CS221: Algorithms and
Data Structures
Big-O

Alan J. Hu
(Borrowing some slides from Steve Wolfman)

Learning Goals

Define big-O, big-Omega, and big-Theta: O(e), €2(¢), O(*)
Explain intuition behind their definitions.

Prove one function is big-O/Omega/Theta of another
function.

Simplify algebraic expressions using the rules of
asymptotic analysis.

List common asymptotic complexity orders, and how they
compare.

Work some examples.

Asymptotic Analysis of Algorithms

From last time, some key points:

* We will measure runtime, or memory usage, or
whatever we are comparing, as a function in
terms of the input size n.

« Because we are comparing algorithms, we only
count “basic operations”, and since we don’t know

how long each basic operation will really take, we
Ignore constant factors.

* We focus only on when n gets big.

Asymptotic Analysis of Algorithms

From last time, some key points:

* We will measure runtime, or memory usage, or
whatever we are comparing, as a function in
terms of the input size n.

* | Because we are comparing algorithms, we only
count “basic operations”, and since we don’t know

how long each basic operation will really take, we
Ignore constant factors.

* We focus only on when n gets big.

Runtime Smackdown!

Alan’s Old Thinkpad x40 Pademelon

o Older Laptop o 2011 Desktop PC

e Pentium M 32bit CPU at e Core17-870 64bit CPU at
1.4Ghz 3Ghz w/ TurboBoost

« 1.5GB of RAM 16GB of RAM

Which computer is faster? By how much?

Runtime Smackdown 1!

Tandy 200 Pademelon

e 1984 Laptop e 2011 Desktop PC

 Intel 8085 8bit CPU at e Core 17-870 64bit CPU at
2.4Mhz 3Ghz w/ TurboBoost

« 24KB of RAM 16GB of RAM

 Interpreted BASIC Compiled C++

Which computer is faster? By how much?

Runtime Smackdown 111!

Tandy 200 Pademelon

e 1984 Laptop e 2011 Desktop PC

 Intel 8085 8bit CPU at e Core 17-870 64bit CPU at
2.4Mhz 3Ghz w/ TurboBoost

« 24KB of RAM 16GB of RAM

 Interpreted BASIC Compiled C++

Which computer is faster? By how much?

But what if we run asymptotically different algorithms?

Asymptotic Analysis of Algorithms

From last time, some key points:

* We will measure runtime, or memory usage, or

whatever we are comparing, as a function in
terms of n.

* | Because we are comparing algorithms, we only
count “basic operations”, and since we don’t know

how long each basic operation will really take, we
Ignore constant factors.

* We focus only on when n gets big.

Post #1

n3 + 2n?
nO.l

n + 100n%1
5n°
n-1>2"/100
g2lgn

mn3

Stlicon Downs
Post #2
100n2 + 1000
log n
2n+ 10 logn
n!
1000n*t>
3n’ +7n

2N

For each race,
which “horse”
grows bigger as n
goes to infinity?
(Note that In
practice, smaller
IS better.)

a.Left

b.Right

c.Tied

d.It depends

e.l am opposed to

algorithm racing.
9

12000

10000

go00

gOO0

4000

2000

Race |

ne + 2n2 vs. 100n2 + 1000

N3+ 2072 ——
100n"2 + 1000 ——

Je+06

Be+06

Te+06

Be+0B5

Se+06

de+06

Je+06

ce+06

1e+06

a. Left

b. Right

c. Tied

d. It depends

" n"3 o+ 2nE ——
100n72 + 1000 —

20

40

B0 80 100 120 140 160 180 Z00

10

a. Left

b. Right

c. Tied
Race ” d. It depends

no-1 VS. log n

_II|I:I T T T

= O
]
=R

BO

=10 .

40 | :

30 i .

20 .

