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Learning Goals

• Get comfortable with C++ pointers, understand 
the * and & operators.

• Draw diagrams to help understand code that 
manipulates pointers.

2



Review of Java References

• Java has “references” which are basically the same 
as C++ pointers.
– Most of what you’ve learned already applies! 

• C++ pointers are more general and give you more 
control.
– In some ways, they are more consistent and logical.
– But you have to do more work and be more careful.
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Java Primitive Types:
Variables Hold Values

 Java variables hold values for primitive 
types.
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Java Classes:
Variables Hold (Java) References

 Java variables hold object references for 
classes.

myRect

mySalary

Rectangle
x=5
y=10

height=20
width=30

BigInteger
1000000000000



Java Object References

 This is a bit of Java weirdness:
 For primitive types, variables hold the value.
 For classes, variables hold reference to object

 Declaration creates variable that can hold a 
primitive value or an object reference.

 Constructor creates the object itself.
BigInteger mySalary =

new BigInteger(“1000000000”);



Why Care About References?

 You go skiing with a friend.  You split a 
granola bar with him.  He eats his half.  Does 
it affect yours?

 You make a copy of your lecture notes for a 
friend.  Her dog chews up her copy.  Does it 
affect yours?



Why Care About References?

 You go skiing with a friend. You have the 
hotel make a copy of your hotel key for your 
friend, so he can leave some stuff there.  He 
trashes the room.  Does it affect your room?

 Your parents get an extra credit card for you, 
on their account.  You go wild on a shopping 
spree.  Does this affect your parents’ credit?



Why Care About References?

 Sometimes it can matter.
 Just like in real life, it can matter if:

 There are more than one reference to the 
object.  (This is called aliasing.)

AND
 The object can be modified/changed.  (This is 

called being mutable.)



(Java) What does this print?

int a;
int b;

a = 3;
b = a;
b = b+1;
System.out.println(“a = “ + a + “ and b = “ + b);



(Java) What does this print?

Rectangle a;
Rectangle b;

a = new Rectangle(3,3,0,0);
b = a;
b.translate(1,1); // add 1 to x and y coordinates
System.out.println(“a = “ + a + “ and b = “ + b);



For Java Primitive Types,
Variables Hold Values

 Java variables hold values for primitive 
types.  (Therefore, can’t have aliasing.)

3a

b



 Java variables hold values for primitive 
types.  (Therefore, can’t have aliasing.)

3a

b 3

b = a;

For Java Primitive Types,
Variables Hold Values



 Java variables hold values for primitive 
types.  (Therefore, can’t have aliasing.)
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b 4

b = b+1;

For Java Primitive Types,
Variables Hold Values



For Java Objects, Variables Hold References

 Java variables hold object references for 
classes.

a

b

Rectangle
x=3
y=3

height=0
width=0



 Java variables hold object references for 
classes.  (References can alias!)

a

b

Rectangle
x=3
y=3

height=0
width=0

b = a;

For Java Objects, Variables Hold References



 Java variables hold object references for 
classes.  (And if object is mutable…)

a

b

Rectangle
x=4
y=4

height=0
width=0

b.translate(1,1);

For Java Objects, Variables Hold References



Java References vs. C++ Pointers
• What Java calls a “reference” is basically the same as 

what C++ calls a “pointer”.  (C++ has something 
different called a “reference” that we will learn later.)

• However, in Java, you never declare a 
reference/pointer explicitly:
– Variables for primitive types are always values, never 

pointers.
– Variables for objects are always references, never the objects 

themselves.
• In C++, you can do whatever you want:

– Variables can hold primitive values or entire objects.
– You can make pointer variables to anything you want.
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C++ Basic Pointer Operations
• If foo is any variable, then &foo gives you a pointer to 

that variable.  (Think of this as the “address of foo” or 
an arrow pointing to foo.)

• If foo is any pointer, then *foo gives you whatever foo 
points to.  (Think of this as giving you the data at 
address foo, or following the arrow where foo points.

• If foo is an object, then foo.bar gives you the member 
variable named “bar” in object foo.

• NOTE!  In C++, you’ll usually have a pointer to an 
object instead of the object itself, so you’d have to 
write (*foo).bar instead of foo.bar
– This is so common that C++ has special syntax for this:

foo->bar is exactly the same as    (*foo).bar
19



Practice with Pointers

struct Node {
int data;
Node *tail;

}

data tail



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;

data tail
aNode



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;

data tail
aNode

In C++, this actually creates the object.
In Java, it would create only a “reference”/pointer.



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p;

data tail
aNode

p



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;

data tail
aNode

p



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;

data tail
aNode

p

&foo gives you a pointer to foo.
You can also think of this as the (starting) address of foo.
You can draw it as an arrow pointing to foo.



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;

data tail
aNode

p

*foo gives whatever foo points to.  (Hopefully, foo is a pointer.)
You can also think of this as whatever is at address foo.
When you draw a diagram, it means following the arrow.



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;

data tail
aNode

p data tail

q



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;

data tail
aNode

p data tail

q



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;

data tail
aNode

p data tail

q

A copy of a pointer is an arrow to the same place.



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;

data tail
aNode

p data tail

q

Could have written instead (*q).tail = p;



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;
q = NULL;

data tail
aNode

p data tail

q

NULL

Garbage!!!



Practice with Pointers

struct Node {
int data;
Node *tail;

}

Node aNode;
Node *p = &aNode;
Node *q = new Node;
q->tail = p;
delete q;  // Important in C++ to not leak mem!

data tail
aNode

p data tail

q

Garbage!!!
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