
CPSC 221: Algorithms and Data Structures
Assignment #2, due Tuesday, 2015 March 17, at 5 pm

Submission Instructions

Type or write your assignment on clean sheets of paper with question numbers prominently labeled. Answers
that are difficult to read or locate may lose marks. We recommend working problems on a draft copy then writ-
ing a separate final copy to submit.

Each submission should include the cover page (see course website) and names and student IDs of the au-
thors at the top of each page. (You may work in pairs, but not in groups of three or more.) On the cover page,
make sure that you sign the academic conduct statement. (See: http://www.ugrad.cs.ubc.ca/∼cs221/current/
syllabus.shtml#conduct.) In keeping with the policy, you should also acknowledge on your first page any col-
laborators or resources that helped you with the assignment. Also, clearly mark “Hu” or “Khosravi” on the front
page, depending which lecture section you attend, so we can return your assignment to you more easily. Finally,
staple your submission’s pages together! We are not responsible for lost pages from unstapled submissions.

Submit your assignment to Box #35 in room ICCS X235. Late submissions are not accepted. Note: the
number of marks allocated to a question appears in square brackets before the question number.

Questions

[10] 1. In this question, we’ll explore some trade-offs between what’s asymptotically best versus what might be
best in practice.

(a) Suppose you measure that it takes t seconds to sort 100000 values using an implementation of
insertion sort. About how long would it take to sort 200000 values using the same implementation?

(b) Suppose you measure that it takes t seconds to sort 100000 values using an implementation of
merge sort. About how long would it take to sort 200000 values using the same implementation?

(c) Suppose that we are comparing implementations of insertion sort and merge sort on the same
machine. After measuring the run times for various inputs sizes, you determine that the average
running time (for input of size n) for your insertion sort is about Ti(n) = 3n2, and the average
running time of your merge sort is about Tm(n) = 22n lg n. For what values of n is the insertion
sort faster than the merge sort?

(d) Although merge sort runs in O(n lg n) worst-case time and insertion sort runs in O(n2) worst-
case time, it makes sense to use insertion sort within merge sort as a base case, when subprob-
lems become sufficiently small. Based on the value of n that you computed in part (c), mod-
ify the following implementation of msort, which you have previously seen in lecture, and call
insertion sort(int data[], int lo, int hi) for “sufficiently small” cases.
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1 void msort(int x[], int lo, int hi, int tmp[]) {

2 if (lo >= hi) return;

3 int mid = (lo+hi)/2;

4 msort(x, lo, mid, tmp);

5 msort(x, mid+1, hi, tmp);

6 merge(x, lo, mid, hi, tmp);

7 }
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[5] 2. Bubble Sort is a popular sorting algorithm in courses on algorithms, because it’s easy to explain and
analyze and has a cute name. (It’s rarely used in practice because in almost any situation where Bubble
Sort is a reasonable choice, Insertion Sort is better. This is why we didn’t spend lecture time on it.)

Consider the following implementation of Bubble Sort.

1 void print(int a[], int n){

2 for (int i = 0; i < n; i++)

3 cout << a[i] << " ";

4 cout << "\n";

5 }

6

7 /*

8 Purpose: sorts elements of an array of integers using

bubble sort

9

10 Param: x - integer array to be sorted

11 n - size of the array

12 */

13 void bubbleSort(int x[], int n){

14 for(int i = 1; i < n; i++){

15 for (int j=n-1; j >= i; j--)

16 if (x[j] < x[j-1])

17 swap(x[j], x[j-1]);

18

19 print(x,n);

20 }

21 }

1

(a) What is the asymptotic best-case, average-case, and worst-case run times for this implementation
of Bubble Sort? (Note that the most standard implementation of Bubble Sort has a better best-case
run time than this one does, but ignore that for this problem.)

(b) What would be printed on the screen if you ran bubbleSort with the following parameters.
x = {32, 99, 77, 2, 87, 24, 16, 94, 28, 33} and n=10.
Note: Do this by hand! (Or at least do the first few iterations by hand.) The point of this question
is to give you practice understanding how some code works, not to give you practice typing in
code and compiling it. You may want to check your work by typing in the code, but don’t just
mindlessly type it in and copy down the output!



[25] 3. For this problem, you will formally prove that the above implementation of Bubble Sort correctly sorts
the array x. More specifically, you will prove that when bubbleSort terminates, the data in x is in
increasing order, and that x contains the same data that x contained originally.

You may assume without proof that swap behaves correctly (swapping the two specified elements in the
array), and you may ignore the call to print. You may also assume that no two integers in the array
have the same value.

(a) Let’s start with an easy loop-invariant proof. Prove that the following loop invariant holds for the
for-loop in lines 15–17:

Loop invariant: The subarray x[j . . . n − 1] is a permutation of the values that were in
x[j . . . n− 1] at the time that the loop started.

A permutation just means that the same data is in those array entries, but possibly in a different
order. Be sure to write your answer as a base case (for when the loop starts initially), and an
inductive step (in which you assume the loop invariant holds at the top of the loop and prove that
it still holds at the bottom of the loop). You may want to rewrite the loop as a while-loop if you
wish, but that’s optional.

(b) Next, prove that the following loop invariant also holds for the for-loop in lines 15–17:

Loop invariant: The value of x[j] is the smallest value in all of x[j . . . n− 1].

(c) Prove that the for-loop in lines 15–17 terminates, and then use the termination condition and the
loop invariants you proved in parts (a) and (b) to prove that whenever the code reaches line 18,
x[i − 1] contains the smallest value of x[i − 1 . . . n − 1], and that x[i − 1 . . . n − 1] contains a
permutation of the data that was originally in x[i− 1 . . . n− 1]. (Hint: This should be really short
and easy. If you find yourself trying to write more than a few sentences, you’re probably doing
something wrong.)

(d) Now that you’ve proven the inner for-loop correct, you can prove invariants for the outer for-
loop from lines 14–20. In particular, prove that the following loop invariant holds for the for loop
in lines 14-20

Loop invariant: the subarray x[0 . . . i− 2] contains the i− 1 smallest values originally in
x[0 . . . n− 1], in sorted order, and the array always contains a permutation of the original
array.

(e) Prove that the outer for-loop in lines 14–20 terminates, and then use the termination condition
and your loop invariant to prove that bubbleSort sorts the entire array correctly. (Hint: This is
almost as easy as part (c), but there’s one extra step to prove that you sorted the entire array.)


