
CPSC 221:
Algorithms and Data Structures

Lecture #0: Introduction

Alan J. Hu
(Borrowing some slides from Steve

Wolfman)

Webpage: http://www.ugrad.cs.ubc.ca/~cs221 1

Rule #1: Ask questions!

Who I Am

Alan J. Hu (You can call me Alan or Prof. Hu.)
ajh@cs.ubc.ca
ICICS 325
office hours: TBD

I will hang out after class
if people have questions
(sometimes I’ll need to leave earlier).
Feel free to stop by my office at other times,
but I may be busy or not there.

Other Introductions
• Two Sections: MWF 10-11 in DMP 110 and TTh

2-3:30 in DMP 110.
• TAs: See website.
• TA Office hours: TBA; see website

Textbooks
• Texts: Epp Discrete Mathematics, Koffman C++

(But… feel free to get Epp 3rd ed or alternate
texts)

4

Course Policies
(Subject to Change)

• No late work; may be flexible with advance notice
• Programming projects (~3) typically due 9PM on due date

– All programming projects graded on Linux/g++

• Written homework (~3) typically due 5PM on due date
• Labs (roughly) every week. Please attend assigned lab

section for now. Labs start next week. (In room x350)
• PeerWise – More info forthcoming
• Exams: Must pass final exam to pass the course!
• Grading: See webpage for detailed breakdown.

5

Midterm Date

• The midterm will be 6-8pm, on Wednesday,
2015-February-25.

Collaboration

READ the collaboration policy on the website.
You have LOTS of freedom to collaborate!
Use it to learn and have fun while doing it!

Don’t violate the collaboration policy. There’s no
point in doing so, and the penalties are severe.

7

Course Mechanics

• 221 Web page: www.ugrad.cs.ubc.ca/~cs221
• We will be using Piazza as the primary way to

answer questions, have discussions, etc.
– You MUST have an account, but you may use a

fictitious email if you wish (this option is to comply
with BC privacy laws).

• We will also use Connect, mainly so you can see
your marks.

• You are responsible for keeping up with all of
these sources! 8

What This Course Is About

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

What’s an Algorithm?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• Algorithm (Typical Definition)
– A high-level, language-independent description of a

step-by-step process for solving a problem

What’s an Algorithm?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• Algorithm (Street Definition)
– A smarter way to solve the problem!

What’s a Data Structure?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• Data Structure (Street Definition)
– How to organize your data to get the results you want,

along with the supporting algorithms

Why Study Classic Examples?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• Reason #1: They are useful!
– Like pre-packaged intelligence in a can!
– Don’t have to work hard to come up with your own

solution

Why Study Classic Examples?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• Reason #2: They let you abstract away details!
– These are “power tools” for programming.
– Let you focus on solving bigger problems, ignore

details.

Why Study Classic Examples?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• Reason #3: You learn general solution ideas!
– This will help you solve new, unexpected problems.
– Great masters in any field study the classic examples

from their field.

Why the Theory and Math?

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

• This gives you the tools to determine:
– what’s good or bad
– what trade-offs are being made

and explain clearly why.

What this Course Is About

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)

Overall, this course is a major step that separates you
from being just some schmoe who learned a bit of
programming!

What this Course Is About

• Some Classic Algorithms
• Some Classic Data Structures
• Analysis Tools and Techniques for the Above

– (Also, a bit of leftover theory that should be in 121)
• Some Basics of Parallelism and Concurrency

These were always supposed to be part of 221, but
neglected in past, and increasingly important on
modern computers!

Goals of the Course

• Become familiar with some of the fundamental data
structures and algorithms in computer science

• Improve ability to solve problems abstractly
– data structures and algorithms are the building blocks

• Improve ability to analyze your algorithms
– prove correctness
– gauge, compare, and improve time and space complexity

• Become modestly skilled with C++ and UNIX, but
this is largely on your own!

19

Fun Example

• We’ll look at a simple example, to see how
different choices affect performance:
– Fibonacci Numbers

Fun Example

• We’ll look at a simple example, to see how
different choices affect performance:
– Fibonacci Numbers

• Does performance matter in practice?

