CS221: Algorithms and Data Structures

Priority Queues and Heaps

Alan J. Hu
(Borrowing slides from Steve Wolfman)

Learning Goals

After this unit, you should be able to:

- Provide examples of appropriate applications for priority queues and heaps
- Manipulate data in heaps
- Describe and apply the Heapify algorithm, and analyze its complexity

Today’s Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
- Implementing Priority Queue ADT
- Focus on Create: Heapify
- Brief introduction to d-Heaps

Tree Terminology

root:
leaf:
child:
parent:
sibling:
ancestor:
descendent:
subtree:

Tree Terminology Reference

root: the single node with no parent leaf: a node with no children child: a node pointed to by me parent: the node that points to me sibling: another child of my parent
 ancestor: my parent or my parent's ancestor descendent: my child or my child's descendent subtree: a node and its descendents

We sometimes use degenerate versions of these definitions that allow NULL as the empty tree. (This can be very handy for recursive base cases!)

More Tree Terminology

depth: \# of edges along path from root to node depth of H ?

More Tree Terminology

height: \# of edges along longest path from node to leaf or, for whole tree, from root to leaf
height of tree?

More Tree Terminology

degree: \# of children of a node degree of B ?

More Tree Terminology

branching factor: maximum degree of any node in the tree

2 for binary trees, our usual concern; 5 for this weird tree

One More Tree Terminology Slide

binary: branching factor of 2 (each child has at most 2 children)
n-ary: branching factor of n
complete: "packed" binary tree; as many nodes as possible for its height

nearly complete: complete plus some nodes on the left at the BBttom

Trees and (Structural) Recursion

A tree is either:

- the empty tree
- a root node and an ordered list of subtrees

Trees are a recursively defined structure, so it makes sense to operate on them recursively.

Today’s Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
- Implementing Priority Queue ADT
- Focus on Create: Heapify
- Brief introduction to d-Heaps

Back to Queues

- Some applications
- ordering CPU jobs
- simulating events
- picking the next search site
- Problems?
- short jobs should go first
- earliest (simulated time) events should go first
- most promising sites should be searched first

Priority Queue ADT

- Priority Queue operations
- create
- destroy
- insert
- deleteMin

- isEmpty
- Priority Queue property: for two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

Applications of the Priority Q

- Hold jobs for a printer in order of length
- Store packets on network routers in order of urgency
- Simulate events
- Select symbols for compression
- Sort numbers
- Anything greedy: an algorithm that makes the "locally best choice" at each step

Naïve Priority Q Data Structures

- Unsorted list:
- insert:
- deleteMin:
- Sorted list:
- insert:
- deleteMin:
a. $\mathrm{O}(\lg \mathrm{n})$
b. $\mathrm{O}(\mathrm{n})$
c. $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
d. $\mathrm{O}\left(\mathrm{n}^{2}\right)$
e. Something else

Today’s Outline

- Trees, Briefly
- Priority Queue ADT
- Heaps
- Implementing Priority Queue ADT
- Focus on Create: Heapify
- Brief introduction to d-Heaps

Binary Heap Priority Q Data Structure

- Heap-order property
- parent's key is less than or equal to children's keys
- result: minimum is always at the top
- Structure property
- "nearly complete tree"
- result: depth is always $\mathrm{O}(\log \mathrm{n})$; next open location always known

WARNING: this has NO SIMILARITY to the "heap" you hear about when people say "objects you create with new go on the heap".

Nifty Storage Trick

- Calculations:
- child:
- parent:
- root:
- next free:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 5 | 7 | 6 | 10 | 8 | 11 | 9 | 12 | 14 | 20 | |

(Aside: Steve numbers from 1.)

- Calculations:
- child:
- parent:
- root:
- next free:

0	1	2	3	4	5	6	7	8	9	10	11	12	
	2	4	5	7	6	10	8	11	9	12	14	20	

Steve like to just skip using entry 0 in the array, so the root is at index 1. For a binary heap, this makes the calculations slightly shorter.

DeleteMin

pqueue.deleteMin()

Invariants violated! DOOOM!!!

Percolate Down

Finally...