10 F -

0 2e+17 de+17 Be+17 ge+17 1e+1¢

11

a. Left

b. Right

c. Tied
Race I I I d. It depends

n + 100n°-1 wvs.2n + 10 log n

14':' T T T E.SE‘+1B T T
n o+ 100 n 0, n+ 100 nno,l —
log n Zn o+ 10 log n
120 -
fe+18 F
100 F -
a0 |] 1.5e+18 | -
le+18 |
Se+17 F -
0 1 1 1 1
o] 2e+17 de+17 Be+17 Be+17 1e+1tf

12

16000

14000

12000

10000

gooo

gOOO

4000

2000

Race IV

VS.

de+06
3.5e+06
Je+06
2.5e+06
Ze+0k
1.5e+06
le+06

200000

o0 o

Left

Right
Tied

It depends

a. Left
b. Right
c. Tied
R ace V d. It depends

n-2"/100 s, 1000nt>

le+18 T T T T T T T T 1.2e+40 T T T T T
n =15 % 2'n / 100 —— n =15 % &n # 100 ——
10000715 —— 1000n7 15 ——
Be+17 | Le+d0
Be+39
Ge+l17
Be+39
de+17 |
de+39
2etld
® 2e+39
0 0

230 235 240 245 230 235 2Bl

14

a. Left

b. Right

c. Tied
Race V I d. It depends

g21g(n) VS, 3n’ + 7n

250000

5°(2 log n)
3n”7 + Tn

200000

150000 F

100000 +

20000

15

a. Left

b. Right

c. Tied
Race VI I d. It depends

mn3 VS. 2N

16

Post #1

n3 + 2n?
nO.l

n + 100n%1
5n°
n-1>2"/100
g2lgn

mn3

Stlicon Downs
Post #2
100n2 + 1000
log n
2n+ 10 logn
n!
1000n*t>
3n’ +7n

2N

Grows Bigger

n3 + 2n?

nO.l

2n + 10 log n (tied)
n!

n-1>2"/100

3n’ +7n

I'T DEPENDS’

Order Notation

We’ve seen why we focus on the big inputs.

We modeled that formally as the asymptotic
behavior, as input size goes to Iinfinity.

We looked at a bunch of Steve’s “races”, to see
which function “wins” or “loses”.

How do we formalize the notion of winning? How
do we formalize that one function “eventually
catches up and grows faster”?

18

Order Notation

e \We’ve seen why we focus on the big inputs.

« \We modeled that formally as the asymptotic
behavior, as input size goes to Iinfinity.

 We looked at a bunch of Steve’s “races”, to see
which function “wins” or “loses”.

How do we formalize the notion of winning? How
do we formalize that one function “eventually

catches up and grows faster”?

19

12000

10000

go00

gOO0

4000

2000

Race |

ne + 2n2 vs. 100n2 + 1000

N3+ 2072 ——
100n"2 + 1000 ——

Je+06

Be+06

Te+06

Be+0B5

Se+06

de+06

Je+06

ce+06

1e+06

a. Left

b. Right

c. Tied

d. It depends

" n"3 o+ 2nE ——
100n72 + 1000 —

20

40

B0 80 100 120 140 160 180 Z00

20

a. Left

b. Right

c. Tied
Race ” d. It depends

no-1 VS. log n

_II|I:I T T T

= O
]
=R

BO

=10 .

40 | :

30 i .

20 .

10 F -

0 2e+17 de+17 Be+17 ge+17 1e+1¢

21

a. Left

b. Right

c. Tied
Race I I I d. It depends

n + 100n°-1 wvs.2n + 10 log n

14':' T T T E.SE‘+1B T T
n o+ 100 n 0, n+ 100 nno,l —
log n Zn o+ 10 log n
120 -
fe+18 F
100 F -
a0 |] 1.5e+18 | -
le+18 |
Se+17 F -
0 1 1 1 1
o] 2e+17 de+17 Be+17 Be+17 1e+1tf

22

How to formalize winning?

 How to formally say that there’s some crossover
point, after which one function is bigger than the
other?

 How to formally say that you don’t care about a
constant factor between the two functions?

Order Notation — Big-O

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

24

Order Notation — Big-O

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

 Why then,?
e Whythec?

25

Order Notation — Big-O

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

« Whythe € ?
(Many people write T(n)=0(f(n)),
but this is sloppy. The € shows you why
you should never write O(f(n))=T(n),
with the big-O on the left-hand side.)

26

Order Notation — Big-O

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

 Intuitively, what does this all mean?

27

Order Notation — Big-O

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

 Intuitively, what does this all mean?

The function f(n) Is sort of, asymptotically “greater
than or equal to” the function T(n).

In the “long run”, f(n) (multiplied by a suitable
constant) will upper-bound T(n).