Fun Example

• We’ll look at a simple example, to see how
different choices affect performance:
– Fibonacci Numbers

• Does performance matter in practice?
– Massive load on web applications: Anyone use Cuil

instead of Google?
– Huge amounts of data
– Efficient algorithms allow lower power, longer battery

life, cheaper processors, etc.

Fibonacci Numbers

• Common example in CS
• Some applications, pops up in unusual places (art,

nature, algorithm analysis)
• Mainly, just a convenient, small example that

illustrates important CS points.

• 1, 1, 2, 3, 5, 8, 13, …
• Each number is sum of previous two

Obvious Recursive Fibonacci
• Base Case:

fib(1) = 1
fib(2) = 1

• General Case:
fib(n) = fib(n-1) + fib(n-2)

• We’ll use the GNU Multiple Precision Arithmetic
Library to handle big numbers.
– Compile like this: (those are lowercase L, not the digit 1

g++ bigfib.cpp –lgmpxx -lgmp

Faster Iterative Fibonacci

• Just iterate up from beginning
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
… etc.

Faster Iterative Fibonacci

• Just iterate up from beginning
fib(1) = 1
fib(2) = 1
fib(3) = 2
fib(4) = 3
… etc.

• Can we do better?

Matrix Multiplication

• Consider this matrix
equation:








 +
=
















x

yx
y
x

01
11

Matrix Multiplication

• Consider this matrix
equation:

• Hey! That’s one iteration
of Fibonacci!








 +
=
















x

yx
y
x

01
11

Matrix Fibonacci
• Repeated matrix multiplication computes Fibonacci numbers…











=

























=

























=

















3
5

2
3

01
11

2
3

1
2

01
11

1
2

1
1

01
11

Repeated Multiplication is
Exponentiation!









=








−









=

−

1
1

)1(
)(

01
11

2nT
nfib

nfib

T

Multiplication is associative.

• Associative Law: (xy)z = x(yz)
• Therefore,











=
⋅⋅⋅⋅⋅⋅⋅⋅=
⋅⋅⋅⋅⋅⋅⋅⋅=
⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅⋅=

)())()((
)()()()(

))))((((

xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxxxn

Matrix multiplication is associative,
too!

• Associative Law: (XY)Z=X(YZ)
• Therefore,











=
⋅⋅⋅⋅⋅⋅⋅⋅=
⋅⋅⋅⋅⋅⋅⋅⋅=
⋅⋅⋅⋅⋅⋅⋅⋅=

⋅⋅⋅⋅⋅⋅⋅=

)())()((
)()()()(

))))((((

TTTTTTTT
TTTTTTTT
TTTTTTTT

TTTTTTTT n

Exponentiation by Iterative Squaring

• Imagine you have an old calculator and need to
compute 232.

• You could type 2 x 2 x 2 x 2 x ….
• Or, you could type:

– 2 x 2 = and get 22.
– x = and get 24.
– x = and get 28.
– x = and get 216.
– x = and get 232.

Iterative squaring works for
matrices, too!



323264

161632

8816

448

224

2

TTT
TTT

TTT
TTT
TTT

TTT

⋅=

⋅=

⋅=

⋅=

⋅=

⋅=

Iterative Squaring Example

43264100 TTTT ⋅⋅=

Do only 8 (matrix) multiplications instead of 99!

	CPSC 221: �Algorithms and Data Structures� Lecture #0: Introduction
	Rule #1: Ask questions!
	Who I Am
	Other Introductions
	Course Policies�(Subject to Change)
	Midterm Date
	Collaboration
	Course Mechanics
	What This Course Is About
	What’s an Algorithm?
	What’s an Algorithm?
	What’s a Data Structure?
	Why Study Classic Examples?
	Why Study Classic Examples?
	Why Study Classic Examples?
	Why the Theory and Math?
	What this Course Is About
	What this Course Is About
	Goals of the Course
	Fun Example
	Fun Example
	Fun Example
	Fibonacci Numbers
	Obvious Recursive Fibonacci
	Faster Iterative Fibonacci
	Faster Iterative Fibonacci
	Matrix Multiplication
	Matrix Multiplication
	Matrix Fibonacci
	Repeated Multiplication is Exponentiation!
	Multiplication is associative.
	Matrix multiplication is associative, too!
	Exponentiation by Iterative Squaring
	Iterative squaring works for matrices, too!
	Iterative Squaring Example