DeleteMin Code

```
Object deleteMin() {
    assert(!isEmpty());
    returnVal = Heap[0];
    size--;
    newPos =
        percolateDown(0,
            Heap[size]);
    Heap[newPos] =
        Heap[size];
    return returnVal;
}
```

runtime:

```
int percolateDown(int hole,
                Object val) {
while (2*hole+1 < size) {
        left = 2*hole + 1;
        right = left + 1;
        if (right < size &&
                Heap[right] < Heap[left])
            target = right;
        else
            target = left;
        if (Heap[target] < val) {
            Heap[hole] = Heap[target];
            hole = target;
        }
        else
            break;
        }
        return hole;

\section*{Insert}

\section*{pqueue.insert(3)}


Invariant violated! What will we do?

Percolate Up


\section*{Insert Code}
```

void insert(Object o) {
assert(!isFull());
newPos =
percolateUp(size,o);
size++;
Heap[newPos] = o;
}
int percolateUp(int hole,
Object val) {
while (hole > 0 \&\&
val < Heap[(hole-1)/2])
Heap[hole] = Heap[(hole-1)/2];
hole = (hole-1)/2;
}
return hole;
}

```
runtime:

\section*{Today’s Outline}
- Trees, Briefly
- Priority Queue ADT
- Heaps
- Implementing Priority Queue ADT
- Focus on Create: Heapify
- Brief introduction to d-Heaps

\section*{Closer Look at Creating Heaps}

To create a heap given a list of items:
Create an empty heap.
For each item: insert into heap.

Time complexity?
a. \(\mathrm{O}(\lg \mathrm{n})\)
b. \(\mathrm{O}(\mathrm{n})\)
c. \(O(n \lg n)\)
d. \(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
e. None of these


\section*{A Better BuildHeap}

Floyd's Method. Thank you, Floyd.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 12 & 5 & 11 & 3 & 10 & 6 & 9 & 4 & 8 & 1 & 7 & 2 \\
\hline
\end{tabular}
pretend it's a heap and fix the heap-order property!

Invariant violated!
Where can the order invariant be violated in general?
a. Anywhere
b. Non-leaves
c. Non-roots


\section*{Alan's Aside:}
- I don't really like the way Steve explains this.
- Heaps are recursive (mostly, except for structure):
- A single node is a heap.
- If parent value less than its child(ren), and child(ren) are heaps (except for "nearly complete" property).
- Think of enforcing the heap invariant from the bottom up!
- Base Case: All nodes with no children are heaps already.
- Inductive Case: My children are heaps. Percolate my value down, and that makes me a heap, too.

Build(this)Heap


\section*{Finally...}

runtime:

\section*{Build(any)Heap}


This is as many violations as we can get. How do we fix them? Let's play colouring games!

\section*{Build(any)Heap}


Alan's Aside: I like to think of this instead as "charging" edges in the tree for the cost of the moves. We can work out a scheme where each edge pays only once. (A 1-1 correspondence!)

\section*{Build(any)Heap}


Alan's Aside: The proof that this always works is inductive. The inductive step is that both of my subtrees have an uncharged path (rightmost) to the leaves. I charge my cost to my left child, and my right child provides the rightmost, uncharged path that I offer to my parent.

\section*{Alan's Aside}
- Alternatively, we can do this with algebra.
- Consider a complete heap:
- As we do percolate-down on bottom row, the cost is 0 , each. There are roughly \(\mathrm{n} / 2\) nodes on bottom row.
- On next row up, the cost is 1 , each. There are roughly \(n / 4\) nodes on second row.
