
CS221: Algorithms and
Data Structures

Big-O

Alan J. Hu
(Borrowing some slides from Steve Wolfman)

1

Learning Goals

• Define big-O, big-Omega, and big-Theta: O(•), Ω(•), Θ(•)
• Explain intuition behind their definitions.
• Prove one function is big-O/Omega/Theta of another

function.
• Simplify algebraic expressions using the rules of

asymptotic analysis.
• List common asymptotic complexity orders, and how they

compare.
• Work some examples.

2

Asymptotic Analysis of Algorithms

From last time, some key points:
• We will measure runtime, or memory usage, or

whatever we are comparing, as a function in
terms of the input size n.

• Because we are comparing algorithms, we only
count “basic operations”, and since we don’t know
how long each basic operation will really take, we
ignore constant factors.

• We focus only on when n gets big.

Asymptotic Analysis of Algorithms

From last time, some key points:
• We will measure runtime, or memory usage, or

whatever we are comparing, as a function in
terms of the input size n.

• Because we are comparing algorithms, we only
count “basic operations”, and since we don’t know
how long each basic operation will really take, we
ignore constant factors.

• We focus only on when n gets big.

Runtime Smackdown!

Alan’s Old Thinkpad x40
• Older Laptop
• Pentium M 32bit CPU at

1.4Ghz
• 1.5 GB of RAM

Pademelon
• 2011 Desktop PC
• Core i7-870 64bit CPU at

3Ghz w/ TurboBoost
• 16GB of RAM

Which computer is faster? By how much?

Runtime Smackdown II!

Tandy 200
• 1984 Laptop
• Intel 8085 8bit CPU at

2.4Mhz
• 24KB of RAM
• Interpreted BASIC

Pademelon
• 2011 Desktop PC
• Core i7-870 64bit CPU at

3Ghz w/ TurboBoost
• 16GB of RAM
• Compiled C++

Which computer is faster? By how much?

Runtime Smackdown III!

Tandy 200
• 1984 Laptop
• Intel 8085 8bit CPU at

2.4Mhz
• 24KB of RAM
• Interpreted BASIC

Pademelon
• 2011 Desktop PC
• Core i7-870 64bit CPU at

3Ghz w/ TurboBoost
• 16GB of RAM
• Compiled C++

Which computer is faster? By how much?

But what if we run asymptotically different algorithms?

Asymptotic Analysis of Algorithms

From last time, some key points:
• We will measure runtime, or memory usage, or

whatever we are comparing, as a function in
terms of n.

• Because we are comparing algorithms, we only
count “basic operations”, and since we don’t know
how long each basic operation will really take, we
ignore constant factors.

• We focus only on when n gets big.

Silicon Downs
Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82lg n

mn3

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

For each race,
which “horse”
grows bigger as n
goes to infinity?
(Note that in
practice, smaller
is better.)

a.Left
b.Right
c.Tied
d.It depends
e.I am opposed to
algorithm racing.

9

Race I
n3 + 2n2 100n2 + 1000vs.

a. Left
b. Right
c. Tied
d. It depends

10

Race II
n0.1 log nvs.

a. Left
b. Right
c. Tied
d. It depends

11

Race III
n + 100n0.1 2n + 10 log nvs.

a. Left
b. Right
c. Tied
d. It depends

12

Race IV
5n5 n!vs.

a. Left
b. Right
c. Tied
d. It depends

13

Race V
n-152n/100 1000n15vs.

a. Left
b. Right
c. Tied
d. It depends

14

Race VI
82lg(n) 3n7 + 7nvs.

a. Left
b. Right
c. Tied
d. It depends

15

Race VII
mn3 2mnvs.

a. Left
b. Right
c. Tied
d. It depends

16

Silicon Downs
Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82lg n

mn3

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

2mn

Grows Bigger

n3 + 2n2

n0.1

2n + 10 log n (tied)

n!

n-152n/100

3n7 + 7n

IT DEPENDS17

Order Notation

• We’ve seen why we focus on the big inputs.
• We modeled that formally as the asymptotic

behavior, as input size goes to infinity.
• We looked at a bunch of Steve’s “races”, to see

which function “wins” or “loses”.
• How do we formalize the notion of winning? How

do we formalize that one function “eventually
catches up and grows faster”?

18

Order Notation

• We’ve seen why we focus on the big inputs.
• We modeled that formally as the asymptotic

behavior, as input size goes to infinity.
• We looked at a bunch of Steve’s “races”, to see

which function “wins” or “loses”.
• How do we formalize the notion of winning? How

do we formalize that one function “eventually
catches up and grows faster”?

19

Race I
n3 + 2n2 100n2 + 1000vs.

a. Left
b. Right
c. Tied
d. It depends

20

Race II
n0.1 log nvs.

a. Left
b. Right
c. Tied
d. It depends

21

Race III
n + 100n0.1 2n + 10 log nvs.

a. Left
b. Right
c. Tied
d. It depends

22

How to formalize winning?

