
CPSC 221: Algorithms and Data Structures
Assignment #3, due Wednesday, 2014 April 2 at 17:00 (5pm) PDT

Submission Instructions

Type or write your assignment on clean sheets of paper with question numbers prominently labeled. Answers
that are difficult to read or locate may lose marks. We recommend working problems on a draft copy then writing
a separate final copy to submit. Be sure to use the provided cover page! Finally, staple your submission’s pages
together! We are not responsible for lost pages from unstapled submissions.

You may work in pairs, but not groups of three or more.
Submit your assignment to Box 35, in room ICCS X235. The deadline is 17:00 (5pm) on Wednesday, 2014-

April-2. We will attempt to mark your assignment before the final exam, but in any case, we will release a
sample solution shortly after the deadline. Late submissions are not accepted.

Note: the number of marks allocated to a question appears in square brackets before the question number.

Questions

[20] 1. The Best and Worst of Floyd or Not

Download the files binary_heap.cpp, main.cpp, and Makefile from the assignment page.
These are very closely based on the files you used in Lab 5 on heaps. The changes are that we have
provided an implementation of swapUp for you, we modified the implementation of Floyd’s heapify
function to be slightly slower (but asymptotically the same), and we have given you a new function that
resembles Floyd’s heapify, called heapify2. We have also changed the main testing program to fit
the needs of the later parts of this problem.

(a) We’ve seen in lecture that Floyd’s heapify algorithm runs in worst-case Θ(n). Now, study the
code for heapify2, which looks a lot like the code for heapify (which implements Floyd’s
algorithm). What is the asymptotic big-Θ worst-case running time of heapify2? Briefly explain
your answer, but you don’t have to provide a formal derivation.

(b) What is the asymptotic big-Θ best-case running time of Floyd’s heapify? Briefly explain your
answer, but you don’t have to provide a formal derivation.

(c) What is the asymptotic big-Θ best-case running time of heapify2? Briefly explain your answer,
but you don’t have to provide a formal derivation.

(d) Edit the main.cpp file so that REPS is set to be 1,000,000. You may need to adjust this number
a bit. Comment out the calls to cout and printList inside the loop. Make sure the for-loop
labeled “Worst Case” is uncommented, and the next line, labeled “Best Case” is commented out.
Similarly, uncomment the call to heapify and comment out the call to heapify2. Adjust the
value of REPS if necessary so that the runtime when n = 100 is around 1 to 5 seconds. What
machine are you running on, and what value of REPS did you end up with?

(e) Now, without changing the code, time it with n equal to 100, 200, 300, 400, 500, 600, 700, 800,
900, and 1000. What times did you get?

(f) Now, edit main.cpp so that you comment out the for-loop labeled “Worst Case” and uncomment
the for-loop for “Best Case”. Do not make any other changes, and time the code for the same set
of values for n (namely 100, 200, ..., 1000). What times did you get?



(g) Now, edit main.cpp so that you are using heapify2 instead of heapify (comment out the
call to heapify and uncomment the call to heapify2). Repeat the timings. What times did
you get?

(h) Now, edit main.cpp so that you are using the “Worst Case” for-loop instead of the “Best Case”
for-loop, but do not make any other changes (so you are still using heapify2). Repeat the
timings. (You may stop at n = 500 if you’d like.) What times did you get?

(i) Plot the timing results. Do these match your expectations and the theoretical runtimes?

[20] 2. An Iterative QuickSort

Download the file qsortCount.cpp from the assignment page. This is based on the file of the same
name from Lab 7, but it’s modified to add a new function iter_quicksort (and some associated
declarations), which is supposed to be an iterative version of Quicksort. Your job is to prove that it’s
correct. (By the way, you should probably try it out before trying to prove that it works!)

Your proof must be a loop invariant proof. To make things easier, we will give you a loop invariant that
will work:

The invariant is that if we ignore the ordering within intervals on the stack, the list is sorted.
Formally, for any array indices i and j between 0 and NN-1 inclusive, if they are not both
contained in the same interval on the stack, then if i < j, that implies that x[i] ≤ x[j].

However, you need to prove that this really is an invariant of the outer loop, and then you’ll need to do a
bit more reasoning to prove that the code really does sort correctly.