- On the kth row up, the cost is \(\mathrm{k}-1\) times \(\mathrm{n} /\left(2^{\wedge} \mathrm{k}\right)\) nodes on that row.
- Therefore, run time is \(\sum_{i=1}^{\log n}(i-1) \frac{n}{2^{i}} \leq \sum_{i=0}^{\infty} i \frac{n}{2^{i+1}}=\frac{n}{2} \sum_{i=0}^{\infty} \frac{i}{2^{i}}=n\)

\section*{Alan's Aside}
- The last sum is tricky...
- Think of the 2 s as \(1+1\); the 3 s , as \(1+1+1\); etc.
- Now, add up a "layer" of 1 s for the whole tree.
- Then, add up a layer of 1 s for the part of the tree where the cost was 2 or more.
- Then, add up a layer of 1 s for the part of the tree where the cost was 3 or more.
- Etc.

\section*{Alan's Aside}
\[
\begin{aligned}
\sum_{i=0}^{\infty} \frac{i}{2^{i}} & =\frac{0}{2^{0}}+\frac{1}{2^{1}}+\frac{2}{2^{2}}+\frac{3}{2^{3}}+\ldots \\
& =\frac{1}{2^{1}}+\frac{1+1}{2^{2}}+\frac{1+1+1}{2^{3}}+\ldots \\
& =\sum_{i=1}^{\infty} \frac{1}{2^{i}}+\sum_{i=2}^{\infty} \frac{1}{2^{i}}+\sum_{i=3}^{\infty} \frac{1}{2^{i}}+\ldots
\end{aligned}
\]

\section*{Alan's Aside}
\[
\begin{aligned}
\sum_{i=0}^{\infty} \frac{i}{2^{i}} & =\sum_{i=1}^{\infty} \frac{1}{2^{i}}+\sum_{i=2}^{\infty} \frac{1}{2^{i}}+\sum_{i=3}^{\infty} \frac{1}{2^{i}}+\ldots \\
& =\sum_{j=1}^{\infty}\left(\sum_{i=j}^{\infty} \frac{1}{2^{i}}\right) \\
& =\sum_{j=1}^{\infty}\left(\frac{1}{2^{j-1}} \sum_{i=1}^{\infty} \frac{1}{2^{i}}\right) \\
& =\sum_{j=1}^{\infty}\left(\frac{1}{2^{j-1}}\right)=2
\end{aligned}
\]

Steve's Version of Alan's Aside
\[
\begin{aligned}
S & =\sum_{i=0}^{\infty} \frac{i}{2^{i}}=\sum_{i=1}^{\infty} \frac{i}{2^{i}}=\frac{1}{2}+\sum_{i=2}^{\infty} \frac{i}{2^{i}} \\
& =\frac{1}{2}+\frac{1}{2} \sum_{i=2}^{\infty} \frac{i}{2^{i-1}}=\frac{1}{2}+\frac{1}{2} \sum_{i=1}^{\infty} \frac{i+1}{2^{i}} \\
& =\frac{1}{2}+\frac{1}{2}\left(\sum_{i=1}^{\infty} \frac{i}{2^{i}}+\sum_{i=1}^{\infty} \frac{1}{i^{i}}\right) \\
& =\frac{1}{2}+\frac{1}{2}\left(\sum_{i=1}^{\infty} \frac{i}{2^{i}}+1\right)=\frac{1}{2}+\frac{1}{2}(S+1)
\end{aligned}
\]

\section*{Today's Outline}
- Trees, Briefly
- Priority Queue ADT
- Heaps
- Implementing Priority Queue ADT
- Focus on Create: Heapify
- Brief introduction to d-Heaps

\section*{Thinking about Binary Heaps}
- Observations
- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- deleteMins look at all (two) children of some nodes
- inserts only care about parents of some nodes
- inserts are at least as common as deleteMins
- Realities
- division and multiplication by powers of two are fast
- looking at one new piece of data sucks in a cache line
- with huge data sets, disk accesses dominate

\section*{Solution: d-Heaps}
- Nodes have (up to) \(d\) children
- Still representable by array
- Good choices for \(d\) :
- optimize (non-asymptotic) performance based on ratio of inserts/removes

\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 7 & 2 & 4 & 8 & 5 & 12 & 11 & 10 & 6 & 9 \\
\hline
\end{tabular}
- make \(d\) a power of two for efficiency
- fit one set of children in a cache line
- fit one set of children on a memory page/disk block
d-heap mnemonic:
d is for degre \({ }^{4}\).

\section*{d-Heap calculations}

Calculations in terms of \(d\) :
- child:
- parent:

- root:
\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 7 & 2 & 4 & 8 & 5 & 12 & 11 & 10 & 6 \\
\hline
\end{array}
\]
- next free:

Alan's Aside: Easier to work pattern if you count from zero!
d-heap mnemonic:
d is for degrees.

\section*{d-Heap calculations}

Calculations in terms of d:
- child: d*i+1 through d*i+d
- parent: floor((i-1)/d)