• How to formally say that there’s some crossover
point, after which one function is bigger than the
other?

• How to formally say that you don’t care about a
constant factor between the two functions?

Order Notation – Big-O

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

24

Order Notation – Big-O

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

• Why the n0 ?
• Why the c ?

25

Order Notation – Big-O

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

• Why the ∈ ?
(Many people write T(n)=O(f(n)),
but this is sloppy. The ∈ shows you why
you should never write O(f(n))=T(n),
with the big-O on the left-hand side.)

26

Order Notation – Big-O

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

• Intuitively, what does this all mean?

27

Order Notation – Big-O

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

• Intuitively, what does this all mean?

The function f(n) is sort of, asymptotically “greater
than or equal to” the function T(n).

In the “long run”, f(n) (multiplied by a suitable
constant) will upper-bound T(n).

28

Order Notation – Big-Theta and
Big-Omega

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

• T(n) ∈ Ω (f(n)) if f(n) ∈ O(T(n))
• T(n) ∈ Θ(f(n)) if T(n) ∈ O(f(n)) and T(n) ∈ Ω (f(n))

29

Examples

10,000 n2 + 25 n ∈ Θ(n2)
10-10 n2 ∈ Θ(n2)
n log n ∈ O(n2)
n log n ∈ Ω(n)
n3 + 4 ∈ O(n4) but not Θ(n4)
n3 + 4 ∈ Ω(n2) but not Θ(n2)

30

Proofs?

10,000 n2 + 25 n ∈ Θ(n2)
10-10 n2 ∈ Θ(n2)
n log n ∈ O(n2)
n log n ∈ Ω(n)
n3 + 4 ∈ O(n4) but not Θ(n4)
n3 + 4 ∈ Ω(n2) but not Θ(n2)

How do you prove a big-O? a big-Ω ? a big-Θ ?
31

Proving a Big-O

• T(n) ∈ O(f(n)) if there are constants c > 0 and n0
such that T(n) ≤ c f(n) for all n ≥ n0

• Formally, to prove T(n) ∈ O(f(n)), you must show:

• How do you prove a “there exists” property?

32

[])()(,0 00 ncfnTnnnc ≤>∀>∃

Proving a “There exists” Property

How do you prove “There exists a good restaurant in
Vancouver”?

How do you prove a property like

33

[]13 +=∃ ccc

Proving a Property

How do you prove “There exists a restaurant in
Vancouver, where all items on the menu are less
than $10”?

How do you prove a property like

34

[]102 −≤∀∃ xcxc

∀∃

Proving a Big-O

Formally, to prove T(n) ∈ O(f(n)), you must show:

So, we have to come up with specific values of c and
n0 that “work”, where “work” means that for any
n>n0 that someone picks, the formula holds:

35

[])()(,0 00 ncfnTnnnc ≤>∀>∃

[])()(ncfnT ≤

Proving Big-O -- Example

10,000 n2 + 25 n ∈ Θ(n2)
10-10 n2 ∈ Θ(n2)
n log n ∈ O(n2)
n log n ∈ Ω(n)
n3 + 4 ∈ O(n4) but not Θ(n4)
n3 + 4 ∈ Ω(n2) but not Θ(n2)

36

Prove n log n ∈ O(n2)

• Guess or figure out values of c and n0 that will
work.
(Let’s assume base-10 logarithms.)

Prove n log n ∈ O(n2)

• Guess or figure out values of c and n0 that will
work.
(Let’s assume base-10 logarithms.)

• Turns out c=1 and n0 = 1 works!
(What happens if you guess wrong?)

Prove n log n ∈ O(n2)

• Guess or figure out values of c and n0 that will
work.
(Let’s assume base-10 logarithms.)

• Turns out c=1 and n0 = 1 works!
• Now, show that n log n <= n2 , for all n>1

Prove n log n ∈ O(n2)

• Guess or figure out values of c and n0 that will
work.
(Let’s assume base-10 logarithms.)

• Turns out c=1 and n0 = 1 works!
• Now, show that n log n <= n2 , for all n>1
• This is fairly trivial: log n <= n (for n>1)

Multiply both sides by n (OK, since n>1>0)

Aside: Writing Proofs

• In lecture, my goal is to give you intuition.
– I will just sketch the main points, but not fill in all

details.
• When you write a proof (homework, exam,

reports, papers), be sure to write it out formally!
– Standard format makes it much easier to write!

• Class website has links to notes with standard tricks, examples
• Textbook has good examples of proofs, too.
• Copy the style, structure, and format of these proofs.

– On exams and homeworks, you’ll get more credit.
– In real life, people will believe you more.

To Prove n log n ∈ O(n2)
Proof:
By the definition of big-O, we must find values of c and n0

such that for all n ≥ n0, n log n ≤ cn2.
Consider c=1 and n0 = 1.
For all n ≥ 1, log n ≤ n.
Therefore, log n ≤ cn, since c=1.
Multiplying both sides by n (and since n ≥ n0= 1), we have

n log n ≤ cn2.
Therefore, n log n ∈ O(n2).
QED

(This is more detail than you’ll use in the future, but
until you learn what you can skip, fill in the details.)