For your proofs, you may assume that the partitioning code (which is identical to what you had in your
recursive quicksort function) works correctly. Formally, after that code runs, all the elements in
x[a], . . . , x[m− 1] are less than or equal to x[m], and all the elements in x[m + 1], . . . , x[b] are greater
or equal to x[m].

(Hint: The proof is actually easy! The hard part is understanding all of the formal definitions above.
Take the time to make sure you understand what they all mean before trying to do the proof.)

(a) First, prove the base case. Note that this must be a loop invariant proof, so your base case should
not be about when the array is empty, or n = 0, or a tree is NULL, or some other kind of induction.
(Hint: This will be very short and simple.)

(b) Now, prove the inductive case. (Hint: Again, this is a loop invariant proof, so the induction is based
on going through the loop body one more time. As noted already, you may assume the partitioning
code does the right thing. There are two paths through the loop body, so this step will likely have
two cases.)

(c) Prove that the loop will terminate. (Hint: Think about what portion of the array is covered by
intervals on the stack.)

(d) Use the fact that the loop will terminate combined with the loop invariant to prove that when the
function terminates, the entire array is sorted.

[6] 3. Basic BSTs

The next several problems are about various data structures for the Dictionary ADT. In each of these,
we will give you a series of inserts and deletes, and ask you to draw the data structure at specific points
in time.

For this problem, we will consider ordinary binary search trees (without any rebalancing operations).
When a two-child node is deleted, replace it with its predecessor.



The sequence of operations is: insert(10), insert(20), insert(30), insert(25), insert(15), insert(17), delete(30),
delete(20).

Draw the tree after the insert(17), and the two deletes.

[7] 4. Advanced AVL Trees

Now, we will consider AVL trees. When a two-child node is deleted, replace it with its predecessor
(rather than its successor, which is the other choice).

The sequence of operations is: insert(10), insert(20), insert(30), insert(40), insert(25), insert(23), in-
sert(5), delete(25).

Draw the tree before and after each time a rotation is needed (and indicate what operation caused the
need for the rotation(s)). If a double rotation is needed, show the tree before the rotations, after the first
rotation, and then after the second rotation.

[10] 5. B+ B+Trees

Let M = 3 and L = 3. (How many keys are in the internal nodes? 2!) When a node underflows, it will
first try to borrow from its left sibling (if it exists), and then from its right sibling. If a node must merge,
it will merge with its left sibling (if it exists), otherwise it will merge with its right sibling. When a node
splits, divide keys evenly between the left and right; if there is an uneven number of keys to be divided,
give the extra key to the left.

The sequence of operations is: insert(10), insert(20), insert(30), insert(40), insert(25), insert(23), in-
sert(50), insert(60), insert(70), delete(30), delete(40).

Draw the tree after any operation that causes splitting, borrowing, or merging.

[14] 6. Hash Tables with Chaining

Consider a hash table of size 7 that uses chaining (with unsorted linked-list chains, recently inserted
items inserted at the front of the chain). Hash values by modding by the table size.

The sequence of operations is: Insert(10), Insert(20), Insert(30), Insert(40), Insert(54), Insert(64), In-
sert(76), Insert(80), Insert(90), Delete(64), Delete(54), Insert(108).

Draw the hash table after every insertion that collides, every deletion, and the last insertion (whether it
collides or not).

[16] 7. Hash Tables with Double Hashing

Consider a hash table of size 11 that uses open addressing with double hashing. The first hash is modding
by the table size. The second hash is h2(n) = 5 − (n mod 5).

The sequence of operations is the same as in the preceding problem: Insert(10), Insert(20), Insert(30),
Insert(40), Insert(54), Insert(64), Insert(76), Insert(80), Insert(90), Delete(64), Delete(54), Insert(108).

Draw the hash table after every insertion that collides, every deletion, and the last insertion (whether it
collides or not).

[7] 8. Making a Hash of Hash Tables

Show what happens if we try the preceding problem (open addressing, double hashing), but with a hash
table of size 20. The first hash is modding by the table size. The second hash is h2(n) = 5−(n mod 5).

Draw the hash table after each insertion that collides. Go as far as you can until an inseration fails, and
describe the failure.