28

Order Notation — Big-Theta and
Big-Omega

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

e T(n) € Q (f(n)) If f(n) € O(T(n))
e T(n) € O(f(n)) If T(n) € O(f(n)) and T(n) € Q (f(n))

29

Examples

10,000 n? + 25 n € ®(n?)
10-19n2 € ®(n?)

nlogn e O(n?)

nlogn e Q(n)

n + 4 e O(n*) but not ®(n*)
n + 4 e Q(n?) but not ®(n?)

30

Proofs?

10,000 n? + 25 n € O(n?)
10-19n2 € ®(n?)

nlog n € O(n?)

nlogn e Q(n)

n + 4 e O(n*) but not ®(n*)
nd + 4 Q(n?) but not ®(n?)

How do you prove a big-O? a big-Q2 ? a big-® ?

31

Proving a Big-O

e T(n) € O(f(n)) if there are constants ¢ > 0 and n,
such that T(n) <c f(n) for all n > n,

« Formally, to prove T(n) € O(f(n)), you must show:

3¢ > 0,n,Vn > n [T (n) < cf ()]

 How do you prove a “there exists” property?

32

Proving a “There exists” Property

How do you prove “There exists a good restaurant in
Vancouver”?

How do you prove a property like

Iclc =3c +1]

33

Proving a =

...V... Property

How do you prove “There exists a restaurant in
Vancouver, where all items on the menu are less

than $10”7

How do you prove a property like

3evx|c < x2 10|

34

Proving a Big-O

Formally, to prove T(n) € O(f(n)), you must show:
3¢ > 0,n,Vn > n [T (n) < cf ()]

So, we have to come up with specific values of ¢ and
n, that “work”, where “work™ means that for any
n>n, that someone picks, the formula holds:

[T (n) <cf (n)]

35

Proving Big-O -- Example

10,000 n? + 25 n € ®(n?)
10-19n2 € ®(n?)

nlogn e O(n?) |

nlogn e Q(n)
n + 4 e O(n*) but not ®(n*)
n + 4 e Q(n?) but not ®(n?)

36

Prove n log n € O(n?)

» Guess or figure out values of ¢ and n, that will
work.

(Let’s assume base-10 logarithms.)

Prove n log n € O(n?)

» Guess or figure out values of ¢ and n, that will
work.

(Let’s assume base-10 logarithms.)
e Turns out c=1 and ny = 1 works!
(What happens If you guess wrong?)

Prove n log n € O(n?)

» Guess or figure out values of ¢ and n, that will
work.

(Let’s assume base-10 logarithms.)
e Turns out c=1 and ny = 1 works!
* Now, show that n log n <=n?, for all n>1

Prove n log n € O(n?)

Guess or figure out values of ¢ and n, that will
work.

(Let’s assume base-10 logarithms.)

Turns out c=1 and n, = 1 works!

Now, show that n log n <= n?, for all n>1

This is fairly trivial: log n <=n (for n>1)
Multiply both sides by n (OK, since n>1>0)

Aside: Writing Proofs

 In lecture, my goal Is to give you intuition.

— | will just sketch the main points, but not fill in all
details.
* When you write a proof (homework, exam,
reports, papers), be sure to write it out formally!
— Standard format makes it much easier to write!
» Class website has links to notes with standard tricks, examples

» Textbook has good examples of proofs, too.
» Copy the style, structure, and format of these proofs.

— On exams and homeworks, you’ll get more credit.
— In real life, people will believe you more.

To Prove n log n € O(n?)

Proof:

By the definition of big-O, we must find values of ¢ and n,
such that for all n > n,, n log n < cn?.

Consider c=1 and n, = 1.
Foralln>1,logn<n.
Therefore, log n < cn, since c=1.

Multiplying both sides by n (and since n > n,= 1), we have
n log n < cn?.

Therefore, n log n € O(n?).
QED

(This i1s more detail than you’ll use in the future, but
until you learn what you can skip, fill in the details.)

Proving Big-Q

 Just like proving Big-O, but backwards...

Proving Big-©®

 Just prove Big-O and Big-Q

Proving Big-® -- Example

| 10,000 n?+25n € O(n?) |
10-19n2 € ®(n?)
nlogn e O(n?)
nlogn e Q(n)
n + 4 e O(n*) but not ®(n*)
n + 4 e Q(n?) but not ®(n?)

