
CPSC 221:
Algorithms and Data Structures

ADTs, Stacks, and Queues
Alan J. Hu

(Slides borrowed from Steve Wolfman)
Be sure to check course webpage!

http://www.ugrad.cs.ubc.ca/~cs221

1

Lab 1 available very soon!

• Instructions for Lab 1 will be posted on course
webpage very soon:

http://www.ugrad.cs.ubc.ca/~cs221
• Labs start on Monday.
• Read instructions and do any pre-labs before your

lab section.

http://www.ugrad.cs.ubc.ca/%7Ecs221

Today’s Outline

• Abstract Data Types and Data Structures
• Queues
• Stacks
• Abstract Data Types vs. Data Structures

3

What is an Abstract Data Type?

Abstract Data Type (ADT) -

Formally:
Mathematical description of an object and the set
of operations on the object

In Practice:
The interface of a data structure, without any
information about the implementation

4

Data Structures

• Algorithm
– A high level, language independent description of a

step-by-step process for solving a problem
• Data Structure

– A set of algorithms which implement an ADT

• Don’t get too obsessed with this distinction.
• Let’s look at some examples…

5

Queue ADT

• Queue operations
– create
– destroy
– enqueue
– dequeue
– is_empty

• Queue property:
if x is enqueued before y is enqueued,
then x will be dequeued before y is dequeued.

FIFO: First In First Out

F E D C Benqueue dequeueG A

6

Why is it called a “queue”?

Applications of Queues

• Hold jobs for a printer
• Store packets on network routers
• Make waitlists fair
• Breadth first search
• Etc. etc. etc.
• Basically, any time you need to hold a bunch of

stuff for a bit, where you want to keep them in
order.

8

Abstract Queue Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

9

Implementing Queues

• Many different ways to do this!

• What would you do?

Circular Array Q Data Structure

void enqueue(Object x) {
Q[back] = x
back = (back + 1) % size

}
Object dequeue() {

x = Q[front]
front = (front + 1) % size
return x

}

b c d e f

Q
0 size - 1

front back

bool is_empty() {
return (front == back)

}

bool is_full() {
return front ==

(back + 1) % size
}

This is pseudocode. Do not correct my semicolons 11

Circular Array Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

What are the final
contents of the array?

12

Circular Array Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

What are the final
contents of the array?

Assuming we can
distinguish full and empty
(could add a boolean)…

13

Linked List Q Data Structure

b c d e f

front back

void enqueue(Object x) {
if (is_empty())

front = back = new Node(x)
else

back->next = new Node(x)
back = back->next

}

Object dequeue() {
assert(!is_empty)
return_data = front->data
temp = front
front = front->next
delete temp
return return_data

}
bool is_empty() {

return front == null
}

14

Linked List Q Data Structure

b c d e f

front back

void enqueue(Object x) {
if (is_empty())

front = back = new Node(x)
else

back->next = new Node(x)
back = back->next

}

Object dequeue() {
assert(!is_empty)
return_data = front->data
temp = front
front = front->next
delete temp
return return_data

}
bool is_empty() {

return front == null
}

What’s with the red text? 15

Circular Array vs. Linked List

• Which is better? Why?

16

Circular Array vs. Linked List

• Which is better? Why?

They both have plusses and minuses!

In general, many different data structures can
implement an ADT, each with different trade-offs.
You must pick the best for your needs.

17

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out 18

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

push F

F

19

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

push E

E
F

20

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

push D

D
E
F

21

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

push C

C
D
E
F

22

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

pop

D
E
F

23

C

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

pop

E
F

24

D

Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is pushed before y is pushed,
then x will be popped after y is popped

LIFO: Last In First Out

pop

F

25

E

Why use a stack?

Can you think of anything in real life where you
want LIFO instead of FIFO?

Why use a stack?

Can you think of anything in real life where you
want LIFO instead of FIFO?

Handling interruptions?

Reversing the order of things?

Stacks in Practice

• Function call stack
• Removing recursion
• Balancing symbols (parentheses)
• Depth first search

28

Array Stack Data Structure
S

0 size - 1
f e d c b

void push(Object x) {
assert(!is_full())
S[back] = x
back++

}
Object top() {

assert(!is_empty())
return S[back - 1]

}

back

Object pop() {
assert(!is_empty())
back--
return S[back]

}
bool is_empty() {

return back == 0
}
bool is_full() {

return back == size
}

29

Linked List Stack Data Structure

b c d e f

back

void push(Object x) {
temp = back
back = new Node(x)
back->next = temp

}
Object top() {

assert(!is_empty())
return back->data

}

Object pop() {
assert(!is_empty())
return_data = back->data
temp = back
back = back->next
delete temp
return return_data

}
bool is_empty() {

return back == null
}

30

Data structures you should
already know (a bit)

• Arrays
• Linked lists
• Trees
• Queues
• Stacks

31

Abstract Data Types vs.
Data Structures

• As mentioned before, ADT tells you what
operations are available, but does not say anything
about how implemented.

• Data structure consists of algorithms and memory
layout to implement the ADT.

• Algorithms are language-independent. How does
this map onto code?

32

ADTs vs. Data Structures
in Code Implementation

• Theoretically
– abstract base class (or Java interface) describes ADT
– inherited implementations implement data structures
– can change data structures transparently (to client code)

• Practice
– different implementations sometimes suggest different

interfaces (generality vs. simplicity)
– performance of a data structure may influence form of

client code (time vs. space, one operation vs. another)

33

Why so many data structures?

Ideal data structure:
fast, elegant, memory
efficient

Generates tensions:
– time vs. space
– performance vs. elegance
– generality vs. simplicity
– one operation’s

performance vs. another’s

“Dictionary” ADT
– list
– binary search tree
– AVL tree
– Splay tree
– B tree
– Red-Black tree
– hash table
– …

34

CS 221 ADT Presentation Algorithm

• Present an ADT
• Motivate with some applications
• Repeat a bunch of times:

– develop a data structure for the ADT
– analyze its properties

• efficiency
• correctness
• limitations
• ease of programming

• Contrast data structure’s strengths and weaknesses
– understand when to use each one

35

Coming Up

• Asymptotic Analysis

36

	CPSC 221: �Algorithms and Data Structures� ADTs, Stacks, and Queues
	Lab 1 available very soon!
	Today’s Outline
	What is an Abstract Data Type?
	Data Structures
	Queue ADT
	Why is it called a “queue”?
	Applications of Queues
	Abstract Queue Example
	Implementing Queues
	Circular Array Q Data Structure
	Circular Array Q Example
	Circular Array Q Example
	Linked List Q Data Structure
	Linked List Q Data Structure
	Circular Array vs. Linked List
	Circular Array vs. Linked List
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Why use a stack?
	Why use a stack?
	Stacks in Practice
	Array Stack Data Structure
	Linked List Stack Data Structure
	Data structures you should already know (a bit)
	Abstract Data Types vs.�Data Structures
	ADTs vs. Data Structures�in Code Implementation
	Why so many data structures?
	CS 221 ADT Presentation Algorithm
	Coming Up

