CPSC 221
Algorithms and Data Structures
ADTs, Stacks, and Queues

Alan J. Hu
(Slides borrowed from Steve Wolfman)
Be sure to check course webpage!
http://www.ugrad.cs.ubc.ca/~cs221

Lab 1 available very soon!

* Instructions for Lab 1 will be posted on course
webpage very soon:

 Labs start on Monday.

* Read instructions and do any pre-labs before your
lab section.

http://www.ugrad.cs.ubc.ca/%7Ecs221

Today’s Outline

Abstract Data Types and Data Structures
Queues

Stacks

Abstract Data Types vs. Data Structures

What Is an Abstract Data Type?

Abstract Data Type (ADT) -

Formally:

Mathematical description of an object and the set
of operations on the object

In Practice:

The interface of a data structure, without any
Information about the implementation

Data Structures

Algorithm

— A high level, language independent description of a
step-by-step process for solving a problem

Data Structure
— A set of algorithms which implement an ADT

Don’t get too obsessed with this distinction.
Let’s look at some examples...

Queue ADT

e Queue operations
— Create
— destroy G enqueue
— enqueue
— dequeue
— 1S_empty
e Queue property:
If X IS enqueued before y Is enqueued,
then x will be dequeued before y Is dequeued.

FIFO: First In First Out 6

FEDCB [T, A

Why is It called a “queue”?

Applications of Queues

Hold jobs for a printer

Store packets on network routers
Make waitlists fair

Breadth first search

Etc. etc. etc.

Basically, any time you need to hold a bunch of
stuff for a bit, where you want to keep them in
order.

Abstract Queue Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

Implementing Queues

e Many different ways to do this!

* What would you do?

Circular Array Q Data Structure

0 Q size-1
tT) c(dje|f T
front back
void enqueue(Object x) { bool i1s empty() {
Q[back] = x return (front == back)
back = (back + 1) % size }
+
Object dequeue() { bool i1s Tfull({
X = Q[front] return front ==
front = (front + 1) % size (back + 1) % size
return X }
+

This is pseudocode. Do not correct my semicolons ©

Circular Array Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

What are the final
contents of the array?

12

Circular Array Q Example

enqueue R
enqueue O
dequeue
enqueue T
enqueue A
enqueue T
dequeue
dequeue
enqueue E
dequeue

Assuming we can
distinguish full and empty
(could add a boolean)...

What are the final
contents of the array?

13

Linked List Q Data Structure

? > C » d » e :{
front back
void enqueue(Object x) { Object dequeue() {
1T (is_empty()) assert(lis_empty)
front = back = new Node(x) return_data = front->data
else temp = front
back->next = new Node(x) front = front->next
back = back->next delete temp
} return return_data
+
bool i1s empty() {
return front == null

14
s

Linked List Q Data Structure

b » C > d > e » f
]]
front back

void enqueue(Object x) {
1T (is_empty())
front = back = new Node(Xx)
else
back->next = new Node(Xx)
back = back->next

What’s with the red text?

Object dequeue() {
assert(lis_empty)
return_data = front->data
temp = front
front = front->next
delete temp
return return_data

+

bool i1s empty() {

return front == null 15

}

Circular Array vs. Linked List

* Which is better? Why?

16

Circular Array vs. Linked List

* Which is better? Why?
They both have plusses and minuses!

In general, many different data structures can
Implement an ADT, each with different trade-offs.
You must pick the best for your needs.

17

Stack ADT

« Stack operations
— Create
— destroy
— push
— pop
— top
— 1S_empty
« Stack property: if x is pushed before y Is pushed,
then x will be popped after y Is popped

LIFO: Last In First Out 18

Stack ADT

push F
« Stack operations

— Create
— destroy
— push
— pop
— top F
— 1S_empty

« Stack property: if x is pushed before y Is pushed,

then x will be popped after y Is popped

LIFO: Last In First Out 19

Stack ADT

push E
« Stack operations

— Create

— destroy

— push

— pop

— top

— 1S_empty
« Stack property: if x is pushed before y Is pushed,

then x will be popped after y Is popped

LIFO: Last In First Out 20

[Tl

1

Stack ADT

push D

« Stack operations
— Create
— destroy
— push
— pop
— top
— 1S_empty

« Stack property: if x is pushed before y Is pushed,
then x will be popped after y Is popped