- root: 0

\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 7 & 2 & 4 & 8 & 5 & 12 & 11 & 10
\end{array} 6
\]
- next free: size

Alan's Aside: Easier to work pattern if you count from zero!
d-heap mnemonic:
d is for degreet

\section*{(Steve’s d-Heap calculations)}

Calculations in terms of \(d\) :
- child:
- parent:
- root:

\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline & 1 & 3 & 7 & 2 & 4 & 8 & 5 & 12 & 11 & 10
\end{array} \mathbf{6} \text { 9 }
\]
- next free:
d-heap mnemonic:
d is for degree?

\section*{(Steve’s d-Heap calculations)}

Calculations in terms of \(d\) :
- child: (i-1)*d+2 through \(\mathrm{i}^{*} \mathrm{~d}+1\)
- parent: floor((i-2)/d) + 1
- root: 1

\[
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & 3 & 7 & 2 & 4 & 8 & 5 & 12 & 11 & 10 & 6 \\
\hline
\end{array}
\]
- next free: size+1
d-heap mnemonic:
d is for degree

\section*{Rest of Today’s Learning Goals}
- Get comfortable with C++ pointers, understand the * and \& operators.
- Draw diagrams to help understand code that manipulates pointers.

\section*{C++ Reference Parameters}
- \& in a formal parameter makes the parameter another name for the argument that was passed in!
- (This is a totally different meaning of \& from the "address of" operator (and also totally different from bitwise-AND).)
- It's not a copy of the value of the argument, the way normal parameter passing works.

\section*{C++ Reference Parameters}

\section*{void swap(int x, int y) \{} int \(t=x\);
\(x=y\);
\(\mathrm{y}=\mathrm{t}\);
\}
int \(a=0\); int \(b=1\);
swap(a,b);
cout \(\ll\) a <<", " << b;
void swap(int \&x, int \&y) \{ int \(t=x\);
\(x=y ;\)
\(y=t ;\)
\}
int \(a=0\); int \(b=1\);
swap(a,b);
cout \(\ll\) a << ", " << b;

\section*{C++ Reference Parameters}
void swap(int \(x\), int \(y)\) \{ int \(t=x\);
\(x=y ;\)
\(y=t ;\)
\}
int \(a=0\); int \(b=1\);
swap(a,b);
cout << a <<", " << b;
void swap(int \&x, int \&y) \{ int \(\mathrm{t}=\mathrm{x}\);
\(x=y ;\)
\(y=t ;\)
\}
-••
int \(a=0\); int \(b=1\);
swap(a,b);
cout << a <<", " \ll b;

\section*{Old-School C (and C++)}
void swap(int *x, int *y) \{ int *t = x;
\(x=y ;\)
\(y=t ;\)
\}
int \(a=0\); int \(b=1\);
swap(a,b);
cout << a <<", " << b;
void swap(int *x, int *y) \{ int \(\mathrm{t}={ }^{*} \mathrm{x}\);
*x = *y;
*y = t;
\}
int \(a=0\); int \(b=1\);
swap(a,b);
cout \(\ll\) a << ", " \ll b;

\section*{Old-School C (and C++)}
void swap(int *x, int *y) \{ int *t = x;
\(x=y ;\)
\(\mathrm{y}=\mathrm{t}\);
\(\}\)
int \(a=0\); int \(b=1\);
swap(a,b);
cout \(\ll\) a <<", " << b;
void swap(int *x, int *y) \{ int \(\mathrm{t}={ }^{*} \mathrm{x}\);
*x \(={ }^{*} y\);
*y \(=\mathrm{t}\);
\}
-••
int \(a=0\); int \(b=1\);
swap(a,b);
cout << a <<", " << b;

\section*{Old-School C (and C++)}
void swap(int *x, int *y) \{ int \(\mathrm{t}={ }^{*} \mathrm{x}\);
*x = *y;
*y = t;
\(\}\)
int \(a=0\); int \(b=1\);
swap(\&a,\&b);
cout << a <<", " << b;
void swap(int *x, int *y) \{ int \(\mathrm{t}={ }^{*} \mathrm{x}\);
*x \(=\) * \(y\);
*y \(=\mathrm{t}\);
\}
- ••
int \(a=0\); int \(b=1\);
swap(a,b);
cout << a <<", " << b;

\section*{Old-School C (and C++)}
void swap(int *x, int *y) \{ int \(\mathrm{t}={ }^{*} \mathrm{x}\);
*x = *y;
*y = t;
\(\}\)
int \(a=0\); int \(b=1\);
swap(\&a,\&b);
cout << a <<", " << b;
void swap(int *x, int *y) \{ int \(\mathrm{t}={ }^{*} \mathrm{x}\);
*x \(=\) * \(y\);
*y \(=\mathrm{t}\);
\}
-••
int \(a=0\); int \(b=1\);
swap(a,b);
cout << a <<", " << b;```

