 1s for the part of the tree where the cost was 2 or more.
- Then, add up a layer of 1s for the part of the tree where the cost was 3 or more.
- Etc.

$$\sum_{i=0}^{\infty} \frac{i}{2^i} = \frac{0}{2^0} + \frac{1}{2^1} + \frac{2}{2^2} + \frac{3}{2^3} + \dots$$

$$= \frac{1}{2^1} + \frac{1+1}{2^2} + \frac{1+1+1}{2^3} + \dots$$

$$=\sum_{i=1}^{\infty}\frac{1}{2^{i}}+\sum_{i=2}^{\infty}\frac{1}{2^{i}}+\sum_{i=2}^{\infty}\frac{1}{2^{i}}+\dots$$

$$\sum_{i=0}^{\infty} \frac{i}{2^{i}} = \sum_{i=1}^{\infty} \frac{1}{2^{i}} + \sum_{i=2}^{\infty} \frac{1}{2^{i}} + \sum_{i=3}^{\infty} \frac{1}{2^{i}} + \dots$$

$$= \sum_{i=0}^{\infty} \left(\sum_{i=1}^{\infty} \frac{1}{2^{i}}\right)$$

$$= \sum_{j=1}^{\infty} \left(\frac{1}{2^{j-1}} \sum_{i=1}^{\infty} \frac{1}{2^{i}} \right)$$

$$=\sum_{j=1}^{\infty} \left(\frac{1}{2^{j-1}}\right) = 2$$

Steve's Version of Alan's Aside

$$S = \sum_{i=0}^{\infty} \frac{i}{2^{i}} = \sum_{i=1}^{\infty} \frac{i}{2^{i}} = \frac{1}{2} + \sum_{i=2}^{\infty} \frac{i}{2^{i}}$$

$$= \frac{1}{2} + \frac{1}{2} \sum_{i=2}^{\infty} \frac{i}{2^{i-1}} = \frac{1}{2} + \frac{1}{2} \sum_{i=1}^{\infty} \frac{i+1}{2^i}$$

$$= \frac{1}{2} + \frac{1}{2} \left(\sum_{i=1}^{\infty} \frac{i}{2^i} + \sum_{i=1}^{\infty} \frac{1}{2^i} \right)$$

$$= \frac{1}{2} + \frac{1}{2} \left(\sum_{i=1}^{\infty} \frac{i}{2^i} + 1 \right) = \frac{1}{2} + \frac{1}{2} (S+1)$$

Today's Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
 - Implementing Priority Queue ADT
 - Focus on Create: Heapify
 - Brief introduction to d-Heaps

Thinking about Binary Heaps

Observations

- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- deleteMins look at all (two) children of some nodes
- inserts only care about parents of some nodes
- inserts are at least as common as deleteMins

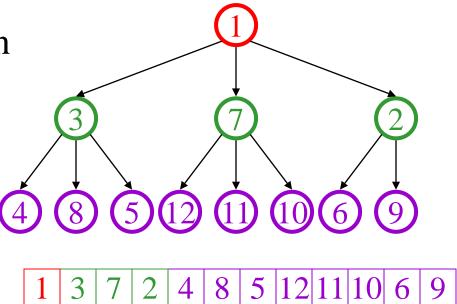
Realities

- division and multiplication by powers of two are fast
- looking at one new piece of data sucks in a cache line
- with **huge** data sets, disk accesses dominate

Solution: d-Heaps

• Nodes have (up to) d children

- Still representable by array
- Good choices for d:
 - optimize (non-asymptotic)
 performance based on
 ratio of inserts/removes
 - make d a power of two for efficiency
 - fit one set of children in a cache line
 - fit one set of children on a memory page/disk block



d-Heap calculations

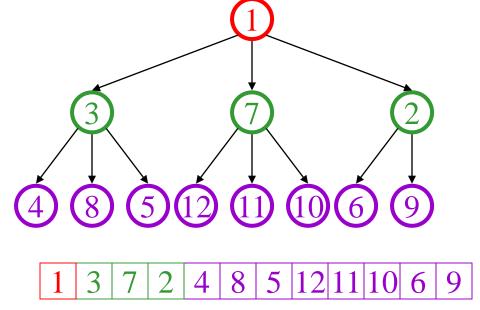
Calculations in terms of d:

- child:

– parent:

– root:

– next free:



Alan's Aside: Easier to work pattern if you count from zero!

d-Heap calculations

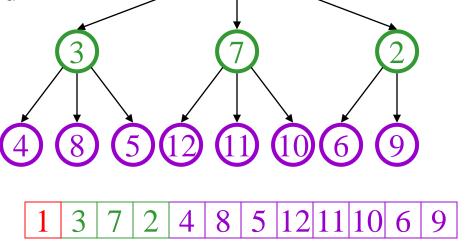
Calculations in terms of d:

- child: d*i+1 through d*i+d

– parent: floor((i-1)/d)

- root: 0

– next free: size



Alan's Aside: Easier to work pattern if you count from zero!

(Steve's d-Heap calculations)

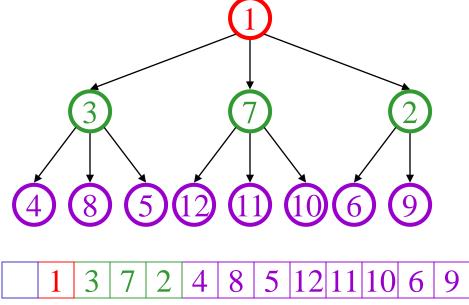
Calculations in terms of d:

- child:

– parent:

– root:

– next free:



(Steve's d-Heap calculations)

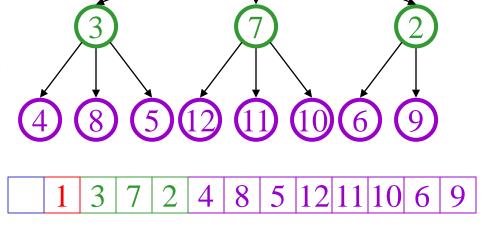
Calculations in terms of d:

- child: (i-1)*d+2 through i*d+1

- parent: floor((i-2)/d) + 1

- root: 1

– next free: size+1



Rest of Today's Learning Goals

- Get comfortable with C++ pointers, understand the * and & operators.
- Draw diagrams to help understand code that manipulates pointers.

C++ Reference Parameters

- & in a formal parameter makes the parameter another name for the argument that was passed in!
 - (This is a totally different meaning of & from the "address of" operator (and also totally different from bitwise-AND).)
- It's not a copy of the value of the argument, the way normal parameter passing works.

C++ Reference Parameters

```
void swap(int x, int y) {
  int t = x;
  X = Y;
  y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int &x, int &y) {
  int t = x;
  X = Y;
  y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

C++ Reference Parameters

```
void swap(int x, int y) {
  int t = x;
  x = y;
  y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int &x, int &y) {
  int t = x;
  x = y;
  y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int *x, int *y) {
  int t = x;
  X = Y;
  y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b:
```

```
void swap(int *x, int *y) {
  int t = x;
  *X = *Y;
  *y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int *x, int *y) {
  int t = x;
  X = Y;
  y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int *x, int *y) {
  int t = x;
  *x = *y;
  *y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int *x, int *y) {
  int t = x;
  *x = *y;
  *y = t;
int a=0; int b=1;
swap(&a,&b);
cout << a << ", " << b:
```

```
void swap(int *x, int *y) {
  int t = x;
  *x = *y;
  *y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```

```
void swap(int *x, int *y) {
  int t = x;
  *X = *y;
  *y = t;
int a=0; int b=1;
swap(&a,&b);
cout << a << ", " << b:
```

```
void swap(int *x, int *y) {
  int t = x;
  *x = *y;
  *y = t;
int a=0; int b=1;
swap(a,b);
cout << a << ", " << b;
```