LIFO: Last In First Out

D
E
F

21

Stack ADT

push C
« Stack operations

— Create

— destroy

— push

— pop

— top

— 1S_empty
« Stack property: if x is pushed before y Is pushed,

then x will be popped after y Is popped

LIFO: Last In First Out 2

mmg O

Stack ADT

| pop C
e Stack operations /'

— Create

— destroy

— push D

— pop E

— top F

— 1S_empty

« Stack property: if x is pushed before y Is pushed,

then x will be popped after y Is popped

LIFO: Last In First Out 23

Stack ADT

| pop D
e Stack operations /'

— Create

— destroy

— push

— pop

— top

— 1S_empty
« Stack property: if x is pushed before y Is pushed,

then x will be popped after y Is popped

LIFO: Last In First Out 24

[Tl

1

Stack ADT

| pop E
e Stack operations /'

— Create
— destroy
— push
— pop
— top F
— 1S_empty

« Stack property: if x is pushed before y Is pushed,

then x will be popped after y Is popped

LIFO: Last In First Out 25

Why use a stack?

Can you think of anything in real life where you
want LIFO instead of FIFO?

Why use a stack?

Can you think of anything in real life where you
want LIFO instead of FIFO?

Handling interruptions?

Reversing the order of things?

Stacks In Practice

Function call stack

Removing recursion

Balancing symbols (parentheses)
Depth first search

28

Array Stack Data Structure

S size-1
fedch
back

void push(Object x) { Object pop({
assert(lis full(Q)) assert(lis_empty())
S[back] = x back--
back++ return S[back]

+ +

Object top({ bool i1s empty() {
assert(lis_empty()) return back == 0
return S[back - 1] }

} bool 1s full() {

return back == size

29
}

Linked List Stack Data Structure

? » C > d > e » f
back
void push(Object x) { Object pop() {
temp = back assert(lis_empty())
back = new Node(x) return_data = back->data
back->next = temp temp = back
} back = back->next
Object top({ delete temp
assert(lis_empty(Q)) return return_data
return back->data }
} bool i1s empty() {
return back == null

}

Data structures you should
already know (a bit)

Arrays
Linked lists
Trees
Queues
Stacks

31

Abstract Data Types vs.
Data Structures

* As mentioned before, ADT tells you what
operations are available, but does not say anything
about how implemented.

 Data structure consists of algorithms and memory
layout to implement the ADT.

 Algorithms are language-independent. How does
this map onto code?

32

ADTs vs. Data Structures
In Code Implementation

e Theoretically
— abstract base class (or Java interface) describes ADT
— Inherited implementations implement data structures
— can change data structures transparently (to client code)

e Practice

— different implementations sometimes suggest different
Interfaces (generality vs. simplicity)

— performance of a data structure may influence form of
client code (time vs. space, one operation vs. another)

33

Why so many data structures?

Ideal data structure: “Dictionary” ADT
fast, elegant, memory — list
efficient — binary search tree
— AVL tree
: — Splay tree
Generates tensions:
_ — B tree
~ timevs. space — Red-Black tree
— performance vs. elegance _ hash table

— generality vs. simplicity
— 0ne operation’s
performance vs. another’s

CS 221 ADT Presentation Algorithm

 Presentan ADT
* Motivate with some applications

e Repeat a bunch of times:
— develop a data structure for the ADT
— analyze its properties
o efficiency
e correctness
 limitations
 ease of programming

» Contrast data structure’s strengths and weaknesses
35
— understand when to use each one

Coming Up

e Asymptotic Analysis

36

	CPSC 221: �Algorithms and Data Structures� ADTs, Stacks, and Queues
	Lab 1 available very soon!
	Today’s Outline
	What is an Abstract Data Type?
	Data Structures
	Queue ADT
	Why is it called a “queue”?
	Applications of Queues
	Abstract Queue Example
	Implementing Queues
	Circular Array Q Data Structure
	Circular Array Q Example
	Circular Array Q Example
	Linked List Q Data Structure
	Linked List Q Data Structure
	Circular Array vs. Linked List
	Circular Array vs. Linked List
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Stack ADT
	Why use a stack?
	Why use a stack?
	Stacks in Practice
	Array Stack Data Structure
	Linked List Stack Data Structure
	Data structures you should already know (a bit)
	Abstract Data Types vs.�Data Structures
	ADTs vs. Data Structures�in Code Implementation
	Why so many data structures?
	CS 221 ADT Presentation Algorithm
	Coming Up

