
CS221: Algorithms and
Data Structures

Quick Review of Pointers

Alan J. Hu
(Borrowing some slides from Steve Wolfman)

1

Learning Goals

• Get comfortable with C++ pointers, understand
the * and & operators.

• Draw diagrams to help understand code that
manipulates pointers.

2

Review of Java References

• Java has “references” which are basically the same
as C++ pointers.
– Most of what you’ve learned already applies! 

• C++ pointers are more general and give you more
control.
– In some ways, they are more consistent and logical.
– But you have to do more work and be more careful.

3

Java Primitive Types:
Variables Hold Values

 Java variables hold values for primitive
types.

42

6.02E23

answer

avogadrosNumber

Java Classes:
Variables Hold (Java) References

 Java variables hold object references for
classes.

myRect

mySalary

Rectangle
x=5
y=10

height=20
width=30

BigInteger
1000000000000

Java Object References

 This is a bit of Java weirdness:
 For primitive types, variables hold the value.
 For classes, variables hold reference to object

 Declaration creates variable that can hold a
primitive value or an object reference.

 Constructor creates the object itself.
BigInteger mySalary =

new BigInteger(“1000000000”);

Why Care About References?

 You go skiing with a friend. You split a
granola bar with him. He eats his half. Does
it affect yours?

 You make a copy of your lecture notes for a
friend. Her dog chews up her copy. Does it
affect yours?

Why Care About References?

 You go skiing with a friend. You have the
hotel make a copy of your hotel key for your
friend, so he can leave some stuff there. He
trashes the room. Does it affect your room?

 Your parents get an extra credit card for you,
on their account. You go wild on a shopping
spree. Does this affect your parents’ credit?

Why Care About References?

 Sometimes it can matter.
 Just like in real life, it can matter if:

 There are more than one reference to the
object. (This is called aliasing.)

AND
 The object can be modified/changed. (This is

called being mutable.)

(Java) What does this print?

int a;
int b;

a = 3;
b = a;
b = b+1;
System.out.println(“a = “ + a + “ and b = “ + b);

(Java) What does this print?

Rectangle a;
Rectangle b;

a = new Rectangle(3,3,0,0);
b = a;
b.translate(1,1); // add 1 to x and y coordinates
System.out.println(“a = “ + a + “ and b = “ + b);

For Java Primitive Types,
Variables Hold Values

 Java variables hold values for primitive
types. (Therefore, can’t have aliasing.)

3a

b

 Java variables hold values for primitive
types. (Therefore, can’t have aliasing.)

3a

b 3

b = a;

For Java Primitive Types,
Variables Hold Values

 Java variables hold values for primitive
types. (Therefore, can’t have aliasing.)

3a

b 4

b = b+1;

For Java Primitive Types,
Variables Hold Values

For Java Objects, Variables Hold References

 Java variables hold object references for
classes.

a

b

Rectangle
x=3
y=3

height=0
width=0

 Java variables hold object references for
classes. (References can alias!)

a

b

Rectangle
x=3
y=3

height=0
width=0

b = a;

For Java Objects, Variables Hold References

 Java variables hold object references for
classes. (And if object is mutable…)

a

b

Rectangle
x=4
y=4

height=0
width=0

b.translate(1,1);

For Java Objects, Variables Hold References

Java References vs. C++ Pointers
• What Java calls a “reference” is basically the same as

what C++ calls a “pointer”. (C++ has something
different called a “reference” that we will learn later.)

• However, in Java, you never declare a
reference/pointer explicitly:
– Variables for primitive types are always values, never

pointers.
– Variables for objects are always references, never the objects

themselves.
• In C++, you can do whatever you want:

– Variables can hold primitive values or entire objects.
– You can make pointer variables to anything you want.

18

C++ Basic Pointer Operations
• If foo is any variable, then &foo gives you a pointer to

that variable. (Think of this as the “address of foo” or
an arrow pointing to foo.)

• If foo is any pointer, then *foo gives you whatever foo
points to. (Think of this as giving you the data at
address foo, or following the arrow where foo points.

• If foo is an object, then foo.bar gives you the member
variable named “bar” in object foo.

• NOTE! In C++, you’ll usually have a pointer to an
object instead of the object itself, so you’d have to
write (*foo).bar instead of foo.bar
– This is so common that C++ has special syntax for this:

foo->bar is exactly the same as (*foo).bar
19

Practice with Pointers

struct Node {
int data;
Node *tail;

}

data tail

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;

data tail
aNode

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;

data tail
aNode

In C++, this actually creates the object.
In Java, it would create only a “reference”/pointer.

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p;

data tail
aNode

p

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;

data tail
aNode

p

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;

data tail
aNode

p

&foo gives you a pointer to foo.
You can also think of this as the (starting) address of foo.
You can draw it as an arrow pointing to foo.

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;

data tail
aNode

p

*foo gives whatever foo points to. (Hopefully, foo is a pointer.)
You can also think of this as whatever is at address foo.
When you draw a diagram, it means following the arrow.

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;

data tail
aNode

p data tail

q

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;

data tail
aNode

p data tail

q

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;

data tail
aNode

p data tail

q

A copy of a pointer is an arrow to the same place.

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;

data tail
aNode

p data tail

q

Could have written instead (*q).tail = p;

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;
q = NULL;

data tail
aNode

p data tail

q

NULL

Garbage!!!

Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;
delete q; // Important in C++ to not leak mem!

data tail
aNode

p data tail

q

Garbage!!!

	CS221: Algorithms and �Data Structures��Quick Review of Pointers
	Learning Goals
	Review of Java References
	Java Primitive Types:�Variables Hold Values
	Java Classes:�Variables Hold (Java) References
	Java Object References
	Why Care About References?
	Why Care About References?
	Why Care About References?
	(Java) What does this print?
	(Java) What does this print?
	For Java Primitive Types,�Variables Hold Values
	For Java Primitive Types,�Variables Hold Values
	For Java Primitive Types,�Variables Hold Values
	For Java Objects, Variables Hold References
	For Java Objects, Variables Hold References
	For Java Objects, Variables Hold References
	Java References vs. C++ Pointers
	C++ Basic Pointer Operations
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers
	Practice with Pointers