Proving Big-Ω

• Just like proving Big-O, but backwards…

Proving Big-Θ

• Just prove Big-O and Big-Ω

Proving Big-Θ -- Example

10,000 n2 + 25 n ∈ Θ(n2)
10-10 n2 ∈ Θ(n2)
n log n ∈ O(n2)
n log n ∈ Ω(n)
n3 + 4 ∈ O(n4) but not Θ(n4)
n3 + 4 ∈ Ω(n2) but not Θ(n2)

45

Prove 10,000 n2 + 25 n ∈ O(n2)

• What values of c and n0 work?

(Lots of answers will work…)

Prove 10,000 n2 + 25 n ∈ O(n2)

• What values of c and n0 work?
I’ll use c=10025 and n0 = 1.

10,000 n2 + 25 n <= 10,000 n2 + 25 n2

<= 10,025 n2

Prove 10,000 n2 + 25 n ∈ Ω(n2)

• What is this in terms of Big-O?

Prove n2 ∈ O(10,000 n2 + 25 n)

• What values of c and n0 work?

Prove n2 ∈ O(10,000 n2 + 25 n)

• What values of c and n0 work?
I’ll use c=1 and n0 = 1.

n2 <= 10,000 n2

<= 10,000 n2 + 25 n

Therefore, 10,000 n2 + 25 n ∈ Θ(n2)

Mounties Find Silicon Downs Fixed
• The fix sheet (typical growth rates in order)

– constant: O(1)
– logarithmic: O(log n) (logkn, log n2 ∈ O(log n))
– poly-log: O(logk n) (k is a constant >1)
– linear: O(n)
– (log-linear): O(n log n) (usually called “n log n”)
– (superlinear): O(n1+c) (c is a constant, 0 < c < 1)
– quadratic: O(n2)
– cubic: O(n3)
– polynomial: O(nk) (k is a constant)
– exponential: O(cn) (c is a constant > 1)

“tractable”

“intractable”51

Asymptotic Analysis Hacks

• These are quick tricks to get big-Θ category.
• Eliminate low order terms

– 4n + 5 ⇒ 4n
– 0.5 n log n - 2n + 7 ⇒ 0.5 n log n
– 2n + n3 + 3n ⇒ 2n

• Eliminate coefficients
– 4n ⇒ n
– 0.5 n log n ⇒ n log n
– n log (n2) = 2 n log n ⇒ n log n

52

Log Aside

logab means “the exponent that turns a into b”
lg x means “log2x” (our usual log in CS)
log x means “log10x” (the common log)
ln x means “logex” (the natural log)

But… O(lg n) = O(log n) = O(ln n) because:
logab = logcb / logca (for c > 1)

so, there’s just a constant factor between log bases

53

USE those cheat sheets!
• Which is faster, n3 or n3 log n?

• Which is faster, n3 or n3.01/log n?
(Split it up and use the “dominance” relationships.)

54

Rates of Growth
• Suppose a computer executes 1012 ops per second:

n = 10 100 1,000 10,000 1012

n 10-11s 10-10s 10-9s 10-8s 1s

n log n 10-11s 10-9s 10-8s 10-7s 40s

n2 10-10s 10-8s 10-6s 10-4s 1012s

n3 10-9s 10-6s 10-3s 1s 1024s

2n 10-9s 1018s 10289s

104s = 2.8 hrs 1018s = 30 billion years
55

	CS221: Algorithms and �Data Structures�Big-O�
	Learning Goals
	Asymptotic Analysis of Algorithms
	Asymptotic Analysis of Algorithms
	Runtime Smackdown!
	Runtime Smackdown II!
	Runtime Smackdown III!
	Asymptotic Analysis of Algorithms
	Silicon Downs
	Race I
	Race II
	Race III
	Race IV
	Race V
	Race VI
	Race VII
	Silicon Downs
	Order Notation
	Order Notation
	Race I
	Race II
	Race III
	How to formalize winning?
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-Theta and�Big-Omega
	Examples
	Proofs?
	Proving a Big-O
	Proving a “There exists” Property
	Proving a Property
	Proving a Big-O
	Proving Big-O -- Example
	Prove n log n  O(n2)
	Prove n log n  O(n2)
	Prove n log n  O(n2)
	Prove n log n  O(n2)
	Aside: Writing Proofs
	To Prove n log n  O(n2)
	Proving Big-
	Proving Big-
	Proving Big- -- Example
	Prove 10,000 n2 + 25 n  O(n2)
	Prove 10,000 n2 + 25 n  O(n2)
	Prove 10,000 n2 + 25 n  (n2)
	Prove n2  O(10,000 n2 + 25 n)
	Prove n2  O(10,000 n2 + 25 n)
	Mounties Find Silicon Downs Fixed
	Asymptotic Analysis Hacks
	Log Aside
	USE those cheat sheets!
	Rates of Growth