45

Prove 10,000 n? + 25 n € O(n?)

» What values of ¢ and n, work?

(Lots of answers will work...)

Prove 10,000 n? + 25 n € O(n?)

» What values of ¢ and n, work?
I’ll use c=10025 and ny = 1.

10,000 n2 + 25 n <= 10,000 n2 + 25 n?
<= 10,025 n?

Prove 10,000 n? + 25 n € QQ(n?)

e What is this in terms of Big-O?

Prove n? € O(10,000 n% + 25 n)

» What values of ¢ and n, work?

Prove n? € O(10,000 n% + 25 n)

» What values of ¢ and n, work?
I’ll use c=1 and n, = 1.

nZ<= 10,000 n?
<=10,000n%+25n

Therefore, 10,000 n? + 25 n € ©(n?)

Mounties Find Silicon Downs Fixed

« The fix sheet (typical growth rates in order)

— constant:

— logarithmic:

— poly-log:

— linear:

— (log-linear):

— (superlinear):
— quadratic:

— cubic:

— polynomial:

— exponential:

O(1)
O(log n)
O(logk n)
O(n)

O(n log n)
O(n1+c)
O(n?)
O(n3)
O(nk)
O(c")

(log,n, log n? € O(log n))
(k 1s a constant >1)

(usually called “n log n)
(cisaconstant, 0 <c<1)

(k is a constant) “tractable”

(c Is a constant > 1)
“intractable”

Asymptotic Analysis Hacks

* These are quick tricks to get big-® category.

e Eliminate low order terms
—4dn+5=4n
— 05nlogn-2n+7=0.5nlogn
- 2"+n3+3n=> 2"

* Eliminate coefficients
—dn=n

— 05nlogn=nlogn
—nlog(n?)=2nlogn=nlogn

52

Log Aside

10g_b means “the exponent that turns a into b”
Ig x means “log,x” (our usual log in CS)
log Xx means “log,,x” (the common log)

In x means “log.x” (the natural log)

But... 0(lg n) = 0(log n) = O(In n) because:
log.b = log.b /7 log.a (forc > 1)

so, there’s just a constant factor between log bases

53

USE those cheat sheets!

e Which is faster, n® or n3log n?

e Which is faster, n® or n3%/log n?
(Split it up and use the “dominance” relationships.)

54

Rates of Growth

 Suppose a computer executes 1012 ops per second:

n= |10 100 1,000 |10,000 10%
N 10*s 110™s [107s [10% |1s
nlogn |10™s [107s [10° |10's |40s
n° 10"% 110°% |10°s |10™s |10%s
n° 10° |10°% |107°s |1s 10%*s
2" 107%s |10s 10%%s

10%s = 2.8 hrs 1018s = 30 billion years

	CS221: Algorithms and �Data Structures�Big-O�
	Learning Goals
	Asymptotic Analysis of Algorithms
	Asymptotic Analysis of Algorithms
	Runtime Smackdown!
	Runtime Smackdown II!
	Runtime Smackdown III!
	Asymptotic Analysis of Algorithms
	Silicon Downs
	Race I
	Race II
	Race III
	Race IV
	Race V
	Race VI
	Race VII
	Silicon Downs
	Order Notation
	Order Notation
	Race I
	Race II
	Race III
	How to formalize winning?
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-O
	Order Notation – Big-Theta and�Big-Omega
	Examples
	Proofs?
	Proving a Big-O
	Proving a “There exists” Property
	Proving a Property
	Proving a Big-O
	Proving Big-O -- Example
	Prove n log n  O(n2)
	Prove n log n  O(n2)
	Prove n log n  O(n2)
	Prove n log n  O(n2)
	Aside: Writing Proofs
	To Prove n log n  O(n2)
	Proving Big-
	Proving Big-
	Proving Big- -- Example
	Prove 10,000 n2 + 25 n  O(n2)
	Prove 10,000 n2 + 25 n  O(n2)
	Prove 10,000 n2 + 25 n  (n2)
	Prove n2  O(10,000 n2 + 25 n)
	Prove n2  O(10,000 n2 + 25 n)
	Mounties Find Silicon Downs Fixed
	Asymptotic Analysis Hacks
	Log Aside
	USE those cheat sheets!
	Rates of Growth

